
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

WEB-BASED SIMULATION OF SYSTEMS DESCRIBED BY PARTIAL DIFFERENTIAL EQUATIONS

Manuel Alfonseca
Juan de Lara

ETS Informatica
Universidad Autonoma Madrid

Madrid, 28049, SPAIN

Hans Vangheluwe

School of Computer Science
McGill University

Montreal, Quebec, H3A 2A7, CANADA
ABSTRACT

This paper describes how to take advantage of Internet ser-
vices and object technology to solve 2D partial differential
equations (PDEs) in a distributed manner. This is accom-
plished by means of a distributed object oriented continuous
simulation language designed by our research group, called
OOCSMP, and a Java (and C++) generating compiler for
this language (called C-OOL). We also describe a graphical
mesh generator, which produces OOCSMP code. The mesh
generator may be invoked from the simulation model al-
lowing the generation of domains and meshes during model
execution. The simulation of the heating of several moving
pieces is shown, in the single machine case, and in the
distributed case.

1 INTRODUCTION

The Internet is becoming ever more popular. The number
of computers connected to the Internet allows us to take
advantage of the combined power of these computers. This
enables us to solve more interesting and complex problems
(Java Grande 1999). Many disciplines are re-evaluating
their strategies and techniques (Page et al. 2000) in view of
the services offered by Internet. For simulation, example
services are the distributed networked architecture as well as
common protocols for computer communication. Thanks to
the “single point of access” an Internet web browser offers,
it is gaining popularity in the implementation of courseware.
To make such courses more dynamic, simulation models
can be integrated (de Lara and Alfonseca 2001).

According to (Fishwick 1996), the web offers services
that can be exploited by the field of simulation in various
ways, such as building and/or executing distributed models
(Cubert and Fishwick 1998) , (Alfonseca and de Lara 2000a),
(Alfonseca and de Lara 2000b), or providing Web-based
tools, such as simulation interpreters, plug-ins, etc. (Schmid
1999) In this paper we will focus on the execution of
distributed models.
629
Since 1997, we have developed advanced simulation
tools that simplify the generation of educational courses for
the WWW (Alfonseca et al. 1999). For this purpose, we use
the continuous simulation language OOCSMP (Alfonseca el
al. 1997), designed by our group. This language is an object
oriented extension of the original CSMP (IBM 1972). Other
extensions have also been added, such as the capability to
solve partial differential equations (de Lara and Alfonseca
1999), the possibility to synchronize multimedia elements
with the simulation execution, as well as new primitives to
produce distributed simulations.

In previous publications (de Lara and Alfonseca 1999),
(Alfonseca and de Lara 2000a) we have presented several
approaches to the solution of PDEs using object technology
and web services. In OOCSMP, the use of object technology
simplifies the domain creation and discretization: generic
domains and meshes can be defined within classes, and
parametrized in objects. It is also possible to transform those
meshes once created, by means of displacement, rotation,
scale, etc. operators. The interaction between subsystems
(modeled as objects) of the global system (modeled as a
collection of objects) is expressed in a natural and extensible
way. The system allows the addition of new objects during
the simulation execution in the single-machine case.

With the use of web services, and the OOCSMP distri-
bution capabilities, it is possible to place each object con-
tributing to the solution of a PDE in a different machine,
speeding up the simulation considerably. This distribution
approach is quite different (and perhaps more natural) from
the distribution scheme used in classical continuous sim-
ulation (Monsef 1997), consisting of the parallelization of
the algorithms used to solve the model’s system of equa-
tions. Besides, it is not possible for us to use fine grain
parallelism, due to high (and impredictable) latency in the
Internet. Schemes where each processor is assigned one
element of the matrix resulting from discretization and com-
municates constantly with the processors of the neighboring
elements are not possible in our case. We must try to exploit
large grain parallelism.

Alfonseca, de Lara, and Vangheluwe
In spite of this high latency, the use of Internet as the
interconnecting network has some advantages:

• it is an existing infrastructure,
• it is highly scalable,
• it offers common and well established protocols

and communication mechanisms, and
• the use of Java makes the system highly portable.

Other continuous simulation systems focus on distri-
bution for collaborative and distributed modeling (Cubert
and Fishwick 1998) rather than on simulation.

