
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

SISCO: A SUPPLY CHAIN SIMULATION TOOL UTILIZING SILK™ AND XML

Dean C. Chatfield

Department of Management Science
and Information Technology
1007 Pamplin Hall (0235)

Virginia Tech
Blacksburg, VA 24061, U.S.A.

 Terry P. Harrison
Jack C. Hayya

Department of Management Science

and Information Systems
303 Beam Building

Penn State University
University Park, PA 16802, U.S.A.

ABSTRACT

We discuss SISCO, the Simulator for Integrated Supply
Chain Operations, a Java-based tool that simplifies supply
chain simulation model development. SISCO maps supply
chain descriptions stored in the XML-based Supply Chain
Modeling Language (SCML) format to a set of supply
chain “building blocks” developed with ThreadTec’s
Silk™ simulation classes. The resulting system combines
the ease of a visual supply chain simulator, the power and
flexibility of a full object-oriented programming language,
and the unparalleled supply chain model detail of a new,
open, information standard.

1 INTRODUCTION

Simulation modeling is a powerful methodology that al-
lows supply chain modelers to capture the dynamic nature
of supply chains. Two issues that hinder the more wide-
spread use of simulation modeling for supply chain analy-
sis are an inability to share supply chain problem informa-
tion and the relative difficulty in developing supply chain
simulation models.
 One of the greatest roadblocks to effective supply chain
analysis is the inability of supply chain researchers and prac-
titioners to exchange information. This inability to effec-
tively share supply chain information is due in part to the ab-
sence of a universal method for supply chain description.
Individual researchers and practitioners have independently
decided how the supply chains they are analyzing will be
represented. Structural and managerial information is en-
coded differently for each modeling effort, erecting a de
facto barrier to effective information sharing.

We develop the Supply Chain Modeling Language
(SCML) as a standard method for describing the structure
of a supply chain. SCML is an XML-based, platform-
independent, methodology-independent, industry-indepen-
dent means of storing the structural and managerial infor-
614
mation that describes a supply chain’s layout and opera-
tional characteristics. SCML can provide a universal
language with which users of various analytical tools, in-
cluding simulation tools, can share or exchange supply
chain descriptions.

To address the inherent difficulty of creating simula-
tion models of supply chains, we develop the Simulator
for Integrated Supply Chain Operations (SISCO). SISCO is
SCML-compliant to allow for easier interchange of prob-
lem information. SISCO allows users to graphically de-
scribe the supply chain structure they wish to model,
greatly simplifying the process for the modeler, and save it
as an SCML file. The SCML definition file is used by a
model generation module that reads the contents of the file
and creates a simulation model by performing an auto-
mated mapping of the SCML file to a library of reusable
supply chain constructs, developed with Java and Thread-
Tec’s Java-based Silk™ simulation classes.

SISCO takes the idea of a supply chain “simulator,” as
seen in recent developments, such as Simulation Dynam-
ics’ Supply Chain Builder and IBM’s Supply Chain Ana-
lyzer, and moves it one step further. The open storage
format, SCML, allows users to share supply chain descrip-
tions not only with other SISCO users, but users of any
SCML-compliant modeling tool. SISCO provides a true
multi-threaded, object-oriented simulation system with full
access to the underlying general programming language.
The depth of model detail possible is state-of-the-art, in-
cluding aspects such as explicit definition of arcs and
global trade issues. Internet “friendliness” is ensured by
the Java-based execution system.
 SISCO’s simplification of the process of developing
supply chain simulation models will boost their attractive-
ness to researchers and practitioners alike and result in a
greater amount of supply chain research and analysis that
takes the stochastic nature of the processes into account.

Chatfield, Harrison, and Hayya

2 OVERVIEW OF SISCO SYSTEM

2.1 Basic Structure of SISCO

SISCO is designed to provide a powerful supply chain
simulation tool that simplifies the modeling process and
does this as part of an open extensible framework. As
such, SISCO allows a user to graphically “build” a supply
chain through a graphic user interface and then specify
relevant logical and descriptive information in order to
fully define the supply chain. This supply chain descrip-
tion is stored in the open, XML-based SCML format.
 SISCO allows the user to create a simulation model by
mapping the SCML file contents to the SISCO Library.
The SISCO Library is a set of Silk™-derived classes that
represent the objects and actions occurring in a supply
chain. An object-oriented approach was taken because it
provides a natural mapping from reality to simulation
model. The user will then be able to simulate the operation
of the supply chain under various conditions.

The basic structure of the Simulator involves the fol-
lowing three modules, each of which will perform an im-
portant role in the final system:

• The Visual Supply Chain Editor
• The Experiment Designer
• The Model Builder.

