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ABSTRACT 

Simulations often execute too slowly to be effective tools 
for decision-making. In particular, this problem has been 
found in semiconductor manufacturing where conventional 
job-driven simulation models explicitly track each lot of 
wafers as it progresses through the system. While a job-
driven simulation model offers some advantages, they 
inherently execute slowly. This paper explicitly defines 
resource-driven modeling. Here jobs are implicitly tracked 
through their resource usage. Resource-driven simulations 
typically run much faster than job-driven simulations. This 
speed-up is insensitive to congestion and is most dramatic 
when the system is highly congested and therefore most 
interesting to the analyst. There can also be a significant 
reduction in memory footprint. However, there is a 
potential tradeoff in information loss.  

1 INTRODUCTION 

Most conventional simulation software packages are 
designed around a job-driven approach. Here jobs are 
modeled as active system entities while system resources 
are passive. Describing how jobs move through their 
processing steps, seizing available resources whenever 
they are needed, creates the simulation model. Records of 
every step of every job in the system are created and 
maintained. Therefore, the speed and space complexity of 
these simulations must be at least on the order of some 
polynomial of the number of active jobs in the model. Job-
driven simulations are convenient for low-volume, high-
mix manufacturing or when fast simulation execution 
speed is not as important as detailed information or system 
animation. 

In a resource-driven simulation, see (Schruben 2001), 
all system entities such as jobs, tools, and operators are 
called resources and are treated with equal status. The 
models are organized around changes in resource 

 

523
availability. At each resource state change, the 
consequences for other resources are processed using 
integer operations, typically incrementing or decrementing 
the numbers of available resources and scheduling future 
resource changes. For example, only integer counts of jobs 
of particular types at different steps are necessary.  The 
system’s state is wholly described by the status of 
resources, expressible as integers. The main advantages of 
resource-driven simulations is that execution speed and 
memory footprint do not change significantly as the system 
becomes more congested.  Job and resource-driven 
simulations are not exclusive modeling styles but can and 
should coexist in a simulation study. 

2 DEFINITION OF RESOURCE-DRIVEN 
MODELING 

A resource-driven simulation model randomly generates a 
jointly dependent, finite set of point processes. All system 
performance statistics can be derived from counting the 
numbers of occurrences of events of different types. Say 
the system can be described using k types of resources. The 
output from a single run of the simulation with random 
number seed ω will consist of N(ω)=(C1

+,C1
-,…,Ck

+,Ck
-). 

Here Ci
+ and Ci

- are point processes, indexed by time t, that 
record when the availability of resource i increases and 
decreases, respectively. For example, if “resource” j is the 
number of jobs waiting in queue j, then the queue size at 
time t will be Cj

+(t)-Cj
-(t). In resource-driven models, 

changes in the availability of resources constitute all of the 
activity of the simulation. 

Computation of N(ω) evolves by processing the 
implications of current resource availability changes on 
future resource availability changes. As is common in 
event scheduling simulations, all events are scheduled 
relative to the current time. Here, time 0 will always 
represent the current time.  Since only the time prior to the 
current time 0 is recorded, the counting processes 
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comprising N(ω) are only well defined for t<0. A future 
resource change list serves as the list of scheduled events 
and is comprised of all resource availability changes 
scheduled after the current time 0. Denote t0(Cj

+) and t0(Cj)  
as the time of the next future increase and decrease in 
availability of resource j.  

To facilitate the scheduling of resource availability 
changes, define the function U(C,t) which adds an 
additional point at time t≥0 to counting process C.  This 
schedules the resource availability change associated with 
C to occur after t time units. 

3 RESOURCE GRAPHS 

The basic model development tool for a resource-driven 
simulation is a resource graph that describes how resources 
interact. The resource graph provides a useful visual 
display of the relationships between resources, and 
represents every event explicitly. A resource graph is a 
derivative of an event graph (Schruben and Schruben 
2000), so the definition is similar.  However, a resource 
graph has no time-delayed edges.  The system resource 
graph is composed of several subgraphs that describe the 
actions triggered by changes in the availability of each type 
of resource. These actions include scheduling future 
resource changes.  An individual resource subgraph is 
initialized and run to completion for each scheduled 
resource change. When there are multiple resource changes 
scheduled at the same simulated time, the subgraph for the 
highest priority resource change is processed first. 

