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ABSTRACT

We describe a fast simulation framework for simulating small
ruin probabilities in insurance risk processes with subexpo-
nential claims. Naive simulation is inefficient since the event
of interest is rare, and special simulation techniques like
importance sampling need to be used. An importance sam-
pling change of measure known as sub-exponential twisting
has been found useful for some rare event simulations in
the subexponential context. We describe conditions that are
sufficient to ensure that the infinite horizon probability can
be estimated in a (work-normalized) large set asymptotically
optimal manner, using this change of measure. These con-
ditions are satisfied for some large classes of insurance risk
processes – e.g., processes with Markov-modulated claim
arrivals and claim sizes – where the heavy tails are of the
‘Weibull type’. We also give much weaker conditions for
the estimation of the finite horizon ruin probability. Finally,
we present experiments supporting our results.

1 INTRODUCTION

Consider an insurance risk process. Let Xn denote the
size of claim n which arrives at epoch ηn , n ≥ 1, with
0 ≡ η0 < η1 < η2 < · · · . Define ξn as the interarrival time
between claim n and claim n − 1, i.e., ξn := ηn − ηn−1,
n ≥ 1. The premium rate is c, so in the absence of claims
the insurance reserve builds up at that rate. Let N(t) be
the random number of arrivals in (0, T ]. If we let U(t) be
the reserve at time t , then

U(t) = u + ct −
N(t)∑
i=1

Xi ,

where u is the reserve at time 0. Finally, let S(t) be the
claim-surplus process defined by u−U(t). We are interested
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in the finite horizon ruin probability given by

ψ(u, T ) := P (U(t) < 0 for some t < T )

= P

(
sup
t<T

S(t) > u

)
, (1)

and the infinite horizon ruin probability defined by ψ(u) =
ψ(u,∞). Unless we specifically state the T = ∞ in the
notation ψ(u, T ), take T <∞ in that notation.

We assume very general conditions on the random
drivers of this process, i.e., the sequence {(ξi , Xi ) : i ≥ 1}.
The claim sizes Xi ’s can be one of m different types,
corresponding to m different distributions, denoted by F1,
F2, …, Fm . We assume that at least one of them is
subexponentially distributed. Let the (random) type of
the claim that arrives at time ξi be denoted by Wi . The
{(ξi ,Wi ) : 1 ≥ 1} can be any general discrete time stochastic
process. However, given {(ξi ,Wi ) : i ≥ 1}, we assume
that the Xi has distribution FWi , and that the Xi ’s are
independent of one another. This includes the renewal
arrrivals model, which is the most basic sub-case. In this
model the interarrival times are i.i.d., the claim sizes are i.i.d.
and the interarrival times are independent of the claim-size
sequence. It also includes cases where the claim sizes and
the interarrival times are environment dependent and the
state of the environment fluctuates randomly. One example
of the latter to which our techniques apply, is when the state
of the environment is given by a finite state, continuous time
Markov chain, arrivals are Poisson with the rate dependent
on the state, and the distribution of the claim sizes are also
dependent on the state (given the states, they are independent
of one another and the arrival stream).

Let limt→∞ N(t)/t = ω w.p. 1 and let
limt→∞

∑N(t)
i=1 Xi/t = ωβ w.p. 1. For most practical

situations, the S(t) process is assumed to have a downward
drift in steady state, (otherwise, the infinite horizon ruin
probability will be 1), i.e., c > ωβ or ρ := ωβ/c < 1.

For even the simplest of these problems, no closed form
solution exists for either ψ(u) or ψ(u, T ). Asymptotic (i.e.,
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as u → ∞) approximations abound in the literature, but
there are very few bounds. Hence simulation presents a
viable alternative. However note that as u →∞, ψ(u)→ 0
and ψ(u, T )→ 0. Hence when u is large, the probability
of ruin is small, and then naive simulation is not efficient,
as then many sample paths need to be generated in order
to get a sample path where the ruin actually happens. The
case of ψ(u) suffers from the additional problem of not
knowing when to stop the simulation.

Importance sampling is a widely used simulation tech-
nique to speed up the occurrence of rare events (see, e.g.,
Heidelberger (1995), Asmussen (2000)). The basic idea is
to change the probability dynamics of the system so that the
event of interest happens faster. One then uses likelihood
ratios to unbias the estimator. However, any arbitrary prob-
ability dynamics that speeds up the occurrence of rare events
may give estimators that have higher variances than those
using naive simulation. Hence there exists a vast amount of
literature on coming up with efficient changes of measure
for rare event simulation problems in different settings (e.g.,
Heidelberger (1995), Lehtohnen and Nyrhinen (1992)).