The Visual Supply Chain Editor is used for defining a

supply chain’s structural and managerial aspects. The Ex-
periment Designer is used for defining simulation specific
information. The SISCO Model Builder performs the auto-
mated model generation and initiates the model execution.
A conscious decision was made to make the VSCE, the
SISCO Model Builder, and the Experiment Designer indi-
vidual stand-alone applications, as opposed to creating a sin-
gle, monolithic SISCO application. As stand-alone applica-
tions, the pieces of SISCO are not only useful as part of the
SISCO system, but can also be useful in conjunction with
other supply chain modeling software as well.

2.1.1 Visual Supply Chain Editor

The Visual Supply Chain Editor (VSCE) is a graphic tool
for defining the supply chain to be simulated. The basic
supply chain layout is built in a drag and drop fashion, re-
sulting in a set of nodes and arcs (locations and pathways)
that define the general topology of the supply chain. These
nodes and arcs are then further defined, as are the resources
that utilize these nodes and arcs. The Visual Supply Chain
Editor is essentially a graphic SCML editor, saving the sup-
ply chain information as an SCML file. Once the user has
stored the supply chain information in an SCML format file,
it can be used by any SCML-compliant application.
615
2.1.2 Experiment Designer

The Experiment Designer gathers simulation-specific in-
formation from the user. This includes information regard-
ing environment variables such as the number of replica-
tions, animation settings, output statistics, and similar data.
The collected information is saved to an experiment file.

2.1.3 SISCO Model Builder

The Model Builder performs the most crucial function; it
takes the SCML file created by the VSCE and the experi-
ment file created by the Experiment Designer and creates a
corresponding simulation model. Silk™ is the Java-based
simulation engine created by ThreadTec, Inc. that is em-
ployed by SISCO for creating and executing the simulation
model. The model builder maps each SCML element to a
Java object that Silk™ can process, essentially performing
an automated simulation model generation.

2.2 Development Technologies and Platforms

The implementation of SISCO involves merging three rela-
tively new technologies: Java, XML processing, and
ThreadTec’s Silk™. Some of the technologies, mainly the
XML-related ones, were not fully specified at the time of
development. The SISCO Model Builder was built with
the Java programming language. All Java programming
was done using Symantec’s Visual Cafe Professional Edi-
tion 3.0c integrated development environment utilizing re-
lease 1.1.7a of Java and release 1.0.3 of “Swing” (Java
Foundation Classes 1.1), which are used for user-interface
programming. Java’s object orientation, platform inde-
pendence, and Internet “friendliness” were major factors in
its choice as the development language. Of additional im-
port (because XML parsing is an important task of the
SISCO Model Builder) is that Java currently has the best
XML processing capabilities and support. Thus, the Java
language is a natural fit for the development of the SISCO
Model Builder.
 In addition to Java, another major technology em-
ployed was XML. XML is the basis of the SCML For
purposes of XML file utilization within Java, the Sun Pro-
ject-X, Technology Release 2 parser was utilized. Sun’s
parser provides the SAX parsing capabilities necessary to
allow the Model Builder to read SCML formatted files.
 The third technology, the Silk™ simulation engine
from ThreadTec Incorporated, is used to provide core
simulation capabilities. Silk™ is a set of Java classes cre-
ated by ThreadTec to provide the discrete-event simulation
features needed for simulation modeling, including basic
implementations of entities, queues, random number gen-
erators, and a coordinated simulation clock. Developers
create Silk™-based simulation models by working directly
in Java, utilizing the relatively small set of pre-built Java

Chatfield, Harrison, and Hayya

classes that provide process-oriented simulation capabili-
ties, to develop powerful Java-based simulation models
(Healy and Kilgore 1998). Silk™ is easily integrated into
Symantec’s Visual Café 3.0a, a major commercial Java de-
velopment tool. Visual Café was utilized for all develop-
ment work on the SISCO Model Builder.
 The “user-interaction” modules of SISCO (VSCE and
Experiment Designer) were developed with Microsoft’s
Visual Basic 6 Professional Edition (VB6) development en-
vironment. This integrated development environment (IDE)
was chosen because it is a mature graphic application devel-
opment system that allows robust, visually appealing appli-
cations to be developed in a straightforward manner.