A resource graph is composed of nodes and edges.  
Modifications of the resource state, called events, occur at 
the nodes while conditions are represented with edges. In 
Figure 1 a sample element of a resource graph is shown for 
events A and B.  When event A is executed, the actions 
listed at {A actions} are executed, using inputA for the 
values of input parameters.  These actions involve changes 
of the state as well as random variable generation.  The 
actions at event A are executed and the output parameters 
outputAB are computed. If conditionAB is true, event B is 
scheduled with priority priorityAB and parameter values 
inputB←outputAB.  The highest priority event is executed 
next until no further events remain. 
 

 
 

Figure 1:  Resource Graph Element 
 
Since many different resource changes may trigger the 

same events, the resource graph can often represent many 
subgraphs with few nodes by sharing common nodes 
across subgraphs. 
524
3.1 Resource Change Initialization  
and Scheduling Events 

There are several special events that will be defined for 
every resource graph.  For each resource R(i), i=1,2,…,k, 
associate 4 events: R+(i), R-(i), +R(i,t), -R(i,t).  

The resource change events R+(i) and R-(i) schedule 
events and makes state changes that are caused by 
increasing and decreasing, respectively, the number of  
resources i available at the current time 0. Hence, when 
t0(Cj

+)=0 [t0(Cj
-)=0], event R+(i) [R-(i)]initializes the 

resource subgraph associated with an increase [decrease] of 
resource i.  Event priorities are associated within each 
resource subgraph.  

+R(i,t) [–R(i,t)]  schedules a future increase [decrease] 
of resource i to occur after t time units.  This event calls the 
function U(Ci

+,t) [U(Ci
-,t)].  An increase or decrease in 

resource i should include the appropriate update of the 
associated point process. (No changes in clock time are 
permitted.) 

3.2 Vertices 

The resource graph consists of a set of vertices V 
representing the events. Associated with event v∈V is a 
mapping hv(Ri-1,Si-1,Ti-1,A,ω)→(Ri,Si) with 

 
• Ri: value of resource variables at resource change i. 
• Si: value of statistics at resource change i. 
• Ti: simulation clock time at resource change i. 
• A: attribute values for event v; these values were 

determined at the time the event was scheduled. 
• ω: the function may be a random variable in some 

cases. 

3.3 Edges 

Directed edges D describe the conditions between events. 
Edge dAB∈D (A,B∈V) is a mapping  
dAB(Ri,Si,Ti,A,ω)→{true,false} evaluated at the termination 
of event A that schedules B if true. When multiple events 
are scheduled, events are processed in order according to 
their priority. The priority of an event is determined by its 
scheduling edge. The scheduled event with the lowest 
valued priority is executed next. 

3.4 Event List for Resource Graph 

Note that time does not advance on the resource graph, so 
the events list acts as a priority queue on the resource 
subgraphs according to their priorities. 
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4 ALGORITHM 

The basic algorithm for processing a resource-driven 
simulation is a serial interaction between the resource 
graph and the present resource availability changes. 

 
1. Initialize a set of counting processes 

N(ω)=(C1
+,C1

-,…,Ck
+,Ck

-), with at least one 
resource change at t≥0. 

2. Advance the clock by moving the next resource 
change to the current time by setting t=0. 

3. Process Resource Changes:  Execute the resource 
subgraph scheduled with the highest priority.  

4. Return to 2 until the run is terminated. 

5 RESOURCE GRAPH CONSTRUCTION 
EXAMPLES 

5.1 Resource Graph Example: G/G/S Queue 

As a simple example, we will construct a resource graph 
for a G/G/S queue. In the G/G/S queue, there are two types 
of resources: servers [R(1)] and queues [R(2)].  As 
mentioned in 3.1, the required events associated with 
resource R(1) and R(2) are R+(1),  R-(1), +R(1,t), -R(1,t) 
and R+(1), R-(1), +R(1), -R(1), respectively.    

For mnemonic purposes, we will denote resource R(1) 
as S  and resource R(2) as Q.  The events associated with S 
and Q become S+, +S(t), and Q+, +Q(t),  (only increases 
in server or job availability trigger resource graph 
executions in this example).  

5.1.1 Subgraph: Increase in Jobs in Queue 

The event Q+ occurs when a new job arrives and increases 
in the number of jobs in the queue (resource Q).  The 
associated resource subgraph includes all nodes and edges 
that emanate from the Q+ node.  Figure 2 displays the 
subgraph for this resource change. 

 
 

Figure 2:  Q+ Subgraph 
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5.1.2 Subgraph: Increase in the Availability of Servers 

The second type of resource change is an increase in server 
availability (resource S) denoted by S+. The resource 
subgraph associated with this event is executed when a 
server completes service. This subgraph includes all nodes 
and edges that emanate from the S+ node.  Figure 3 
displays the subgraph for this resource change. 
 