It is well-known that for the new probability dynamics
to be effective, it should closely approximate the probability
dynamics of the original system conditioned on the rare event
happening. In the case when the claim distribution is light-
tailed, large deviations theory is used to determine the ‘most
likely path’ under some scaling along which the rare event
happens (see, e.g., Cottrell, Fort and Malgouyres (1983),
Bucklew (1990), and Sadowsky (1991)). Then exponential
twisting (see, e.g., Siegmund (1976), and Asmussen (1985))
is used to direct the process along the most likely path.
Such an approach is known to give large reductions in
variance over naive simulation for large classes of systems,
including i.i.d. interarrival times of claims, and Markov-
modulated arrival times of claims (see, e.g., Lehtohnen and
Nyrhinen (1992)). In particular, many of the importance
sampling techniques based on this approach are known to
be asymptotically optimal, i.e., the asymptotic (exponential)
rate of decay of the second moment is twice that of the
first moment, which is the slowest possible rate (since
the second moment is always greater than or equal to the
square of the first moment). Asymptotic optimality is the
standard criterion used in the literature to classify a rare
event simulation technique as being efficient (see, e.g.,
Heidelberger (1995)).

However, when the claim size is subexponential, then
one cannot use traditional large deviations theory as then
the most likely path is much more complex, and moment
generating functions that are a key component of traditional
large deviations theory, do not exist. Hence simple exten-
sions of approaches used in the light-tailed case cannot be
used here.

To the best of our knowledge, the first fast simulation
approach in the subexponential setting was presented by
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Asmussen and Binswanger (1997). They gave an approach
for simulating for the probability that the geometric sum of
i.i.d. subexponential random variables exceeds a given high
value. One property of subexponentially distributed random
variables is that given that the sum of i.i.d. subexponentially
distributed random variables is ‘large’, the sum behaves very
much like the maximum of that group. Hence computing the
probability of the maximum exceeding u, after simulating
for the other lower order statistics, eliminates much of the
variance. This insight forms the basis of their technique
and they showed that it was asymptotically optimal for
subexponential distributions with regularly varying tails (e.g.
Pareto).

Juneja and Shahabuddin (1999) introduced the notion
of subexponential twisting or more specifically hazard rate
twisting, were one twists at a sub-exponential rate. They
proved that a delayed version of hazard rate twisting was
asymptotically optimal for most subexponential distribu-
tions for the problem described in the preceding paragraph.
Asmussen, Binswanger, and Hojgaard (2000) present an al-
ternative importance sampling approach that is also asymp-
totically optimal for most subexponential distributions.

However all the afore-mentioned techniques are for
estimating the probability that the geometric sum of i.i.d.
random variables exceeds a given level. This has appli-
cations in simulating for the ruin probability in insurance
risk processes with Poisson claim arrivals and i.i.d. claim
sizes (or by duality, for the probability that the steady-state
waiting time exceeds a given value in a M/GI/1 queue). This
is accomplished by using the Pollaczek-Khintchine trans-
formation to transform the actual problem into the problem
of geometric sums mentioned above. However, even for
one of the simplest cases, where one has i.i.d. renewal
interarrival times instead of Poisson arrivals, even though
such a representation exists, it is not useful (as then the pa-
rameters of the geometric distribution, and the distribution
of the i.i.d. random variables that appear in the geometric
sum, are not easily calculable). Hence the approach breaks
down.

Boots and Shahabuddin (2000b; see Boots and Sha-
habuddin 2000a for a preliminary version) considered the
problem of estimating ψ(u) for the case with i.i.d. inter-
arrival times and i.i.d. claim sizes, where the sequence of
claim sizes is independent of the sequence of interarrival
times. Instead of using the Pollaczek-Khintchine transfor-
mation, they simulated the claim-surplus process directly.
In particular they simulated the random walk associated
with the claim-surplus process, i.e., Si = Si−1+ (Xi − cξi),
which is the claim-surplus process viewed at the moments
of claim arrivals (or more precisely, an infinitesimal time
after these moments). Then they used the fact that ψ(u)
can also be expressed as P(supn∈N Sn > u). The change of
measure that they used consists of subexponentially twisting
the claim sizes Xi . They showed that for claim-size distri-
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butions that have ‘Weibull type tails’, the new estimator is
large set asymptotically optimal. The “large set” means that
instead of estimating the probability of the rare event, one
estimates the probability of a large subset of the rare event in
an asymptotically optimal manner, i.e., the subset on which
the variance is well behaved. To satisfy this criterion, the
large set needs to be such that asymptotic relative bias is
bounded by a prespecified value of one’s choice. Hence
in practical terms, it is very close to asymptotic optimality.
The proof for claim-size distributions that have ‘Pareto type
tails’ or ‘lognormal type tails’ is still an open problem.