3 SUPPLY CHAIN DEFINITION – VSCE

3.1 Visual Supply Chain Editor
Information Requirements

Input required for the successful design and execution of a
supply chain simulation model is extensive and varied. In
order to adequately describe a supply chain, both the physi-
cal (design) aspects of the supply chain and the logical (in-
formational) aspects of the supply chain must be defined.
 The physical aspects include nodes, or locations,
within the supply chain, and arcs, or pathways, that con-
nect the nodes, and components. The node types that the
VSCE allows a user to create include suppliers, production
facilities, warehouses, distributors, retailers, and custom-
ers. Arcs utilizing various modes may be defined, includ-
ing land, rail, air, and telecommunications linkages be-
tween nodes. In addition to nodes and arcs, a supply
chain’s components, which include materials, finished
goods, labor, currency, and other items that are consumed,
transported, created, or otherwise utilized by the supply
chain, must be defined.
 The logical aspects of the supply chain include actions,
which describe a transformation process, such as producing
an item, placing an order, or shipping a delivery. Also in-
cluded in a description of supply chain logic are policies that
define conditions under which actions occur by describing
circumstances that “trigger” the actions or by defining goals
that are to be met because of performing the actions. Exam-
ples include inventory, transportation, and production.
 Beyond the basic topology defined by the nodes and
connecting arcs that are included in the supply chain, it is
necessary to define the characteristics of each node and arc
within the supply chain. The node characteristics that must
be defined include the inputs and outputs, the order and
shipment routings, the independent demands (for customer
nodes), the storage capacities and costs, the overhead costs,
the actions that can occur at a node, and the policies, such
as those of inventory, that control various actions. The arc
characteristics that must be defined include the distance,
the travel time, the travel costs, the basic “container” em-
616
ployed (such as a trailer or cargo container), the mainte-
nance costs, and the expansion costs.

3.2 VSCE - Generating SCML Files

The VSCE must be able to create the SCML equivalent of
what the user has described. SCML is an XML-based
markup language for defining supply chain structure and
policies. Thus, XML processing capabilities are necessary.
XML processing is handled by an XML parser that imple-
ments the SAX (Simple API for XML) API, the DOM
(Document Object Model) API, or both. SAX parsers are
faster, less memory-intensive, and provide a simple, effi-
cient manner for processing an XML file in a sequential,
one-pass, fashion. In contrast, the DOM is a tree-based
API, which maps an XML document into a set of objects in
a tree-like structure determined from the document’s DTD
(Mosenhi 1999). The DOM API allows the programmer to
read objects (XML nodes on the tree), as well as XML-
node modification and addition of new XML nodes to the
tree. The tree-structure (the DOM) can then be navigated
and information searched for, extracted, or changed.
 Using a DOM parser, we can build an XML document
from the ground up by specifying a single root node (the
element that serves as the base of the tree) as the starting
point and then adding branches to the tree. This technique
meshes well with what the VSCE must do when writing an
SCML, so a DOM parsing-based routine was developed
for the “Save” function of the VSCE. The Editor employs
the Microsoft XML parser (MSXML) to provide a DOM
parser for writing the SCML formatted description of a
supply chain when users choose to “Save” their work.

3.3 VSCE - Reading SCML Files

In order to allow a user to read an SCML file back into the
VSCE for updating, a method for reading the file and pre-
paring it for editing is needed. The task of reading an
SCML file back into the VSCE is a natural fit for a SAX
parser. The SAX parser reads through the XML files se-
quentially and fires events, which perform the desired in-
formation processing, as the structures of interest, such as
the start of an element, are found. Unfortunately, Microsoft’s
MSXML does not provide SAX parsing capabilities. Vivid
Creation’s ActiveSAX ActiveX object is used to add SAX
parsing capabilities to the Visual Supply Chain Editor.

4 EXPERIMENT DEFINITION - ED

4.1 The Experiment Designer (ED)

Simulation-specific information, generally referred to as
experimental control information, is also needed to create
an executable simulation. This information is gathered by
running the Experiment Designer (ED); it includes infor-

Chatfield, Harrison, and Hayya

mation regarding the simulation environment, animation
support, empirical distributions, and output data and statis-
tics desired.
 The ED is a Visual Basic application similar in struc-
ture to the Visual Supply Chain Editor, though much sim-
pler. The Experiment Designer presents users with a single
form in which they specify the stopping criteria for each
run, the number of replications, and associated informa-
tion. Using MSXML’s DOM parser, the information is
stored in an XML-based format called the Silk Experiment
Markup Language (SExML). Silk refers to the simulation
engine that is employed by SISCO, ThreadTec Incorpo-
rated’s Silk™. The experiment files output by the ED are
used by the SISCO Model Builder, in conjunction with the
SCML files generated by the VSCE, for creating and exe-
cuting the simulation as the user desires.

5 MODEL GENERATION – MODEL BUILDER

The heart of the SISCO system is the SISCO Model
Builder. This module translates the supply chain informa-
tion provided by the user into an equivalent Silk™-based
supply chain simulation model. To accomplish this, a
mapping scheme and a set of specially-designed, supply
chain-oriented Silk™-compatible Java classes are used to
create a Java representation of the supply chain.

5.1 Modeling Approach

Our modeling approach creates autonomous units, or enti-
ties, representing each node or arc within the supply chain.
These entities interact with each other, performing the ba-
sic actions an order undergoes during its life, in processing
orders from inception to disposal.

