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ABSTRACT 

By studying performance measures via reward structures, 
on-line error bounds are obtained by successive approxi-
mation.  These bounds indicate when to terminate compu-
tation with guaranteed accuracy; hence, they provide in-
sight into steady-state convergence.  The method therefore 
presents a viable alternative to steady-state computer simu-
lation where the output series is typically contaminated 
with initialization bias whose impact on the output cannot 
be easily quantified.  The method is illustrated on capaci-
tated queueing networks.  The results indicate that the 
method offers a practical tool for numerically approximat-
ing performance measures of queueing networks.  Results 
on steady-state convergence further quantify the error in-
volved in analyzing an inherently transient system using a 
steady-state model. 

1 INTRODUCTION 

Man-made systems such as manufacturing processes, tele-
communication systems or transportation networks are 
typically referred to as Discrete Event Dynamic Systems 
(DEDS).  These are systems with piecewise constant tra-
jectories, where state changes are induced by the occur-
rence of asynchronous events.  A fundamental obstacle to 
the study of DEDS is the lack of a comprehensive frame-
work for modeling and analysis of such systems. 
 Discrete-event computer simulation is the most flexi-
ble approach in assessing the performance of DEDS.  Per-
formance measures of interest such as average throughput, 
average response time or system utilization are typically 
steady-state measures.  Roughly speaking, these are meas-
ures that represent averages over a relatively long period of 
time, after the impact of start-up conditions has dissipated.  
Initialization bias can be a major source of error in estimat-
ing the steady-state value of a performance measure in a 
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simulation experiment.  This is due to arbitrarily specified 
start-up conditions of a simulation run that fail to reflect 
typical long-term behavior of the system. 
 Transient effects have received considerable attention 
in the simulation literature (Yücesan 1993).  Very broadly, 
two general approaches have been proposed: investigation 
of initialization policies to promote rapid convergence to 
steady-state conditions (for example, Kelton 1985, 1989) 
and construction of heuristic procedures to determine a 
truncation point, the observation after which data are re-
tained for analysis (for example, Schruben 1981, 1982).  
Proposed heuristics range from the visual inspection of the 
output series to statistical tests, from asymptotic theory to 
the maximum-entropy principle. 
 None of these heuristic techniques, however, offer any 
insights on the impact of the transient effects on the result-
ing estimates or on the rate of convergence to steady state.  
Such insights can only be obtained for special cases.  For 
instance, it is well known that the transition matrix of a 
Markov chain converges at a geometric rate under a con-
straining constant depending on its second eigenvalue 
(Çinlar 1975).  However, eigenvalues can only be obtained 
in simplistic situations; their numerical calculation rapidly 
becomes prohibitively expensive, if not impossible, for 
complex systems. 
 Abate and Whitt (1986, 1987) investigate the transient 
behavior of the single-server queue to determine whether 
the steady-state descriptions are reasonable.  Odoni and 
Roth (1983) conduct an empirical investigation of the tran-
sient behavior of stationary, single-server Markovian 
queues. They observe that, for many queueing systems, the 
rate at which a system converges to its steady-state charac-
teristics, independently of the system’s initial state, even-
tually becomes dominated by an exponential term of the 
form exp{-t/τ}, where t is time and τ is a characteristic of 
the queueing system. 
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 Kelton and Law (1985) and Kelton (1985) analyze the 
transient probabilistic structure of Markovian and Erlan-
gian queueing systems, proposing computational algo-
rithms to obtain the required probabilities. These results 
are further used to investigate the question of initializing 
simulations so as to promote rapid convergence to steady 
state.  Kelton (1989) incorporates the maximum entropy 
principle in a heuristic to determine initial conditions that 
promote rapid convergence. 
 No other results, even experimental ones, seem to be 
reported.  Therefore, very little is known in general about 
how fast steady state is reached.  In addition, analytic 
closed-form expressions, particularly product-form expres-
sions, are highly restricted when such practical considera-
tions as finite buffer constraints, breakdowns, and job in-
terferences are taken into account (Van Dijk 1993). 
 The objective of the paper is to introduce a method to 
compute steady-state values for performance measures 
with an explicit consideration of the transient effects.  The 
method can be used for direct numerical computation.  It 
can therefore provide an indicator for the actual steady-
state convergence, offering a potential solution for the imi-
tialization bias problem in discrete event simulation. 
 The key idea is to evaluate average performance 
measures by means of Markovian cumulative reward struc-
tures.  A rather simple result, that has been developed 
within Markov decision theory, can then be adopted di-
rectly.  While this result was originally introduced by 
Odoni (1969) and Popyack (1985) to determine the accu-
racy of successive approximation schemes in dynamic pro-
gramming, it has not been applied for the purpose of ap-
proximating steady-state performance measures.  To this 
end, a somewhat simplified result, adopted from the litera-
ture, is presented for direct application to Markov reward 
chains. Its deployment is illustrated through some generic 
queueing networks. An illustrative set of numerical results 
is included. A more extensive study is undertaken in Pa-
panikas (1992). These results show that the error bounding 
technique can be used in a straightforward fashion to de-
termine truncation points for computations and to guaran-
tee a level of accuracy with respect to a steady-state pa-
rameter value.  
 The paper is organized as follows.  Section 2 intro-
duces the technique and discusses its application to discrete 
event simulation.  A numerical illustration is provided in 
Section 3 together with a sensitivity analysis investigating 
the performance of the technique.  Concluding comments 
are included in Section 4. 