The main contribution of this paper is to generalize the
approach of Boots and Shahabuddin (2000b) to:

• more general arrival processes and claim-size pro-
cesses like those described at the beginning of this
section.

• estimating ψ(u, T ).

The approach we take in each case is to state very general
sufficient conditions on the claim-surplus process and the
claim-size distributions, for the change of measure that we
propose to be large set asymptotically optimal. Then we
give specific examples where these conditions are satisfied.
In particular we show that the case where the arrival process
and the claim-size process are Markov-modulated satisfy
these conditions. Some ‘perturbed’ versions of commonly
used insurance risk processes also satisfy these conditions;
see Boots and Shahabuddin (2001). All the proofs for the
theoretical results in this paper are also given in Boots and
Shahabuddin (2001).

2 MODELS AND NOTATION

We start with some commonly used notation. For a
distribution F with tail F ≡ 1 − F and density f ,
let λ(x) ≡ f (x)/F(x) be the hazard-rate function, and
�(x) = ∫ x

s=0 λ(s)ds be the hazard function (also called the
cumulant function). The tail of any distribution, F(x), may
be written as F(x) = exp(−�(x)). The integrated tail of
F is defined by FI (x) :=

∫ x
0 F(y)dy/

∫∞
0 F(y)dy when∫∞

0 F(y)dy < ∞. Let λI (x) be the hazard-rate function
and �I (x) be the hazard function corresponding to FI .
For any functions z1(x) and z2(x), we use the notation
z1(x) ∼ z2(x) as x →∞, to mean that the ratio of z1(x)
to z2(x) converges to 1 as x goes to infinity. We define
F←(y) = inf{x : F(x) = y}. If the inverse function of F
is well-defined, then F← ≡ F−1. Finally, the minimum of
x1 and x2 is denoted by x1 ∧ x2 and the indicator random
variable corresponding to the event A is denoted by I (A).

To model the possibility of large claims we allow claims
to be subexponentially distributed. The definition of subex-
ponentiality is due to Chistyakov (1964) (see Embrechts,
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Klüppelbeg and Mikosch (1997) for details about subexpo-
nential distributions):

Definition 2.1 Let (Xn) be a sequence of i.i.d. non-
negative random variables with distribution F. The F is
subexponential (denoted by F ∈ S) iff for all n ≥ 2

P(X1 + · · · + Xn > u)

nP(X1 > u)
→ 1 (u →∞). (2)

We call a distribution light-tailed if it decays at an
exponential or faster rate. Subexponential distributions are
not light-tailed, but decay at a sub-exponential rate.

Section 2.1 presents the insurance risk model in its
most general form, as well as some examples.

2.1 The Insurance Risk Model

Consider the insurance risk model described in Section 1.
We assume that Fi has a finite mean βi . Define M :=
{F1, . . . , Fm}. We assume that we can partition M into M1
and M2, such that there exists a subexponential distribution
F ≡ Fi	 ∈M that satisfies F j (x) ∼ b j F(x), with b j = 0
for j ∈ M1, b j > 0 for j ∈ M2. Without loss of
generality, we assume that maxi∈{1,...,m} bi = 1, i.e., the
claim-size distribution F ≡ Fi	 has the heaviest tail. Let
�i denote the hazard function corresponding to Fi and let
� denote the hazard function corresponding to F . We
assume that for x large enough, �(x) ≤ �i (x) for all
Fi ∈ M. The following assumption is satisfied by most
subexponential distributions (see Juneja and Shahabuddin
(1999) for a discussion).

Assumption 1 The hazard-rate function λ(x) is
eventually decreasing.

The time to ruin σ(u) is defined by inf{t : S(t) > u)}.
Define τ (u) := N(σ (u)). If ruin occurs, τ (u) can be
interpreted as the number of claims that arrive before the
ruin occurs. For T <∞, define τ (u, T ) := N(σ (u) ∧ T ).
One can interpret τ (u, T ) as the number of claims that
arrive either before ruin occurs or the horizon of length
T is exceeded. Note that ψ(u, T ) = P(σ (u) < T ) and
that ψ(u) = P(σ (u) <∞) = P(τ (u) <∞). Two specific
examples of insurance risk processes that fall in the above
framework are the renewal arrivals model and the Markov-
modulated compound Poisson model.