5.1.1 Life Cycle of an Order

We approach the modeling of a supply chain from the per-
spective of an order’s life cycle, from inception through
delivery. The basic life-cycle of an order, including where
the actions occur, is as follows:

• order creation (origin node)
• order placement (origin node)
• order transport (information arc)
• order processing (target node)
• order shipping (target node)
• order transport (shipment arc)
• order receiving (origin node).

5.1.2 Modeling Nodes

The most basic pieces of a supply chain are the nodes and
arcs that define the topology of the supply chain. Nodes
can be of six types: suppliers, production points, ware-
617
houses, distributors, retailers, or customers. A node in a
supply chain performs five basic actions with regard to the
life cycle of an order:

• order creation
• order placement
• order processing
• order shipping
• order receiving.

 Order creation involves the creation and initialization
of an order. Orders are generally initially created by one of
two sources, an inventory policy signaling that a replen-
ishment order is necessary, or an external demand gener-
ated by a customer node. At the time of creation, an order
is essentially a desire for an item. In order to act upon that
desire the order must be placed.
 Order placement is the process that makes the order
known to the supply chain, and is not the same as the ini-
tial creation of the order. Order placement is the process
of preparing an order for transport to its target, the node
that will fulfill it. The placement process is the first ac-
tion that an order undergoes and may include processing
delays and costs. The placement process is also where
the routing of the order (where to send it for fulfillment)
may be determined.
 Order processing is the action that attempts to meet the
needs or demands of the order. Orders arrive at a node and
attempts to fill those orders are made. Fulfillment of an or-
der is made from the finished goods inventory of the node
the order has arrived at. If finished goods inventory cannot
meet the order’s needs, the order must wait until goods ar-
rive in the finished goods inventory. Finished goods arrive
as a result of either a processing delay (for suppliers), a pro-
duction process (for production nodes), or the placement of
an order (stocking point nodes). A finished goods inventory
is utilized with all types of nodes, except the customer node,
though its interpretation changes somewhat with non-
production nodes. The finished goods inventory has its most
traditional meaning when used with a production node, but
can also be interpreted as “regular inventory” when used
with stocking point nodes. Or it can be looked at as a “hand-
off” point, when used with supplier nodes whose internal
operations are considered a “black box.” The completion of
the order processing action is the point at which the order
begins the return trip to its origin. The delays and costs in-
volved with order processing are entirely dependent on the
type and characteristics of the node in question.
 Order shipping is the process of preparing the fulfilled
order for transport to its origination node. Order shipping
may involve grouping of certain orders together, prioritiz-
ing orders, or the handling and processing of goods to be
shipped. There may be costs and delays involved with the
shipping process.

Chatfield, Harrison, and Hayya

 Order receiving is the process of accepting an order
that has been filled. Orders received are orders that were
placed at some point in the past and have traversed their
life cycle, being transported, filled, and transported again
to return to their origin. The receiving process serves to
organize the receipt of goods and ensures they are ac-
counted for in inventory figures or customers-served tal-
lies. After receipt of an order, it is essentially disposed of.

5.1.3 Modeling Arcs

Arcs can be of two fundamental types: information (order)
arcs, or delivery (product) arcs. The arcs in a supply chain
perform one action in the life cycle of an order, order
transport, though it may be performed multiple times dur-
ing the life of a single order. An arc represents the move-
ment of an order (information or goods), in a single direc-
tion, between two nodes. Order transport may be the
movement of information, such as the case with demand
and replenish orders being sent to their destinations for
processing, or the movement of goods, such as the ship-
ment of filled orders, back to their origin. Costs and delays
are individual in nature.

5.1.4 Modeling Other Supply Chain Processes

We also include other operations besides those, described
above, that define the life cycle of an order. Inventory
management, including both materials and finished goods,
is one such action. We include such actions by making
them processes owned by any node that stocks items. At
each node, a separate, policy-driven inventory management
system is used to control each component (item) stored.
This design provides the greatest flexibility in modeling of
component stocking throughout the supply chain. Inven-
tory management systems are contained within individual
nodes and operate autonomously based on the needs and
conditions at that particular node.
 In addition, the external, independent demands that
drive the supply chain’s overall actions must be included.
These demands are distinguished from the dependent de-
mands generated by inventory management systems because
they are external to the system and in many cases beyond the
direct control of supply chain managers. We represent these
demands by making them processes owned by the Customer
nodes. Demand characteristics for each demanded item can
be individually specified for each customer. This allows for
the greatest flexibility in the demand-generated order se-
quence that drives the supply chain.