In this paper, we present some techniques to solve PDEs
using object technologies. The techniques are illustrated by
the solution of a problem: the heating of two moving pieces.
The configuration of each piece can be modified at run time.
The distribution capabilities of our simulation language are
also used to produce distributed Java code for the problem.
The code generation takes into account that sometimes the
heat in both pieces can be computed simultaneously (if they
are separated), while sometimes they must be calculated as
one whole in a single processor (if they are in contact).

The paper is organized as follows : Section 2 gives a
brief introduction to the OOCSMP language, the C-OOL
compiler and the mesh generator; section 3 describes the
procedure to solve PDEs; section 4 presents the distribution
capabilities of OOCSMP; section 5 presents the solution of
the example, in the single machine case; section 6 extends
the model to make it distributed. Finally, section 7 presents
the conclusions and the future work.

2 OOCSMP, C-OOL AND MGEN

During the past four years, we have developed several
extensions to an old continuous simulation language called
CSMP. The new language has been baptized OOCSMP.
Some of its characteristics are:

• it is Object-Oriented,
• it supports an algebra of vectors and matrixes,
• it can handle discrete events,
• it can synchronize multimedia elements with the

simulation execution,
• it is able to solve second order PDEs and includes

a mesh generator,
• it has primitives to generate distributed simulations,
• it has instructions to build a web page where the

experimentation environment (including simulator,
controls, result presentations, …) will be palced,
and

• several output forms are available, and can be mixed
in a single problem.
63
Figure 1: Using MGEN During a Simulation Execution

The compiler is named C-OOL (a Compiler for the
OOCSMP Language) and generates three different lan-
guages: Plain C++, C++ using the Amulet library (Myers
1997) and Java.

For the three cases, C-OOL produces a fully config-
urable user interface which allows the user to experiment
with the problem and answer “what if...?” questions. The
compiler and the language have been mostly used to pro-
duce educational web courses based on simulation. In this
case, the compiler generates Java code (applets) and HTML
pages. The courses can be found at:

<http://www.ii.uam.es/˜jlara/
investigacion>

C-OOL is also able to generate documentation for the
simulation models in the form of HTML pages.

MGEN is a graphical mesh generator (programmed in
Java) that generates OOCSMP code for the mesh, domains,
and conditions. MGEN can also read OOCSMP code con-
taining a description of the problem, and makes it possible
to change it graphically. The generator can also be inte-
grated with the model, as another OOCSMP input/output
panel. In this way, one can pause the simulation, change
some mesh parameters, and continue with the execution.
Figure 1 shows the use of MGEN.

3 THE PROCEDURE TO SOLVE
PDEs WITH OOCSMP

OOCSMP is able to solve PDEs and systems of PDEs of
second order in one or two spatial dimensions and time.
PDEs are solved in OOCSMP using the following 8-step
procedure:

1. Declare the basic domains. Domains are declared
by means of primitives. In two dimensions, there
are four different primitives (quadrilaterals, 8-node-
quadrilaterals, circular sectors and triangles).
0

Alfonseca, de Lara, and Vangheluwe
2. Set the initial and boundary conditions. Initial and
boundary (natural, essential or periodic) conditions
have to be imposed when declaring the basic do-
mains. These conditions can be provided by means
of any OOCSMP expression. Conditions can be
set over the edges (EDGE), the corners (CORNER)
or individual nodes (NODE). They can be specified
as lists of elements (one or more elements sepa-
rated by commas) or as intervals (two elements
separated by a colon).

3. Form the grid. Basic domains can be discretized
using several meshing techniques, both structured
(isoparametric elements and elliptic grid generation
(Thompson et al. 1985)) and unstructured (Delau-
nay triangulation (Hsuan-Cheng 1997)). In the last
case, three different constraints can be applied to
each triangle generated (they can be combined in
an AND expression):

• a maximum area,

• a maximum edge size, and

• a minimum angle.

In the Delaunay triangulation it is also possible to
generate quadrilaterals, by dividing each triangle
into three quadrilaterals (with a common vertex in
the triangle baricenter).
Meshes can be smoothed using Laplacian smooth-
ing (Field 1988).

4. Several meshes can be concatenated to produce
more complex meshes, even if they have been
generated with different techniques. Geometrical
transformation operations can be applied to do-
mains or meshes : move (MOVE method), rotation
(ROTATE method) and scale (SCALE method).