2 METHODOLOGY 

Consider a continuous-time Markov chain (CTMC),{X(t): t 
≥ 0, (Ω, Q, r)}, with a state space Ω = {0,1,...,N}, an in-
finitesimal generator matrix with transition rate q(i,j) from 
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state i to state j, Q = [q(i,j)], and a one-step reward rate, 
r(i), when the system is in state i. We further assume that: 
 

• The Markov process is irreducible with respect to Ω 
with a unique steady-state distribution {π(i)}i∈Ω. 

• Without loss of generality, a value D < ∞ exists 
for which  
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• For a given reward rate, r(i), the measure g is well 

defined by  
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It is easier to obtain the average expected reward, g, after 
applying the standard uniformization technique (Tijms 
1986, p.110). The purpose of uniformization is the pros-
pect of studying our continuous-time model as a discrete-
time Markov chain with a probabilistically equivalent gen-
erator matrix. 
 The uniformized one-step transition probability matrix 
P = [p(i,j)] is defined as : 
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 Note that the generator Qd of the discrete-time Markov 
chain over epochs {0, 1/D, 2/D, ...} with one-step transi-
tion matrix P coincides with the infinitesimal generator 
matrix Q = [q(i,j)] of the continuous-time model, as Qd = 

QIP =⋅−  )( D  where I is the identity matrix. 
 The fact that the two models have equivalent generator 
matrices implies that the steady-state distributions are also 
equal, i.e.,  π = πd.  The latter are determined by πQ = 0 
and πdQd = 0.  As a consequence, related performance 
measures such as average expected reward g for a given 
reward rate r are also equal. We can thus restrict our atten-
tion to the discrete-time model. 
 In order to study the average reward for our discrete-
time model and with Pk, the kth  power of the transition 
matrix P, for each n = 0,1,2,…, we define the expected to-
tal reward functions Vn by: 
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In words, this expression represents the expected cumula-
tive reward over n steps, starting in state i at time 0 and re-
ceiving a reward r(j) upon visiting state j.  
 Then, by virtue of our assumptions, we conclude that, 
for an arbitrary initial state i, the following expression is 
well defined and represents the average expected reward 
per unit time: 
 

 ).(1lim iV
n nn ∞→=g  (2.5) 

 
This average reward value accurately represents different 
performance measures of interest through the appropriate 
specification of the reward rate function r. 
 
Example  Consider an M/M/1/N loss system (that is, a sin-
gle-server system with finite waiting room of size N-1, and 
exponential interarrival and service times) with arrival rate 
λ and service rate µ. The measures in Table 1 can then be 
obtained, where r is the reward rate function and 1{A} 
represents the indicator of an event A; i.e., 1{A} = 1 if 
event A occurs and 1{A} = 0 otherwise.   
 