2.1.1 Markov-Modulated Compound Poisson Model

In this model the claim-interarrival times follow a Poisson
process, and both the arrival intensity and the claim-size
distribution are governed by some continuous time Markov
chain {J (t), t ≥ 0} with a finite state space {1, . . . ,m} and
an unique stationary distribution {π1, . . . , πm}, πi > 0 for
i = 1, . . . ,m. When J (t) is in state i , the arrival intensity
equals ωi , the premium rate equals c ≡ 1 and the claim-size
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distribution equals Fi , i.e., Fi = P(X j ≤ x | J (η j ) = i).
Let (Jn)n∈N be the discrete time Markov chain which is
embedded in the process {J (t), t ≥ 0} at claim arrival
epochs, i.e. Jn = J (ηn). Define M := {F1, . . . , Fm}. In
this model ω =∑m

i=1 πiωi , β =∑m
i=1 ωiπiβi/

∑m
i=1 ωiπi ,

and thus ρ =∑m
i=1 πiωiβi . The probability of ruin before

time T with initial environment i is denoted by ψi (u, T ).
Define Pi (·) by P(· | J (0) = i). In most cases we omit the
subscript i and we use the concise notation P instead of Pi ,
ψ(u) instead of ψi (u) and ψ(u, T ) instead of ψi (u, T ).

3 RARE EVENTS SIMULATION

As mentioned in Section 1, for u large, ψ(u, T ), 0 < T ≤
∞, is small, and naive simulation, i.e., estimating ψ(u, T )
by the sample mean of many independent replications of
I (sup0≤t<T S(t) > u) (note that E[I (sup0≤t<T S(t) >
u)] = P(sup0≤t<T S(t) > u)), is too slow to give a re-
liable estimate of ψ(u, T ) in a reasonable amount of time.
We now briefly describe the concept of importance sam-
pling, that is used to speed up the simulation. Suppose
the stochastic process that we wish to simulate is defined
on some probability space with measure P. Let A(u) be
some event with the property that α(u) := P(A(u))→ 0 as
u →∞. Let Q be some other measure on the same prob-
ability space such that P is absolutely continuous relative
to Q. One can then express α(u) = EQ[I (A(u))dP/dQ],
where dP/dQ is called the likelihood-ratio and subscript Q

indicates that the expectation is with respect to the new mea-
sure Q. In importance sampling one generates the sample
paths under the Q measure, computes the likelihood-ratio
in each case, and estimates α(u) by the sample mean of
the I (A(u))(dP/dQ)’s, which is an unbiased estimator of
α(u). The problem is to determine the new measure Q.

As mentioned in Section 1 in the light-tailed setting,
sample path large deviations arguments are used to de-
rive changes of measure that are asympotically optimal.
However, such large deviations arguments do not seem to
work in the subexponential case (see Asmussen (2000), Pg.
287, and Asmussen, Binswanger and Hojgaard (2000) for
counter examples). In Boots and Shahabuddin (2000b) it
is shown that in the renewal model with subexponentially
distributed claim sizes, if one tolerates a small bias, then
in some cases it is possible to come up with an efficient
importance sampling change of measure. Following Boots
and Shahabuddin (2000b), we use the following criterion to
classify estimators as efficient (think of δ as the maximum
asymptotic relative bias that one is willing to tolerate in the
simulation).

Definition 3.1 Work-normalized large set asymp-
totically optimal.
Let δ ∈ (0, 1) be a fixed constant. If there exists a family
of decompositions (parameterized by β) of α(u) into two
positive quantities α(u) = γβ(u)+ εβ(u) s.t.
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1. for any given β, lim supu→∞ εβ(u)/α(u) ≤ δ,
2. for any fixed u, lim supβ→∞ εβ(u)/α(u) = 0,
3. for any given β, there exists an unbiased estimator

γ̂β(u) of γβ(u) that is work-normalized asymptot-
ically optimal, i.e.,

lim inf
u→∞

log
(
work(u)× Var

[
γ̂β(u)

])
log(γ 2

β (u))
≥ 1, (3)

then γ̂β(u) is said to be a work-normalized large set asymp-
totically optimal (a.o.) estimator of α(u).

The parameter β in the above definition is used to
make the relative bias of the estimator small enough (say
smaller than δ) for any fixed value of u (in contrast to
the asymptotic relative bias which we are assured is less
than δ). For conciseness, we write γβ(u) ≡ γ (u) and
εβ(u) ≡ ε(u), and we use β ≡ 1, except in the section with
the experimental results.

The new measure Q we use consists of applying hazard
rate twisting (HRT) on each of the claim-size distributions;
no other distributions in the insurance risk process are
changed. Hazard rate twisting (Juneja and Shahabuddin
(1999)) is implemented by replacing the distribution Fj by
the new distribution Fj,θu (x) := 1 − e−� j (x)(1−θu), where
0 ≤ θu < 1 is an appropriately selected function of u.
The density corresponding to Fj,θu is given by f j,θu (x) :=
(1− θu)λ j (x)e−(1−θu)� j (x). Weighted delayed hazard rate
twisting (WDHRT) extends HRT by introducing a weighting
parameter wu and a delaying parameter x	u . Both wu and
x	u are possibly functions of u. The WDHRT density is
defined by

f j,θu,x	u (x) :=




f j (x)
1+wu

, for x ≤ x	u,(
1− Fj (x	u)

1+wu

)
f j,θu (x)

F j,θu (x
	
u)
, for x > x	u .