5. Declare the PDE(s). In this step, the partial differ-
ential equations to be solved have to be declared.
One equation is declared for each sub-mesh in
the total mesh. The solution method for the PDE
has to be chosen at this stage. In OOCSMP we
have implemented several schemes of the finite
differences method (Strikwerda 1989):

• Explicit schemes, such as classical CTCS,
FTCS, etc. (configurable, but the system can
choose the better method for the problem) or
the Du Forte-Frankel method.

• Implicit schemes, such as ADI or Crank-
Nicolson.

The finite element method (Zienkiewicz and Taylor
1989) can also be used. For the finite difference
case, meshes are restricted to the isoparametric
type, but grid lines are not restricted to be parallel
to the X and Y axes. If the system detects that they
are, the solving algorithm is much faster, because no
631
transformation is needed from the physical domain
to the computational domain (a 2x2 rectangle).
Finite element meshes are restricted to have the
same type of simplexes in each submesh.
The Java and C++ libraries implementing the meth-
ods have been coded to allow easy variation of the
schemes, as new schemes can inherit common al-
gorithms from the existing ones and change only
a few details. For example, the class implement-
ing the Du Forte-Frankel method is a subclass of
the class implementing classical explicit methods,
where we have only to change the methods that
indicate how to discretize some derivatives.

6. Assign the equation(s) to the mesh. At this stage,
each equation has to be assigned to the appropriate
mesh. Different equations can be assigned to each
sub-mesh. They may be the same equations with
different solution methods. If this is the case, care
must be taken, because perturbations can occur in
the borders of concatenated meshes.

7. Solve. Method STEP has to be invoked for the
total mesh.

8. Select the output form. Several ouput forms are
available in OOCSMP (in the Java case) to view
PDE solutions, such as :

• maps of isosurfaces,

• plots to view the nodes of the grid, with the
initial conditions,

• three dimensional plots, and

• plots for vectors.

All these outputs refresh the solution at PLdelta
intervals. Several output forms can be combined
in a single problem.

A library of components with typical PDEs has been
developed. The components are OOCSMP classes contain-
ing a discretized basic domain. Classes can be parametrized
when declaring objects. Typical parameters are: the number
of elements in the grid, the constrains if Delaunay triangu-
lation is chosen, or the coefficients of the PDE. Component
grids can be concatenated.

4 DISTRIBUTION IN OOCSMP

Distribution has been implemented in OOCSMP using the
rmi Java package (Berg and Fritzinger 1998). For this
reason, it is only available when generating Java code.

Distribution has been implemented at the object level:
it is possible to choose the machine where every object
taking part in the simulation model is going to be placed.
Several objects can be placed in the same machine. Objects
can also be replicated in all the machines of the distribution

Alfonseca, de Lara, and Vangheluwe
scheme. This allows us to emulate object migration by
activating/passivating objects.

This distribution scheme is a natural way (although
not the most efficient) of describing distribution in object-
oriented simulation models. It fits the distributed nature
of the Internet, and follows the current vision (Fishwick
1998), (Page and Opper 1999a) of a web populated with
digital objects (simulation models). Thereby each object
resides in a different location, and modeling is done in a
composable, distributed fashion.

It is useful to identify clusters of objects that communi-
cate mostly inside the cluster. We have applied this scheme
successfully to ecological simulations (Alfonseca and de
Lara 2000b), where species populations are represented as
objects, and ecosystems as collections of these objects. Each
ecosystem is placed in a different machine, and each species
only interacts with those in the same machine, except for
migration.

Each machine (IP address) taking part in the simulation
is assigned a label. This information is usually placed in
a separate file. Labels will be used in all the subsequent
references to machines. Thus, changes in the distribution
scheme do not imply a modification of the main model,
only a recompilation. It is also possible to assign the same
IP address to different labels.

When invoking the object constructor, it is necessary
to indicate in which machine the object will be created (by
means of the machine label). If a label is not given, the
object is replicated in all the machines. Global variables
are likewise replicated.

Different integration schemes can be used in each ma-
chine. The output forms can also be different, and it is
possible to monitor remote objects.

In this way, a single model is needed, but it has to be
compiled for every machine in the simulation. By default,
the compiler puts synchronization points where necessary,
and keeps the simulation time synchronized (if there is some
dependency between objects), by adding synchronization
points at the end of every simulation loop. Semaphores can
be omitted by means of compiler options.