Table 1:  Performance Measures 
g r 
Throughput µ⋅1{z > 0} 
Loss probability 1{z = N} 
Tail probability 1{z > t} 
Mean number z 

 
 The following simple recursion relation, directly ob-
tained from (2.4), sometimes referred to as a one-step 
Markov reward or dynamic programming relation, pro-
vides a simple computational scheme: 
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This successive approximation is used to calculate or better 
approximate the value g, starting with )(0 iV  = 0 for all i.  
Furthermore, this recursion can be used to approximate g, 
without averaging, by simply providing monotonically 
converging lower and upper bounds for g.  These bounds 
provide a guarantee of accuracy for the reported result in 
situations where the numerical computation is terminated 
after exhausting a computing budget.  To this end, define 
values Mn and mn by 
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 The following result, stated without proof, then ap-
plies. It is adopted from results in Markov decision theory 
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(e.g., see Tijms 1986, Chapter 3). In that setting, it has al-
ready been introduced by Odoni (1969), and further ex-
tended, most notably, by Popyack (1985). In a non-
decision setting, however, it remains largely unexploited. 
 
Result:  mn ≤  mn+1 ≤ g ≤ Mn+1 ≤ Mn    (n ≥ 0)  (2.8) 

2.1 Application to Discrete Event  
Computer Simulation 

Generalized semi-Markov processes (GSMPs) are viewed 
not only as a precise model for describing DEDS, but also 
as a mathematical setting for analyzing discrete event 
processes (Glynn 1989).  As such, they represent a widely 
recognized modeling and analysis framework for discrete 
event simulations (Schruben and Yücesan 1993). 
 A Generalized Semi-Markov Scheme (GSMS) is a 
four-tuple (S,A,E,p), where S is the (finite or countably in-
finite) state space and A is the (finite) event set.  E is the 
event list, E: S → 2A; that is, for each state s∈S, E(s) de-
notes the set of active (feasible) events in state s.  The evo-
lution of the system, through state changes upon the occur-
rence of events, is governed by the probability measure p.  
That is, if e∈E(s), then upon the occurrence of event e the 
system moves to state s’∈S with probability p(s’;s,e).  We 
obtain a GSMP from a GSMS by introducing a sequence of 
clock samples, ω = {ωe(n) : e∈A, n = 0,1,2,...}, represent-
ing the time from the nth activation of event e to the nth 
scheduled occurrence of event e.  The clock samples fur-
nish the temporal dynamics lacking in GSMS. 
 Informally, the evolution of a GSMP can be summa-
rized as follows: compare clock values of all active events 
in the current state s, determine the triggering event e* (the 
one with the smallest clock value), update the process state 
s’ in accordance with p(s’;s, e*), and update the clock val-
ues (update the values for all events that remain active in 
the new state -sometimes referred to as the ‘residual life-
times,’ set new values for events that become active in the 
new state, and turn off the clocks for all events that become 
inactive (infeasible) in the new state).  For a formal discus-
sion, see Cassandras (1993, p.201). 
 
Example (continued)  The GSMP for the capacitated sin-
gle-server queue is a birth-and-death process.  The state 
space is S = {0,1,2,...,N} and the event set is A = {arrival, 
departure}.  For 1≤s<N, E(s)={arrival, departure}, while 
E(0)={arrival} and E(N)={departure}.  Arrivals increment 
and departures decrement the state; hence, 
p(s+1;s,arrival)=1 for 0≤s<N, while p(s-1;s,departure)=1 
for 1≤s≤N.  All other transitions have zero probability.  
The interarrival times, ωarrival(n), and the service times, ωde-

parture(n), are all independent exponentially distributed ran-
dom variables.  
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 Note that the process is called Markovian since the 
state transitions are governed by the probability measure 
p(s’;s,e), which, in turn, depends only on the current state 
of the system.  If all clock sequences are driven by the ex-
ponential distribution, we have a continuous-time Markov 
process.  On the other hand, allowing any general probabil-
istic structure to drive the clock sequences produces a 
semi-Markov process.  The term generalized is used to 
emphasize that residual lifetime distributions and/or state 
transition probabilities can depend on the entire history of 
the process.  For example, these probability distributions 
may explicitly depend on the time of the nth transition. 
 GSMP provides a precise modeling framework for 
discrete event simulations. There have been recent applica-
tions where it is also used for simulation analysis.  For ex-
ample, Glynn and Iglehart (1988) develop likelihood ratios 
for importance sampling leading to efficient queueing 
simulations.  Glynn (1989) generalizes this result to DEDS 
and points out applications to parameter optimization.  He 
also develops an external control variate scheme within the 
GSMP framework for variance reduction in simulation ex-
periments.  Glasserman (1991) uses the GSMP framework 
to introduce conditions validating the applicability of in-
finitesimal perturbation analysis to DEDS.  Glasserman 
and Yao (1992) identify cases where variance reduction 
can be guaranteed through the application of common ran-
dom numbers in a simulation experiment.   
 Our method provides a numerical alternative for per-
formance assessment of DEDS that can be modeled as a 
Markov or a semi-Markov process.  Note that although the 
approach was introduced within the context of continuous-
time Markov processes, its application to semi-Markov 
processes is immediate through a data transformation 
(Tijms 1986, p. 200).  While some generality of the GSMP 
framework is lost, the domain of applicability encompasses 
a large class of queueing models that are widely used to 
analyze manufacturing systems, telecommunication, ser-
vice, and computer networks (Van Dijk 1993).  The key 
advantage of our approach, however, is the guarantee of 
accuracy it offers for the steady-state performance metric.  
Such a guarantee of accuracy would be equally valuable in 
situations where computation is terminated prematurely 
due to a limited computing budget.  With such a measure 
of accuracy, our method can be viewed as a viable numeri-
cal alternative to discrete event computer simulation.  