 
 

Figure 3: S+ Subgraph 

5.1.3 Increment Q Event (Q+) 

This is the trigger event for the Q+ resource subgraph.  
The immediate impact of increasing resource Q is included 
here; the queue is increased {Q=Q+1}.  If there is a server 
available (S>0), service will begin immediately in the Start 
event. The next job resource is slated to enter by 
scheduling event, Enter. 

5.1.4 Increment S Event (S+) 

This is the trigger event for the S+ resource subgraph.  The 
immediate impact of increasing resource S is included 
here; the servers are increased {S=S+1}. If there are jobs 
waiting in the queue (Q>0), then service will begin 
immediately in the Start event. 

5.1.5 Scheduling Resource Change Events 

The events that trigger Q+ and S+ to occur in the future 
are denoted +Q(t) and +S(t), respectively.   

5.1.6 Start Event 

The same Start event appears in both the Q+ and S+ 
resource subgraphs. This Start event represents a job 
starting service. Resources Q and S are decremented and 
the associated point processed are updated. {Q=Q-1,  
U(q-,0), S=S-1,U(s-,0)}. The service completion event is 
then scheduled by the +S(t) vertex after a random service 
time, t, is generated according to the function service and 
random number stream ωS. 

5.1.7 Enter Event 

A Enter event represents the next arrival to the queue being 
scheduled. The random time t until the next arrival occurs 
is generated according to the function arrive and the 
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random stream ωE. Event Q+ is scheduled by the +Q(t) 
vertex to occur after  t time units. 

5.1.8 Resource Graph 

By combining the subgraphs for Q+ and S+, the resource 
graph is formed. The resource graph is shown in Figure 4. 
Note that the start event node only appears once because it 
operates the same whether it was triggered by a server 
increase (S+) or a queue increase (Q+).  

The relative performance of a job-driven model and a 
resource-driven model is shown in Figure 5. When the 
system becomes more congested, the job-driven simulation 
slows to a virtual stand still. The resource-driven 
simulation execution speed is virtually unaffected. It is 
precisely these bursts of high congestion that are typically 
the most interesting in simulation studies of queueing 
systems.  Figure 6 presents the performance ratio of the 
job-driven style to the resource-driven style, using the 
same software package.  The job-driven approach chokes 
with increased congestion and the ratio skyrockets. When 
the system breaks from extreme congestion, only the 
frequency of easily processed arrivals keeps this ratio from 
exploding. 

 

 
 

Figure 4: Resource graph for G/G/S queue 
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Figure 5 :  Run Times for a G/G/1 Queue Simulation Using 
Different Styles (Altoik et al. 2001) 

 

 
 

Figure 6:  Ratio of Run Times for a G/G/1 Queue 
Simulation Using the Same Software Package but 
Different Styles 
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5.2 Job Shop Example 

A more complex resource-driven example is a general job 
shop simulation. A job shop consists of multiple stations 
with different job types, each with possibly different 
routings through the stations. Jobs may re-enter the same 
station as is common in semiconductor manufacturing. 
This model is based on an example from Law and Kelton 
(2000).   

As in all queueing system models, it is useful to 
distinguish the two types of resources, queues and servers. 
Q(i) will refer to the number of jobs at the ith queue, and 
S(j) will refer to the number of available servers at the jth 
station. The jobshop will have I queues, J stations and a 
job types.  As typical to a jobshop, jobs require a single 
station at each step, meaning each station may serve 
multiple queues while each queue can only be served by 
one station.  Different job types and jobs at different steps 
of their routing are kept in separate queues. 

To define our model and the relationship between 
resources, it is useful to describe the following functions.  
Note that each of these functions can be assumed to 
execute in O(1) (constant) time. 

 
• next(j) is the next queue that will be served by 

station j.  next(j)=0 indicates that all queues 
served by S(j) are empty. 

• next+(i,j): update of  next(j) when Q(i) is 
increased. 

• next-(i,j): update of next(j)  when Q(i) is 
decreased. 

• enter(k) is the queue that an newly arriving job of 
type  k increases 

• type(i): is the job type of resources in queue i. 
• server(i) is the station that serves Q(i).  
• queue(j) is the queue served by S(j).  
• choose(ωΕ,1):a random variable indicating which 

queue to increase upon the next system arrival. 
• arrive(ωΕ,2) : a random variable indicating the 

simulation time until the next arrival. 
• servicei,j(ωS,j): a random variable indicating the 

service time for Q(i) on S(j). 
• route(i) is the unique queue entered by a job that 

last exited queue i.  route(i)=0 indicates that the 
job completes service after exiting queue i. 