As each machine executes a main simulation loop,
the computation control is completely distributed among
processors. The compiler generates customized Java code
for each machine, in such a way that :

• Single calls to methods invoked on local objects
are executed.

• Each machine only executes local calls on its lo-
cal objects. It sets semaphores to keep execution
globally synchronized.

• Methods or attributes on remote objects, whose
results are needed to compute local variables, are
accessed via remote method invocation, but this is
transparent to the user.
632
All object access (local and remote) is regulated via
semaphores. If the object is local, the semaphore is called
in the local machine. If it is remote, it is accessed in the
remote machine. Semaphores control both simulation time
synchronization and object dependencies, and are associated
with a special attribute in each class. Each invocation of
a method of one object increases that variable , which is
reset at the beginning of the simulation loop. In this way,
it is easy for the compiler to produce a parallel simulation
equivalent to the serial one (in the sense that it gives the
same result). Semaphores take into account the request and
local times and the number of previous accesses to an object
to obtain a better synchronization.

Instructions involving assignments to global variables,
or calls to global functions or procedures are replicated in
all the machines. This calculation replication is not a waste
of time, because the latency is high. Sometimes calculation
replication is a better choice than communication.

5 A STAND-ALONE SAMPLE PROBLEM

In this section, we present a problem. It is a more complex
version of the one described at (Alfonseca and de Lara
2000a). Suppose we want to simulate the heating of two
L-shaped pieces. The heat supplied follows the equation:
e2t sin (x + y) cosh (x + y). A scheme of this problem is
shown in Figure 2. The heat supplied is shown as a map of
isosurfaces, the blue color (lower left corner) representing
the cooler temperatures, the red color (upper right corner)
the higher temperatures. The pieces are moving, approach
until they collide, stand for a while, and then separate.
This means that sometimes it is possible to integrate both
pieces separately, while sometimes the calculation has to
be accomplished in a single mesh.

We can not take advantage of the symmetry of the
problem to reduce it to the calculation of only one piece, as
the boundary conditions are not symmetric, and the pieces

Figure 2: Scheme of the Problem

Alfonseca, de Lara, and Vangheluwe
move and join at some point in time. But we can generalize
the geometry of the pieces by encapsulating all their behavior
inside a class (called LPiece). This class has information
about the domain, the mesh, the equation to be solved and
the conditions. The domain is the concatenation of two
quadrilaterals of size 2x1 and 1x1. LPiece objects take as
parameters the displacement (in X and Y) to be applied
to the each quadrilateral, and the conductivity coefficients.
It is easy to obtain pieces with a different geometry, by
changing the parameters of the constructor. This can be
done at run time.

The following listing shows the complete OOCSMP
model.

DATA EPS:= 1e-4, ACER:= 1
DATA JOINED:= 0, MAXJOINTIME:= 6
APPHEAT X, Y
APPHEAT := EXP(2.0*TIME)*SIN(X+Y)*CH(X+Y))

CLASS LPiece
{
* Define class parameters, displacement
* of the piece components
DATA trx1, try1, trx2, try2
DATA Kx, Ky

DOMAIN qd1:= QUADRILATERAL(0,0,2,0,2,1,0,1,
INITIAL(0),ESSENTIAL(EDGE(1:4),
APPHEAT(X,Y))

DOMAIN qd2:= QUADRILATERAL(0,-1,1,-1,1,0,0,0,
INITIAL(0),ESSENTIAL(EDGE(1:4),
APPHEAT(X,Y))

qd1.MOVE (trx1, try1)
qd2.MOVE (trx2, try2)

* Mesh the domains
MESH m1:=ISOPARAMETRIC(qd1,QUADRILAT4,

ELEMENTS(20,10))
MESH m2:=ISOPARAMETRIC(qd2,QUADRILAT4,

ELEMENTS(10,10))

* Create 2 PDEs
PDE H2da(0,0,1,1,-Kx,1,-Ky,0,0,0,0,0,0,0,0,FEM)
PDE H2db(0,0,1,1,-Kx,1,-Ky,0,0,0,0,0,0,0,0,FEM)

m1.CONCAT(m2)
m1.setPDE(H2da)
m2.setPDE(H2db)