5.2 SISCO Supply Chain Library

The implementation of the modeling approach described in
the above section is based around a specialized set of Java
classes. The SISCO Model Builder is a Java application
618
that incorporates the Silk™ simulation engine. By utiliz-
ing the Silk™ primitive classes as a basis, we develop a
library of specialized, Silk™-compatible Java classes that
represent the various pieces of a supply chain. The SISCO
Model Builder then uses the various pieces of this library
to create a simulation model from an SCML file that has
the same structure and characteristics as the supply chain
described (Chatfield 2001).

5.2.1 “X-Classes”

The first part of the supply chain library is a set of ap-
proximately 50 Java classes, known collectively as the “x-
classes.” They are known as the “x-classes” because all
begin with the letter “x”, standing for XML, which hints at
their purpose. The x-classes are data-only classes that pro-
vide a means of representing the supply chain data con-
tained in an SCML file as a set of Java classes with the
same hierarchical structure. This is needed because the in-
formation must be in a Java-accessible format before we
can make use of it for model development. This set of
classes mimics the structure of the SCML file format with
each of the elements defined in the SCML specification
having an equivalent x-class, except the root element (sup-
plyChain). It allows a straightforward transfer of informa-
tion from SCML (XML) files to Java compatible data
structures. The top-level x-classes are xNode, xArc,
xComponent, xAction, xPolicy, xCountry, and xTrading-
Group. The xComponent, xAction, xPolicy, xCountry, and
xTradingGroup, classes all extend (inherit the data and ca-
pabilities of) a parent class called “Entity.” The Entity
class is a Silk™-provided class that implements (has ac-
cess to) the Silk™ simulation capabilities and enables an
Entity-derived object to run in its own Java thread of exe-
cution. The xNode and xArc classes extend the Location
class, which contains extra information needed by these
types and extends the Entity class itself. In addition to ini-
tialization procedures, the xNode and xArc classes are used
as parent classes for Node and Arc classes, which are op-
erational classes of the SISCO system. These operational
classes are described next.

5.2.2 Operational Classes

Whereas the x-classes are data storage classes, the opera-
tional classes represent the object types that will actually
perform operations and interact with each other in a man-
ner that simulates the operation of a supply chain. For any
object to function properly within the Silk™ simulation
framework, the object must be of a type (class) that is de-
rived from the Silk™ Entity class. According to the Silk™
documentation, “the Entity class provides the basis for de-
fining classes that employ the process-oriented simulation
extensions to Java that constitute the Silk™ language.” In-
stances (objects) of Entity-derived classes run in their own

Chatfield, Harrison, and Hayya

Java thread of execution. By running in its own thread of
execution, the object executes independently from other
simulation objects running in their own threads, much like
if each thread of execution were a separate computer. Each
thread has its own life span and, most importantly, operates
according to its own time-line without being interfered
with by other objects’ operations. Objects running in sepa-
rate threads can interact with other objects in the system, a
capability which is obviously needed in a simulation envi-
ronment. The Entity class also provides a process() proce-
dure that contains code for the tasks an object will perform
during its life. We “start” the process() procedure when
we wish the life of the object to begin. To build the SISCO
Library, we create a set of classes that extends (inherit
from) Entity and represent the node, arcs, and orders of the
supply chain and the tasks that are performed within these
elements of the supply chain.

5.2.3 Owner-Manager-Actor Structure

The operational classes follow a fundamental structure that
we refer to as the “owner-manager-actor” structure. This
approach computationally separates the various manage-
ment, monitoring, and task oriented operations of the sup-
ply chain by creating separate objects to perform each. For
example, a node has a number of tasks that occur at that
location in parallel, such as order placement, order process-
ing, and inventory management, to name but a few. If each
of these processes were implemented as procedures within
the node object, they would preempt each other -- inven-
tory management tasks would be performed, while order
processing tasks that should be performed at the same time
wait. The “owner-manager-actor” structure addresses this
problem by creating an object for each task. Each object
runs in a separate thread of execution, which allows each
to perform its procedures simultaneously, without preempt-
ing each other.
 The “owner” is the object representing the place in the
supply chain at which the tasks are occurring, such as a
node. “Manager” objects generally implement tasks, usu-
ally policy-related, that the owner must continuously per-
form. An example of a manager would be an object that
handles order processing by constantly checking a queue
for orders, or one that handles inventory management by
checking the inventory level of an item and comparing it to
the policy parameters. When a manager determines that an
action needs to be performed, such as production to fulfill
an order or placement of an inventory replenish order, an
“actor” object is created to perform the action. The reason
for this is the same reason that managers are created to per-
form monitoring duties for their owner (node or arc); to al-
low simultaneous operations. For example, if an inventory
manager object also performed the replenishment ordering
action then inventory monitoring would not occur while
the ordering is taking place. Thus, to prevent preempting a
619
manager’s monitoring activities, “actor” objects are created
as needed to handle the actions. In most cases, actions are
temporary objects that are disposed once the action has
been completed. The “owner-manager-actor” structure,
coupled with the threading capabilities of Silk™, allows us
to create simulation models that operate like they do in re-
ality, with processing occurring simultaneously.