(4)
Denote the corresponding cdf by Fj,θu,x	u (x).

The parameter θu is chosen such that under Q the
occurrence of a large claim is far more likely than under
P. The parameter wu is used to control the frequency of
the occurrence of large claims under Q. The parameter
x	u is used to guarantee that the distribution of a claim
size, conditioned on the claim being small, looks similar
under both P and Q. All these try to capture the basic
principle that the importance sampling measure should be
very close to the original measure conditioned on the rare
event happening. The exact selections of these parameters
will be given later.

4 INFINITE HORIZON RUIN PROBABILITIES

As mentioned before, it is very difficult to find an a.o.
estimator for ψ(u) = E[I (τ (u) <∞)]. Let us say we use



Boots and Shahabuddin
hazard rate twisting represented by Qu ≡ Q and in that case
E[I (τ (u) < ∞)] = EQ[I (τ (u) < ∞)LQ(u)], where now
L ≡ LQ(u) is a function of u. The main problem is that the
LQ(u) becomes highly variable on the set of sample paths
where τ (u) is ‘large’ but finite. So why not isolate the part
where LQ(u) is highly variable, and just estimate the part
where it is not? Do we lose much by leaving out the part on
which LQ(u) is highly variable, i.e., how much bias do we
incur? In particular, let us say that LQ(u) is ‘well-behaved’
when τ (u) ≤ k0 for some k0 ≡ k0(u) that may be a function
of u, and not well-behaved otherwise. Then if E[I (τ (u) <
∞)] ≈ E[I (τ (u) ≤ k0(u)] = EQ[I (τ (u) ≤ k0(u))LQ(u)]
and LQ(u) has a low variance over the set {τ (u) ≤ k0} (in
particular, Var[I (τ (u) ≤ k0(u))LQ(u)] satisfies the condi-
tions for E[I (τ (u) ≤ k0(u)] to be estimated a.o.), then we
are not losing much.

One question that arises here is: what kind of bias is
one willing to tolerate? A reasonable compromise is stated
in the first criterion of the large set a.o. criteria. If we set
α(u) = E[I (τ (u) < ∞)] and γ (u) = E[I (τ (u) ≤ k0(u)],
then the criterion states that the asymptotic relative bias be
less than some given value δ, or equivalently, E[I (τ (u) ≤
k0(u)]/E[I (τ (u) <∞)] be greater than 1− δ. In unbiased
rare event simulations, the best one hopes for is bounded
relative error (relative error is defined as confidence interval
half-width divided by α(u)) as u →∞. So it makes sense
that in biased simulations one should be able to tolerate a
bounded asymptotic relative bias.

How does one find such a k0(u)? Fortunately, in certain
cases, there exist large deviations results for the distribution
of τ (u) under some scaling (e.g., Asmussen and Klüppelberg
(1996), and Asmussen and Hojgaard (1996)) and one can use
them to determine such a k0(u). Instead of proving large set
a.o. on a case by case basis, we make the existence of such
large deviations results as one of a set of sufficient conditions
for our algorithm to produce large set a.o. estimators. We
then give particular cases for which these conditions are
satisfied. This is done in the next subsection.

4.1 Large Deviations Conditions
Condition 4.1 (Large deviations condition on

ψ(u).)
(i)The probability ψ(u) = P(τ (u) <∞) satisfies

lim
u→∞

− log(ψ(u))

�I (u)
= 1.

Also, for any given δ > 0, there exists a function k0(u) such
that:
(ii)

lim
u→∞

P(τ (u) ≤ k0(u))

P(τ (u) <∞) ≥ 1− δ

for each arbitrary small δ > 0,
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(iii) log(k0(u)) = o(�I (u)),
(iv) and there exists a constant b > 1 satisfying

lim
u→∞

k0(u)

�(u)b−1 = 0

and

lim
u→∞

k0(u)
(
F←

(
1−�(u)−b

))
u

= 0 .

In Condition 4.1 (ii), k0(u) is some function of u, such
that the asymptotic relative bias remains bounded. However
we do not want such a k0(u) to grow very fast, as then both the
effort and the variance in the estimation of P(τ (u) < k0(u))
may grow very fast, thus making the estimation inefficient.
Condition 4.1 (iii) and (iv) present restrictions on the growth
of k0(u). In particular, (iii) is a restriction imposed to keep
the effort per replication in control, and (iv) is a restriction
imposed to keep the variance of the importance sampling
estimator (under weighted delayed hazard rate twisting) of
P(τ (u) < k0(u)) under control.