DYNAMIC x
m1.MOVE(x,0)
m1.STEP()

}

LPiece p1 (0, 0, 0, 0, 3.0, 3.0)
LPiece p2 (3, 0, 4, 0, 3.5, 4.0)

doJOIN
p1.m1.CONCAT(p2.m1)
ACER *= -1
JOINED := MAXJOINTIME

doMOVE
633
JOINED -= 1
p1.STEP(ACER*0.05)
p2.STEP(-ACER*0.05)

doDETACH
p1.m1.DETACH(p2.m1)
doMOVE

DYNAMIC
DIST := ABS(p1.m1.RIGHTX-p2.m2.LEFTX)
JOINED-=1
INSW ((DIST+EPS)*(EPS-DIST),

FCNSW(JOINED,doJOIN, ,),
doMOVE)

FCNSW(JOINED, , doDETACH, p1.m1.STEP())
INSW (DIST-2, , ACER*=-1)

TIMER FINTIM:= 20, delta:= 0.1, PLdelta:= 0.1
GRIDPLOT [C], p1.m1, p2.m1
ISOPLOT [E], p1.m1, p2.m1

Listing 1: The Single Machine Model

Both pieces move parallel to the X-axis. When their
distance is less than a given small interval, both pieces are
concatenated, otherwise, they approach or separate. The
distance is computed by means of the RIGHTX and LEFTX
predefined methods, that return the rightmost and leftmost
X coordinate. These methods can be invoked on meshes
or on domains. In OOCSMP, if a method doesn’t receive
parameters, it can be invoked with or without the trailing
parentheses. In this way, one need not worry about whether
the requested information is implemented as a method or
as an attribute.

When both pieces collide, the resolution method for the
first mesh has to handle the resolution of both meshes. In
order to accomplish this, the method has to reconfigure its
internal vectors, recalculate Jacobians, change the boundary
conditions in the resulting inner borders, copy the solutions
from the second mesh, etc. This is a different situation from
the concatenation that occurs in the declarative section of
the LPiece objects, which occurs before the solvers have
been created, and the compiler knows that it has to handle
the solution of both sub-meshes. This is a more efficient
concatenation.

When both pieces are joined, only one STEP message
has to be sent to the first mesh in order to solve the equation
in the whole domain. When the meshes separate, two STEP
messages have to be passed to both meshes.

After some time before the concatenation, both meshes
detach. The DETACH predefined method reconfigures both
solvers, changes the boundary conditions at the bond borders,
etc. This situation is treated as a discrete event (handled by
the FCNSW method). Blocks INSW and FCNSW are the
OOCSMP discrete event handlers. They are overloaded in
such a way that they can act as “event handlers” (as in this
program) or as normal OOCSMP blocks (when they appear
to the right of an assignment).

Alfonseca, de Lara, and Vangheluwe
Finally, we choose two graphical output forms, one to
display the nodes of both grids (GRIDPLOT instruction)
and another to view the solution of the PDEs (ISOPLOT
instruction) in the form of a map of isosurfaces. The latter
is able to distinguish if both meshes are separated or they
have been concatenated (plotting only one or both of them).

The model is compiled into an applet with C-OOL
and the screen in Figure 3 is obtained. This picture
was taken when both meshes are concatenated. The ap-
plet includes several buttons to control the simulation
and change the parameters at run time. The applet can
be found at: <http://www.ii.uam.es/˜jlara/
investigacion/ecomm/moving.html>.

The HTML page containing the applet has also been
generated with C-OOL using several language extensions
discussed in (de Lara and Alfonseca 2001).

Figure 3: A Moment in the Simulation of the Previous
Problem

6 MAKING THE MODEL DISTRIBUTED

This example problem is very suitable for distribution. When
the pieces are separated, they can be solved simultaneously.
When they are joined, a single computer has to carry out
all the computation.

To make the model distributed, the only thing we have
to do is to indicate the machine where the objects have
to be created. The necessary changes to make the model
distributed are shown in listing 2.