5.2.4 The Node Class

The most basic need is to represent the nodes and arcs that
define the basic structure of the supply chain, and this is
where the operational classes begin. The Node and Arc
classes are templates for the creation of objects based on
Silk™ Entities that represent the nodes and arcs. The most
important part of the Node class involves the coordination
of the basic actions that occur at a node: order creation, or-
der placement, order processing, shipping, and receiving.
The Node class defines Silk™ Resources, Silk™ Queues,
and Managers for the basic actions.
 The Silk™ Resources represent capabilities (such as
equipment) of a node that must be available for an action
to be performed. Over the course of a node’s life, the vari-
ous Resources are “seized” when they are required to per-
form an action and “released” when the action is complete.
A seized resource indicates that resource is “in-use” and
unavailable unless the current use has been completed.
The interim period is the performance time of the action,
generally referred to as the “delay.”
 The Silk™ Queues implemented by the Node precede
each of the basic actions, except order creation. These
Queues are where orders waiting to have a certain action
performed wait.
 The Managers defined by the Node make use of the
Resources and Queues to control the basic action. An Or-
der Placement Manager that utilizes the Order Placement
Queue (where orders wait for placement to occur) and the
Order Placement Resource to control the process of Order
Placement is created. Likewise, an Order Processing Man-
ager, a Shipping Manager, and a Receiving Manager are
created to control those operations. When the Managers
determine that it is necessary to perform a basic action,
they remove an order from the queue, seize the appropriate
resource, and create an instance of an actor class to per-
form the action. These Actor classes (Order Placement
Actor, Order Processing Actor, Shipping Actor, and Re-
ceiving Actor) update the Order, delay the appropriate
amount of time, and release the resource. When the Actor
finishes performing the action, it is disposed of.
 Order creation is controlled by one of two types of
managers. If the node is a customer node, then the orders
are being created from external customer demands. A
separate Demand Generator object is created for each item
that is demanded by the customer node. The Demand
Generator object operates according to the demand charac-

Chatfield, Harrison, and Hayya

teristics provided by the modeler, creating Order instances
at specified intervals, either constant or determined from a
distribution, for specified sizes (again, either constant or
determined from a distribution). For more complex situa-
tions, a policy procedure can be employed to determine
demand. If the node is of another type (excepting suppli-
ers, who do not generate orders), the Order instances will
be generated by the inventory system in the form of an in-
ventory replenish order. When a Node is created, three
Silk™ State Variables are created for each item or compo-
nent that enters the node (node inputs) and for each item
that leaves the node (node outputs). Silk™ State Variables
can be continuously monitored by the Silk™ simulation
system, triggering procedures that determine the level of
the State Variable any time it changes. The Silk™ State
Variables are used to store the current inventory level, the
amount on order, and the inventory position of each input
and output component. In addition, an Inventory Manager
is created for each node input and node output as well.
The Inventory Managers monitor the inventory levels and
position of each component and, based on an inventory
policy specified, create and instance of Inventory Actor.
The Inventory Actor creates the replenish order, updates
the inventory levels stored in the State Variables, and is
then disposed of.
 Besides creating the necessary Queues, Resources, and
Managers to enable the basic actions to be performed, a
Node also creates variables used to track the performance
of the node. Silk™ Time Dependent variables are used to
track the time-dependent statistics such as the utilization
rate of the various Resources and the length of each of the
Queues. In addition, Silk™ Observational variables are
used to track the performance aspects of the Node that are
observed occurrence by occurrence, such as the time spent
by the Orders in the various Queues.

5.2.5 The Arc Class

The Arc class is structured like the Node class except that
it is much simpler, since the Arc performs only one basic
action, order transport. A Silk™ Resource, Silk™ Queue,
and Transportation Manager are created to control the ac-
cess to the transportation action. When the Manager indi-
cates a transportation action needs to be performed, a
Transportation Actor is created to perform the action and
then disposed of.