3 AN ILLUSTRATION 

In this section, we illustrate our approach through a simple 
but nevertheless unsolvable illustrative example: a finite-
buffer assembly line.  A sensitivity analysis is also con-
ducted to study the behavior of the method with respect to 
system characteristics as well as the algorithm parameters. 
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3.1 Model 

We consider a simple tandem queue that consists of two 
single-server queues in series as depicted in Figure 1. Jobs 
arrive at the first queue according to a Poisson process with 
parameter λ. The service requirements are assumed to be 
exponentially distributed with parameters µ1 and µ2 at 
queues 1 and 2, respectively.  Jobs are served in a first-
come-first-served order. In addition, queue 1 has a capacity 
for at most N1 jobs in total and queue 2 for at most N2. 
 

 
Figure 1:  Capacitated Tandem Queue 

 
 The state of the system can be described by the vector  
= (n

1
,n

2
) where ni denotes the number of customers at station 

i, i = 1, 2. By n +ei ( n -ei), we denote the state of the system 
equal to n  except for one customer more (less) at station i 
where n -ei =  for ni=0. Consequently, by n -ei+ej we de-
note the state equal to n  with one customer moved from sta-
tion i to station j, where i=0 corresponds to an external arrival 
at station j (j can only be the first station of the configuration) 
and j=0 to a departure from the system at station i (again i is 
restricted to be the second station in the configuration). 
 A customer is denied access upon arrival when the 
first queue of the network is saturated (n1 = N1). A cus-
tomer is recirculated to the first station if, upon its service 
completion at station 1, the second station is saturated (n2 = 
N2). Here we note that, because of the memoryless property 
of the exponential distribution, one can also state that the 
first station stops servicing when the second one is satu-
rated. This, in turn, is known as communication blocking 
(Altiok and Perros 1986). 
 The transition rates can be summarized in the follow-
ing way:  
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Hence, with D = λ + µ1 + µ2, the uniformization constant, 
in accordance with (2.3), yields the probability of staying 
in the same state: 
 
 )]1111[1(),( }{}0{}0{}{ 22112211 Dnnq NnnnNn <>>< ⋅−⋅−⋅−= µµλ  
 
We consider two performance measures: 

 
1. The throughput, T, of the system is defined as the 

number of customers departing from the second 
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queue per unit of time. The reward rate, r( n ), in 
this case is given by: 
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2. The expected sojourn time, W, is defined as the 

time a customer spends in the system, including 
both the service time and the waiting time in each 
queue. This sojourn time can be calculated via 
Little’s law (L = T ⋅ W), where L is the average 
number of customers in the system. 

3.2 Numerical Results 

Characteristics of the tandem queue used in our experi-
ments are summarized in Table 2.  The parameters of the 
algorithm are given below. 
 
The uniformization variable D and the corresponding step-
size 1/D per transition was chosen to be  
 
 D = λ + µ1 + µ  (3.1) 
 
As stopping criterion, we used:  

 
 Mn - mn ≤ ε = 0.001. (3.2) 
 
Table 2:  System Characteristics for the Queueing Example 

Characteristics of the system 
No. of 
queues 

Servers 
per queue 

Capacity Utilization 

2 1 1 to 30 20% to 120% 

3.3 Sensitivity Analysis and Further  
Discussion of Numerical Results  

In this section we discuss the operating characteristics of 
the proposed method in detail.  In particular, we will elabo-
rate upon the following aspects: 
 

• convergence rate, 
• sensitivity with respect to characteristics of the 

system under study (capacity, utilization), and 
• sensitivity with respect to its operating parameters 

(uniformization variable, stopping criterion). 
 