Finally we need an assumption on the distribution F :

Assumption 2 limu→∞ �(u)
�I (u)

= 1

This assumption is satisfied by distributions like the
Weibull and lognormal, but not the Pareto.

We will now show that a broad class of insurance
risk models satisfy Condition 4.1. If F is subexponential,
then in both the renewal model and the Markov-modulated
compound Poisson model,

ψ(u) ∼ ρ

1− ρ F I (u) (u →∞), (5)

i.e., Condition 4.1 (i) is satisfied. For the proof, we refer to
Embrechts and Veraverbeke (1982) for the renewal model
(see also Pakes (1975)) and to Asmussen, Henriksen and
Klüppelberg (1994), Asmussen (2000), and Jelenković and
Lazar (1998) for the Markov-modulated model. In As-
mussen, Schmidli and Schmidt (1999) some conditions are
given under which (5) holds, as well as several examples.
For Condition 4.1 (ii) consider models where F satisfies
the following assumption:

Assumption 3 FI ∈ S and F is in the maximum
domain of attraction of the Gumbel distribution (denoted
by F ∈MDA(Gumbel)).

Two well-known distributions in this class are the
Weibull and the lognormal. Define P

(u)
i (·) by P(· | τ (u) <

∞; J (0) = i). If Assumption 3 holds, then in both the
renewal model (see Asmussen and Klüppelberg (1996))
and the Markov-modulated compound Poisson model (see
Asmussen and Hojgaard (1996)),

τ (u)

a(u)
→ Exp(1)

1− ρ (6)
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in P
(u)
i distribution. Here Exp(1) denotes an exponential

random variable with mean 1 and a(u) is defined to be any
function such that a(u) ∼ ∫∞

u F(x)dx/F(u) (for details
about a(u), which is called the auxiliary function in extreme
value theory, see, e.g., Asmussen and Hojgaard (1996),
Asmussen and Klüppelberg (1996), Boots and Shahabuddin
(2000b), Embrechts, Klüppelberg and Mikosch (1997), and
Goldie and Resnick (1988)). With (6) and with k0(u) :=
−a(u)(log δ)/µ we find for i = 1, . . . ,m,

Pi (k0(u) < τ(u) <∞)
Pi (τ (u) <∞)

= Pi (τ (u) > k0(u) | τ (u) <∞)
= P

(u)
i

(
τ (u)

a(u)
>

k0(u)

a(u)

)

= P
(u)
i

(
τ (u)

a(u)
>
− log δ

µ

)
→ δ (u →∞).

This implies

lim
u→∞

P(τ (u) ≤ k0(u))

P(τ (u) <∞) = 1− δ. (7)

Thus in these cases Condition 4.1 (ii) is satisfied. Also
note that with k0(u) of this form, Condition 4.1 (iii) and
(iv) become conditions on the a(u) (or equivalently, on
F). An example of a distribution that satisfies these three
conditions is the Weibull with shape parameter less than
1. An example of a distribution that satisfies Condition 4.1
(iii) but not (iv) is the lognormal.

Another example of a distribution that does not satisfy
Condition 4.1 is the Pareto. Even in this case, a k0(u)
may be determined that satisfies 4.1 (ii) but this k0(u) does
not satisfy Conditions 4.1 (iii) and (iv) simultaneously (see
Boots and Shahabuddin (2000b)).

4.2 The Simulation Algorithm and its Efficiency

As mentioned before, we use weighted delayed hazard rate
twisting on each of the claim-size distributions. For the
parameters, we use

θu = 1− 1

�(u)
, wu = c1 log δ

k0(u)

and x	u = F←
(

1−�(u)−b
)
,

where c1 > 0 is some constant and b is the constant in
Condition 4.1 (iv). Note that �(x	u) = b log�(u) and that
x	u goes to infinity as u goes to infinity, because�(u)→∞.
The reasons for these selections become clearer when one
goes over the proofs of the main results.

Algorithm 1 (WDHRT for the estimation of
ψ(u).) Instead of using Fi = 1 − e−�i (x) to generate
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a particular claim size conditioned on its type being i , we
use a distribution that is obtained by applying WDHRT on
Fi , with θu, wu and x	u chosen as above. Let Z be the
resulting likelihood-ratio. We simulate a replication of

S =
min{τ (u),k0(u)}∑

i=1

(Xi − cξi ).