5.2.6 The Order Class

The method of supply chain modeling we employ is based
on the life cycle of an order, so a well-designed representa-
tion of an order is important. The Order class extends the
Silk™ Entity class so that Order instances can be utilized
within the Silk™ simulation system. Each order has a ref-
erence to origin node (creator) stored in an “originNode”
620
field and a reference to the destination node, when deter-
mined, is stored in a “targetNode” field. References to the
order and shipment arcs are also stored in “orderArc” and
“shipmentArc” fields. Other characteristics that are in-
cluded in the Order class include the component the order
is for, the amount ordered, and the units of measurement
used. Timestamps before and after every action in the or-
der’s life cycle are stored in a set of data fields to aid in
system and sub-system performance reporting.
 The most important part of the Order class is its guid-
ance of the order through the basic life cycle. An order’s
destination node, as well as the order and shipping arcs, are
determined by the Order Placement and Shipping Manag-
ers of the node that creates the order. The order’s process()
method coordinates the life cycle. It starts by placing the
order in the Order Placement Queue and then temporarily
stalls the process() procedure with a halt() command.
When the placement process is complete the order’s proc-
ess() procedure is activated which sends the order to the
next point in the life cycle by placing it in the order arc’s
Transport Queue and halting the process() procedure. This
continues for each stage in the life cycle. Thus, the order
controls its own sequence of actions, but the nodes deter-
mine the details of where those actions will occur.

5.3 Model Generation and Execution

The model generation process involves taking the user in-
put, mainly the SCML file, and generating an equivalent
Silk™ simulation model by creating instances of the ap-
propriate SISCO Library classes. The process involves
two main actions: parsing the SCML file to generate the
appropriate supply chain objects as they are encountered;
and invoking the initialize() procedure of a newly created
object to create appropriate Resources, Managers, statisti-
cal tracking variables, and related structures owned by the
object.
 To enable the parsing of the SCML file, we utilize
Sun’s Project-X Technology Release 2 (TR2). Project-X
TR2 provides a Java implementation of both SAX and
DOM –based parsers. The process of reading the SCML
file and creating instances of the appropriate SISCO Li-
brary classes is well-suited for a SAX parsing procedure.
The potential size and complexity of the SCML document,
compared with other XML documents, favors the one-pass,
event-based parsing method of SAX over the tree-based
parsing of DOM parsers. DOM parsers store a representa-
tion of the hierarchy of the entire document in memory be-
fore processing can be performed, which is slower and
more memory-intensive than the one-pass, immediate ac-
tion approach of a SAX parser.
 The elements representing supply chain “basic con-
structs” (node, arc, component, action, policy, country, and
tradingGroup) are level-2 items in the SCML hierarchy
and are the heart of a supply chain description. The x-

Chatfield, Harrison, and Hayya

classes of the SISCO Library previously described are de-
signed to replicate the data structures of these elements and
the information they contain in sub-elements and attributes.
When a component, action, policy, country, or trading-
Group element is found in the SCML file, an object of the
corresponding x-class is created and the descriptive infor-
mation (attributes and sub-elements) from the SCML file is
transferred to the new object. The new object is then
placed in an array with other objects of the same type.
 When the parser encounters the start of a node or arc
element, the processing follows the same structure as the
other basic elements, but is a bit more complex. As with
elements for the other basic constructs, the start_element()
event for a node or arc element (indicating the beginning of
a node or arc has been encountered) will create a representa-
tive class. In this case however, the class created is not an x-
class (xNode or xArc). Instead, extensions of the xNode and
xArc classes, named Node and Arc are used. The reason for
this is that the x-classes are data-only classes that mimic the
structure of the SCML language. Representing the operation
of nodes and arcs is central to the simulation modeling of a
supply chain and, as a result, the needed objects must be
more complicated than Java class-based implementations of
the SCML node and arc elements. The start_element()
event begins by creating a Node or Arc–derived object.
Since Node and Arc extend xNode and xArc, they include
all the data fields of those classes. Thus, the transfer of de-
scriptive information and addition to an array occurs in the
same manner as with the other basic constructs.
 When the end_element() event is executed (i.e., the
end of a node or arc element has been found) the process()
procedure of the Node or Arc is invoked, essentially be-
ginning the “life” of the Node or Arc as an entity in the
Silk™ simulation system. The first action within the proc-
ess() procedure is to call the initialize() method, which cre-
ates arrays that allow easy access to the node or arc infor-
mation. Next, this routine performs actions that create
Silk™ structures needed to represent the operation of the
node or arc properly.
 For a node, the Silk™ Queues and Resources for basic
supply chain actions (order placement, order processing,
shipping, and receiving) are created. The associated Man-
ager objects (order placement, order processing, shipping
and receiving Managers) are created as well. In addition,
Silk™ State Variables are generated for each input and
output of the node, creating materials and finished goods
inventory tracking variables. In addition to the State Vari-
ables, an Inventory Manager object is generated for each
node input and output to perform the actual inventory
monitoring. Finally, if the node is a customer node, a De-
mand Generator object for each component demanded is
created. All of the Managers, plus the Demand Generators
are separate Silk™ entities running in their own thread of
execution and each has its process() procedure “started” by
the Node object (entity) after it is created and initialized.
621
The Node entity itself does not perform any processing, it
serves as the “owner” of these other Silk™ entities that
perform processing for it. Thus, the simulated actions of a
node can all occur in parallel because they are being exe-
cuted in separate threads by separate entities. The process
is the same for creating an Arc, but simpler because its
only action is transporting orders.
 Execution of the simulation model occurs immedi-
ately, because the process of “starting” various entities oc-
curs as the model is generated. The parsing procedure en-
sures that the various simulation entities are initialized and
started in the correct order, because it follows the hierarchy
as it is laid out in the SCML file. Thus, an element is
never initialized before any of its sub-elements, and an en-
tity is never started before all the elements it contains are
initialized. Essentially, the process of model generation
and model execution are combined.