Though these discussions are not directly necessary for the 
actual application of the method, we believe them to be of 
interest to practitioners for gaining further insight into 
some of the underlying features of the algorithm. Though 
such results are usually not reported (in detail), we find it 
useful to include them. 
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3.3.1 Performance of the Method: Convergence Rate 

A representative illustration of the numerical experiments is 
provided in Figures 2 (throughput) and 3 (sojourn time) for 
different utilization levels. The illustration pertains to a sys-
tem consisting of two single-server queues in tandem, each 
with a waiting room for four customers. These figures indi-
cate that the lower and upper bounds mn and Mn can be used 
as simple practical values to quickly determine the value of g 
within a prescribed accuracy. As such they support the 
Markov reward method as an easy-to-use tool in practice. 
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 Figure 2: Convergence Rate for System Throughput  
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 Figure 3: Convergence Rate for Sojourn Time 

 
 In addition to computational accuracy, the results pro-
vide an indication of the actual convergence to steady-state 
in terms of transitions (or events). For the original (non-
uniformized) continuous-time Markov chain {X(t) : t≥0}, 
we can consider the transitions from state i to occur at a 
uniform rate of D rather than at a state-dependent rate Σ
q(i,j). However, only a fraction Σq(i,j)/D are real transi-
tions out of state i corresponding to an event in the original 
queueing process such as an arrival or a service comple-
tion.  The remainder are just fictitious transitions that leave 
the process unchanged in state i. As a consequence, the 
number of iterations required can be regarded as an upper 
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bound on the number of events (arrivals or service comple-
tions) that must be executed in a discrete-event simulation 
before the prescribed accuracy for a steady-state perform-
ance value is achieved. 
 The method is observed to converge fairly quickly; 
however, its rate of convergence, to the best of our knowl-
edge, has not yet been formally determined. We argue that it 
actually follows a geometric pattern.   We used the method 
of least - squares estimation for the purpose of curve fitting 
because the data failed to satisfy the underlying assumptions 
of regression analysis. The method has been applied to dif-
ferent cases with different capacities and utilization levels.  
Figure 4 shows, for the configuration with capacity 1 and 90 
% utilization, the differences of the upper bound for the 
value of the system throughput, as calculated through the 
program at every step, and the steady-state value of the 
throughput, computed by solving a set of differential-
difference equations. In both cases the values are plotted 
against the number of iterations. Our results are consistent 
with the derivations in Çinlar (1975, p.378), where geomet-
ric convergence rates are established for irreducible, aperi-
odic Markov chains.  The results support the utility of the 
method as a practical tool for the steady-state approxima-
tions for queueing network performance measures. 
 

 
 Figure 4: Convergence Rate of the Algorithm 

3.4 Characteristics of the Configuration 

An examination of the convergence rate with respect to 
changes in the system characteristics is certainly of great 
interest.  Since the work in this paper has been restricted to 
relatively simple systems, we have only examined the im-
pact of two system characteristics, utilization and capacity. 

As anticipated, an increase in the value of these two 
parameters necessitates a larger number of steps for con-
vergence. An increase in utilization modifies the distribu-
tion of the probability mass throughout the state space.  For 
instance, at high utilization levels, most of the mass is con-
centrated around the congested states, that are attained very 
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quickly.  For low utilization rates, however, the opposite is 
true.  As depicted in Figure 5, convergence is slower when 
the probability mass is more evenly distributed over the 
state space; those corresponds to the range of 0.6 to 0.8. 
 Increasing capacity results in an exponential growth of 
the number of iterations. Such a growth can quickly lead to 
prohibitively large run-time requirements (Figure 6).  This 
is also an intuitive result as an increase in capacity corre-
sponds to an increase in the number of states.  In general, a 
system with a larger state space will take longer to attain 
steady state. 
 The steep increase in the number of iterations for sys-
tems with larger state space appears to limit the applicabil-
ity of the proposed method to complex systems.  There are, 
however, two approaches to mitigate this problem: trunca-
tion of the state space and acceleration of the convergence 
rate.  Tijms (1986, p.195) proposes a relaxation method 
that modifies the computation of the reward function at 
each step through a dynamically selected relaxation factor 
to accelerate convergence.  Our experimentation with the 
relaxation method did not yield satisfactory results; the 
number of iterations required for convergence was reduced 
only by one or two.  Nevertheless, the use of a relaxation 
factor could prove to be fruitful when the algorithm is ap-
plied to systems with a larger state space.  Next, we discuss 
the truncation of the state space. 