Set V = Z if S > u and set V = 0 otherwise. An average of
k i.i.d. replications of V is taken as an unbiased estimator
of P(τ (u) ≤ k0(u)). Use this estimator of P(τ (u) ≤ k0(u))
as an estimate of ψ(u).

Theorem 4.2 Under Condition 4.1, Assumption 1
and Assumption 2, Algorithm 1 yields a work-normalized
large set a.o. estimator for ψ(u).

5 FINITE HORIZON RUIN PROBABILITIES

5.1 Large Deviations Conditions

Finding a change of measure for efficiently estimating ψ(u)
is more difficult than finding one for estimating ψ(u, T ),
T < ∞, since in the latter case the distribution of the
number of claims arriving in a sample path of the insurance
risk process is independent of u. The N(T ) also has a
light tail. Let a0 be the infimum over all a, such that
P(N(T ) ≥ k) ≤ ak for all sufficiently large k.

In that case the following large deviations condition
and Assumption 1, is sufficient to ensure a.o.

Condition 5.1 (Large deviations condition on
ψ(u, T ), T <∞.) The ψ(u, T ) satisfies

lim
u→∞

− log(ψ(u, T ))

�(u)
= 1.

The following theorems show that a broad class of
insurance risk processes with subexponential claims satisfy
Condition 5.1.

Theorem 5.2 Under Assumption 1, in both the re-
newal model and the Markov-modulated compound Poisson
model, ψ(u, T ) satisfies Condition 5.1.

Theorem 5.2 also holds in insurance risk models other
than the ones considered in this paper, e.g., some special
cases of the Markov-modulated renewal model in Jelenković
and Lazar (1998).

5.2 Simulation Algorithm and its Efficiency

We use the same θu and x∗u as before. But for the wu , we
use any w such that w < a−1

0 − 1. If a0 is not known, then
just use w = 0.

Algorithm 2 (WDHRT for the estimation of
ψ(u, T ).) Consider the insurance risk model. Instead
of using distribution Fi = 1 − e−�i (x) to draw from the



Boots and Shahabuddin
distribution of Xn conditioned on its type being i , use the
distribution that is obtained by applying hazard rate twisting
on Fi with θu, x∗u and wu chosen as above. Let Z be the
resulting likelihood-ratio. Generate a replication of

S =
τ (u,T )∑

i=1

Xi − c(σ (u) ∧ T ).

Set V = Z if S > u and set V = 0 otherwise. An average
of k i.i.d. replications of V is taken as an unbiased estimate
of ψ(u, T )

Theorem 5.3 Given Assumption 1, Algorithm 2
with the given θu, x	u and wu produces an estimator that is
a.o.

5.3 Extensions to the Pollaczek-Khintchine
representation of the compound Poisson model

As mentioned before, in the renewal model with Poisson
arrivals, the ψ(u) can be expressed as P(Y1+· · ·+YM > u)
with the Yi ’s i.i.d. with distribution FI , and M independent
of the Yi ’s and having the (geometric) distribution P(M =
k) = (1−ρ)ρk , for k ≥ 0. Analogous versions of Theorem
5.2, Algorithm 2, and Theorem 5.3 hold for this ‘finite
horizon representation’ of ψ(u) (replace F by FI , � by�I ,
Xi − cξi by Yi and τ (u, T ) by M , and take m = 1). In this
way we improve over the algorithms and results in Asmussen
and Binswanger (1997), and Juneja and Shahabuddin (1999)
by having a technique that is a.o. with less assumptions on
the claim-size distribution.

6 EXPERIMENTAL RESULTS

In this section we use the algorithms given in the previ-
ous sections (we refer to them generically as WDHRT) to
estimate the finite and infinite horizon ruin probabilities
in various models. We then experimentally evaluate the
efficiency of the simulation algorithms.

The standard effort of a simulation algorithm using
independent replications is defined to be the expected CPU
time per replication times the variance per replication. We
compute the efficiency ratio of WDHRT (the efficiency
ratio of a simulation algorithm is defined as the standard
effort of the new algorithm divided by the standard effort
of naive simulation; see, e.g., Glynn and Whitt (1992))
to compare the performance of these algorithms with that
of naive simulation. The variance per replication of naive
simulation is estimated by ψ̂(u, T )(1 − ψ̂(u, T )), where
ψ̂(u, T ), 0 < T ≤ ∞ denotes the estimator ofψ(u, T ), 0 <
T ≤ ∞ obtained by WDHRT. We consider the examples
described earlier, i.e., the renewal arrival model, the Markov-
modulated compound Poisson model. In the more complex
models (i.e., the Markov-modulated models) we also give
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the estimate of ψ(u, T ), 0 < T ≤ ∞ obtained by naive
simulation, if the estimate is non-zero. We compare the
WDHRT estimate ofψ(u, T ), 0 ≤ T ≤ ∞, with asymptotic
approximations obtained by other authors.