6 APPLICATIONS

SISCO was developed because simulation modeling can
provide valuable insight into the operational characteristics
of supply chains. Variation is a reality in all systems, sup-
ply chains not excluded. Variation in demands, production
yields, transportation times, and cost of goods over time, as
well as many other factors, are common in the actual op-
eration of a supply chain. Yet these operational factors are
often modeled deterministically.
 The most extensive use of SISCO so far has been to in-
vestigate the phenomenon of demand variability amplifica-
tion, often referred to as the Bullwhip Effect. A set of sup-
ply chain structures was created using the VSCE and
simulated under various conditions to examine the impact of
lead time variability and forecasting methods on the severity
of the Bullwhip Effect. SISCO was invaluable in the crea-
tion, execution, and coordination of the simulations.
 The following are some additional aspects of supply
chain operations modeling that would benefit from a rigor-
ous simulation-based analysis:

• realistic-sized supply chains are rarely modeled

stochastically
• delivery times and costs are assumed linear or

static in most supply chain models
• very few supply chain modeling endeavors have

taken exchange rate and other global conditions
into account, though these can be significant driv-
ers of profitability

• service-oriented supply chains have been only
sparingly modeled.

7 CONCLUSIONS

The Simulator for Integrated Supply Chain Operations
(SISCO) provides an improved approach to performing

Chatfield, Harrison, and Hayya

simulation analysis of supply chains. As a fully object-
oriented supply chain simulator, SISCO goes beyond current
simulators by enabling GUI-based “off-the-shelf” modeling
of common supply chain operations, while still allowing ac-
cess to a full general-purpose programming language for
customization if desired. Silk™, the Java-based core of
SISCO, provides a robust, flexible, internet-friendly, multi-
threaded environment for simulation model development
and execution. SISCO addresses the supply chain informa-
tion sharing problem by integrating SCML file compatibil-
ity, allowing sharing of supply chain problem information
with users of any SCML compliant modeling tool and utiliz-
ing the Visual Supply Chain Editor as the main method for
describing the supply chain to be modeled.

In addition to SISCO itself, the SCML parsing routines
and data structures in Java and Visual Basic 6, developed as
part of the SISCO project, are generic and can be used to
make other applications and tools SCML compliant.
 In all, SISCO greatly lowers the “barriers to entry” for
simulation modeling of supply chains, extends the current
state of the art in terms of modeling features, and provides
information sharing capabilities in a robust, object-oriented
simulation modeling tool.

ACKNOWLEDGMENTS

We would like to thank the Center for Supply Chain Re-
search at Penn State for partial funding of this project. We
would also like to thank Rich Kilgore of ThreadTec for all
of his help in utilizing Silk™.

REFERENCES

Chatfield, D. 2001. SISCO and SCML- Software Tools for
Supply Chain Simulation Modeling and Information
Sharing. Unpublished Ph.D dissertation. Department
of Management Science and Information Systems,
Penn State University, University Park, PA.

Healy, K. and R. Kilgore 1998. Introduction to Silk™.
ThreadTec Incorporated. Available online
http://www.threadtec.com

Mosenhi, P. 1999. An introduction to XML for Java pro-
grammers. Java Pro, 3(3):48-52. Fawcette Technical
Publications, Palo Alto, CA.

AUTHOR BIOGRAPHIES

DEAN C. CHATFIELD is Assistant Professor of Man-
agement Science and Information Technology at Virginia
Polytechnic Institute. He received his Ph.D. from Penn
State University in 2001. His research interests include
manufacturing and service supply chain analysis and de-
sign, simulation modeling of production and supply chain
systems, and the application of meta-heuristics. His email
address is <deanc@vt.edu>.
622
TERRY P. HARRISON is Professor of Management Sci-
ence at Penn State University. He has teaching and re-
search interests in the areas of supply chain management,
large scale production and distribution systems, decision
support systems, applied optimization and the management
of renewable natural resources. His email address is
<tharrison@psu.edu>.

JACK C. HAYYA is Professor Emeritus of Management
Science at Penn State University. His research interests lie
in the areas of production and inventory management, ap-
plied statistics, supply chain management, military systems
analysis, and food safety. His email address is
<jch@psu.edu>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