 
Although this model is much more complex, the 

resource graph can be written as the composition of two 
subgraphs for any size routing or number of servers. Using 
event parameters enables this efficiency. 

5.2.1 Subgraph: Increase of Queue i 

The first type of resource change is an increase of a queue i 
(resource Q(i)), which will be denoted Q+(i). This 
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subgraph occurs when there is an arrival to queue i.  The 
subgraph associated with increases to the queue includes 
all nodes and edges that emanate from the Q+(i) node. 
Figure 7 displays the resource subgraph for this resource 
change. 

 

 
 

Figure 7:  Q+(i) Subgraph 

5.2.2 Subgraph: Increases in Available Servers 

The second type of resource change is an increase of the 
idle servers at station i (resource S(i)), which will be 
denoted event S+(i). This subgraph occurs when a server 
has completed service. The associated subgraph includes 
all nodes and edges that directly or indirectly emanate from 
the S+ node.  Figure 8 displays the subgraph for this 
resource change. 

 

 
 

Figure 8:  S+(j) Subgraph 

5.2.3 Increase Queue Event (Q+(i)) 

This is the trigger event for the Q+(i) subgraph.  The 
immediate impact of a job entering queue i and increasing 
resource Q(i) is included here. The queue is increased 
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{Q(i):=Q(i)+1}.  In addition, the next queue to be served 
by server(i) is updated. This is necessary because each 
station holds a one-to-many relationship with the queues. If 
there is a server available at the station serving queue i 
(S(server(i)>0), service begins by scheduling the Start 
event for queue i and station server(i).  If this job is 
entering the first queue on its routing, the next job is slated 
to enter by scheduling event Enter. 

5.2.4 Increase Servers Event (S+(j)) 

This is the trigger event for the S+(j) subgraph.  The 
immediate impact of increasing resource S(j) is included 
here.  The servers are increased {S(j):=S(j)+1}, and if there 
is a job waiting for service at station j (next(j)>0), service 
begins by scheduling the event start. 

5.2.5 Scheduling Resource Change Events 

The events that schedule Q+(i) and S+(j) to occur in t>0 
time units are denoted +Q(j,t) and +S(j,t), respectively. 

5.2.6 Start(i,j) Event 

A Start(i,j) event represents a job leaving queue i to start 
service at station j.  The server is freed at the completion of 
service. The following state changes occur for a start event:  

 
• Resources Q(i) and S(j) are decremented and the 

associated point processed are updated. 
{Q(i)=Q(i)-1,U(qi

-,0), S(j)=S(j)-1,U(sj
-,0)}. 

• A random service time, t, is generated according 
to the function servicei,j and random stream ωs. 

• The server is slated for completion by scheduling 
event +S(j,t). 

• If the job is not finished,  it is moved to the next 
queue by scheduling event +Q(route(i),t). 

 
Note that the same start event appears in both the Q(i)+ 
and S(j)+ subgraphs. 

5.2.7 Enter Event 

A Enter event represents a job entering the queue.  Each time 
this resource enters, the next arrival to the queue is scheduled. 
The following state changes occur for a enter event: 

 
• The random time t until the next arrival is 

generated according the to the function arrive and 
random stream ωE,1. 

• The entering queue i of the next arrival is 
generated according to the function choose and 
random stream ωE,2. 

• Event Q+(i) is scheduled to occur in t time units.   
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5.2.8 Resource Graph 

By combining the subgraphs for Q+(i) and S+(j), the 
resource graph is formed.  The resource graph is shown in 
Figure 9.  Note that the Start event node only appears once 
because it operates the same whether it was triggered by a 
server increase (S+(i)) or a queue increase (Q+(j)).  

 

 
 

Figure 9:  Resource Graph for General Job Shop of Any 
Size with Any Number of Job Types 

6 CONCLUSION 

Resource graphs are presented for developing simulation 
models that focus on changes in resource availability and 
limit resource representations to integers. Subgraphs 
isolate the consequences of a single change in resource 
availability and explicitly schedule future resource 
availability changes.  This simplifies the initial model 
development by breaking the system down into 
components that can later be recombined.  Resource-driven 
modeling can speed up execution time, making simulation 
more relevant to the decision making process.   
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