In the tables with experimental results we use some
conventions. The relative error is estimated by the ratio of
the estimated confidence interval half-width (HW) and the
simulation estimate of the ruin probability. The numbers
immediately after the estimates ψ̂(u, T ) ofψ(u, T ) obtained
by naive simulation and WDHRT denote the estimates of
the relative error. The number between brackets after the
WDHRT estimate of the relative error denotes the efficiency
ratio of WDHRT. The number in the brackets after the
asymptotic approximation (AA) denotes the relative bias of
AA, i.e. |AA− ψ(u, T )|/ψ(u, T ), where we approximate
ψ(u, T ), 0 < T ≤ ∞ by the reasonably accurate WDHRT
estimate.

In the estimation of ψ(u), we use k0(u) =
max{−a(u) log δβ/µ, 50} where the “50” is added for prac-
tical considerations. For the wu when F is Weibull, we
use the optimal c1 obtained via the heuristic for the infinite
horizon ruin probability described in Section 5.3 in Boots
and Shahabuddin (2000b). We call this choice w̃u . For
lognormal F we use w = 0.

6.1 Finite Horizon Ruin Probabilities in the Compound
Poisson Model

In Table 1 we present estimates of ψ(u, T ) in the compound
Poisson (non-Markov-modulated) model with Weibull claim
sizes. We use β = 2, ρ = 0.5, b = 2.1 and n = 300, 000
(n denotes the number of simulation replications).

For the Weibull distributed claim sizes, we use both
w = 0 and w ≡ w̃u . The results indicate that the quality
of the WDHRT estimator heavily depends on the choice of
w and that w̃u is preferable to w = 0.

Results for ψ(u) for such models have been presented
Asmussen and Binswanger (1997), Juneja and Shahabuddin
(1999), and Boots and Shahabuddin (2000b). The first two
papers use methods for simulating the geometric sum of
subexponentially distributed random variables. The algo-
rithm in Boots and Shahabuddin (2000b) is the same as
WDHRT in this paper applied to the special case of the
renewal model.

6.2 Markov-Modulated Compound Poisson Model

Tables 2 and 3 present estimates of ψ(u, T ) in a two
state Markov-modulated compound Poisson model. We use
n = 1, 000, 000, b = 2.1 and w = w̃u in Table 2, and
w = 0 in Table 3. In both Tables 2 and 3, the F2 is the
Weibull(1,.75) distribution for which β2 = 1.1906. Also,
π1 = .5, π2 = .5, ω1 = .2, ω2 = .3 and ρ = .38. In
Table 2, the F1 is the Weibull(1,.5) distribution that has
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Table 1: Estimates of ψ(u, 100) in the Compound Poisson
Model with Weibull(1, .5) Claim Sizes

u

200 WDHRT, w = 0 1.30E − 5± 10.9%(29.8)
WDHRT, w ≡ w̃u 1.49E − 5± 3.9%(2.6E2)
AA 9.06E − 6(39.3%)

800 WDHRT, w = 0 1.04E − 11± 17.5%(1.4E7)
WDHRT, w ≡ w̃u 1.01E − 11± 4.7%(2.1E8)
AA 8.94E − 12(11.8%)

β1 = 2. In Table 3, the F1 is Pareto(1,.5) and β1 = 2. The
initial state of J (t) is one with probability π1 and two with
probability π2.

Table 2: Estimates of ψ(u,∞) in the Markov-Modulated
Compound Poisson Model with Weibull(1,.5) and
Weibull(1,.75) Claim Sizes

u

100 WDHRT 2.55E − 4± 3.4%(41.1)
Naive Simulation 2.83E − 4± 27.9%
AA 1.52E − 4(40.3%)

400 WDHRT 1.69E − 8± 3.8%(4.5E5)
Naive Simulation −
AA 1.32E − 8(21.9%)

Table 3: Table 3: Estimates of ψ(u, 50) in the Markov-
Modulated Compound Poisson Model with Pareto(1,.5) and
Weibull(1,.75) claim sizes

u

200 WDHRT 3.32E − 5± 6.8%(15.2)
Naive Simulation 3.39E − 5± 14.0%
AA 5.43E − 5(63.6%)

400 WDHRT 8.53E − 6± 6.5%(62.7)
Naive Simulation 1.03E − 5± 25.4
AA 1.45E − 5(70.0%)

In the Markov-modulated compound Poisson model,
WDHRT gives in general worse results than in similar
renewal models. WDHRT still improves considerably over
naive simulation in the experiments we conducted.
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