3.5 Experimental Truncation Error Bound 

Examination of a system with a very large state space is a 
difficult task. Thus, such a state space is normally trun-
cated to be able to obtain a solution, but with no guarantee 
for the accuracy of the results. A question of great interest 
is then whether this truncation error could possibly be 
quantified.  
 Truncation errors have been experimentally obtained 
(for the configuration considered in section 3.1).  The results 
indicate that a significant reduction in run times can be ob-
tained by truncating the state space while incurring only a 
small truncation error. For instance, a truncation from 900 
states (capacity of 30 at each station) down to 625 yields a 
truncation error in the values of the average throughput of 
0.038 (0.43%). Table 3 shows the error in throughput at a 
90% utilization level due to the truncation of capacity from 
30 customers at each station to smaller values. 
 Further analysis reveals that the capacity restriction 
imposed on our configuration hardly makes any difference, 
compared to the uncapacitated system, when the maximum 
allowed number of customers increases above 60. Thus, 
the existing steady-state equations of the equivalent prod-
uct-form configuration could be used to compute the value 
of the system throughput with a negligible error.  Papani-
kas (1992) discusses analytic methods to provide a priori 
error bounds in Markov chains. 
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Figure 5:  The Number of Iterations versus Utilization 
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Figure 6:  The Number of Iterations versus System  
Capacity 

3.5.1 Characteristics of the Algorithm  

The convergence rate of the algorithm is also influenced by 
its parameters: the value of the uniformization variable, D, 
and the value of the stopping criterion, ε.  The increase in 
the number of iterations resulting from an increase in the 
value of D can be estimated  through the following equa-
tion : (D / Iterations) = (D’ / Iterations’).  As the best pos-
sible value for D, we recommend the one that satisfies 
equation (2.1) with equality. 
 The value of the stopping criterion has a big impact on 
convergence rate. A smaller value, that will provide a more 
accurate approximation, will result in a larger number of 
iterations. An appreciation of the changes in convergence 
rate, expressed as the number of iterations, due to changes 
in the values of D and ε can be obtained from Table 4. 
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Table 3: Error in State Space Truncation 
Capacity Avg T-put  Difference % ∆ 

10 8.385727 0.567223 6.33 
15 8.699578 0.253372 2.83 
20 8.842422 0.110528 1.23 
25 8.914626 0.038324 0.43 

 
Table 4: Sensitivity to Parameters 

Utilization (%) 
D 20 50 90 120 
32 103 149 139 109 
40 130 188 174 137 
ε 
0.001 69 116 126 109 
0.0001 82 143 157 137 

4 CONCLUDING COMMENTS 

A computational method is introduced to calculate the val-
ues of performance measures by successive Markov re-
ward approximations.  This method enables one to obtain 
on-line error bounds for the accuracy of the approximation. 
Extensive numerical analysis conducted in Papanikas 
(1992) and summarized in this paper illustrates that these 
bounds can be quite practical to provide a guaranteed accu-
racy within a reasonably small number of steps: as such, 
the results support the approach as a practical alternative to 
digital simulation, where no guarantees can be furnished 
on steady-state estimations. The bounds could also be used 
to show how the convergence rates depend on system input 
parameters, such as capacity and load.  This is particularly 
useful for the design and operation of modern manufactur-
ing systems where steady-state conditions can never be at-
tained due to small lot sizes and a great variety of products.  
Chance (1993), for example, describes a queueing network 
model of such a semiconductor manufacturing process 
with re-entrant routing, rework, and machine breakdowns. 
 It should be noted that there exists a rich literature on 
numerical techniques applied to Markovian modeling 
(Freiberger and Grenander 1971).  A comparison of such 
techniques can be found in (Stewart 1978).  We have not 
considered them since the method of successive Markov 
reward approximations is, in our view, a modern and 
proven technique that is intuitive, easy to implement, and 
efficient.  An added benefit is its ready generalizability to 
semi-Markovian processes, that significantly increases its 
domain of applicability and makes it a viable alternative to 
discrete event computer simulation. 
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