MACHINE m1 "urano.ii.uam.es"
MACHINE m2 "minerva.ii.uam.es"
...
LPiece p1 (0,0,0,0,3.0,3.0) MACHINE m1
LPiece p2 (3,0,4,0,3.5,4.0) MACHINE m2
...
GRIDPLOT [C], [MACHINE=m1], p1.m1
ISOPLOT [E], [MACHINE=m1], p1.m1
634
GRIDPLOT [C], [MACHINE=m2], p2.m1
ISOPLOT [E], [MACHINE=m2], p2.m1

Listing 2: Changes to Make the Model Distributed

The compiler locates the synchronization points auto-
matically. The critical points are :

• The concatenation of both meshes, as all the in-
formation about the solution found on the second
mesh has to be sent from one computer to the
other, and from that point on, only the first com-
puter calculates, while the other is waiting.

• The separation of both meshes, when the solution
found for the second mesh in the first computer has
to return to the second machine. From this point
on, until the next concatenation, both computers
can solve the equations separately.

Other synchronization points arise when calculating
global variables that need information about distributed
objects (global variables, as DIST, ACER and EPS are repli-
cated in both machines). One of these moments is, for
example, the instant at which the distance between pieces
is calculated. This is done in the main simulation loop
in both machines, and the information about the remote
piece is accessed via a remote method. When compiling
the OOCSMP code, C-OOL realizes which remote methods
are going to be needed. In our case :

• wrappers to execute RIGHTX and LEFTX methods
on remote meshes,

• a method to access remote mesh m1 (used when
invoking the CONCAT method),

• a method to return the calculated solution of m1
on object p2 (used when invoking the DETACH
method).

We have changed the output forms to view only the local
objects. When both pieces are concatenated, the solution
of both pieces is shown on machine m1. Information about
physical machine locations (the first two lines) is usually
placed in a separate file, and included in the main model.
In this way, it is possible to change the distribution scheme,
leaving the main model untouched.

The efficiency of the distributed model is much higher
than the single machine model, because during most of the
simulation time both pieces can be calculated simultane-
ously.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented several techniques which
simplify the solution of partial differential equations using
object technology. The objects included in the simulation

Alfonseca, de Lara, and Vangheluwe
model can be distributed in a natural way across the Internet,
and executed more efficiently than in a single computer.
The transition from single-machine models to distributed
models can be performed with minimal effort and change.

According to (Page et al. 1999), in a distributed simu-
lation system, the model designer should not have to worry
about the details of the technology used by the compiler to
produce distributed simulations. This is fully accomplished
by our system: the only information that has to be provided
to the compiler is the address of the participant comput-
ers. The details about the underlying technology (in our
case, Java and rmi) used by the compiler to produce the
distributed simulation is completely hidden from the user.

We are considering to build an environment to simplify
the construction of the OOCSMP models, as the compiler
does not have a graphical interface. With this environment,
we would be able to debug the models, even in the case
of distributed simulations. The tool would also help to
validate the model, to design experiments, and in the con-
struction of web pages, become an authoring tool for the
development of simulation web-courses. The tool could
also cover distributed and cooperative modeling, making
use of distributed model repositories, such as in (Cubert
and Fishwick 1998).

Our distribution scheme can be made more efficient by
using, for example, more sophisticated forms of computing
replication, techniques for hiding latency, data advancement,
data cachéing, etc.

We also plan to migrate from rmi to Corba (Berg
and Fritzinger 1998) as the supporting package to handle
distribution. Corba would allow us to mix Java and C++
code in a single simulation.

An important concept, not yet covered by our work is
the notion of interoperability (Page 1998). Interoperation
means reuse of components, by using them in new contexts,
enabling the addition or deletion of components at simulation
run time. This concept is related to the notion of component-
based modeling (Page and Opper 1999b) and model reuse.
Uniform and well defined interfaces for objects taking part
in the simulation will have to be designed. In our example,
this would allow us to dynamically add to the simulation
new pieces in remote machines (perhaps objects belonging
to a different class). This feature has been incorporated
to the High Level Architecture (HLA) (Dahmann et al.
1997) (HLA 2001), developed by the U.S. Department
of Defense, and established as a standard for distributed
simulation applications.

ACKNOWLEDGMENTS

This paper has been sponsored by the Spanish Interdepart-
mental Commission of Science and Technology (CICYT),
project number TEL1999-0181
635
REFERENCES

Alfonseca,M., Pulido, E., Orosco, R., de Lara, J. 1997.
OOCSMP: An Object-Oriented Simulation Language.
Proceedings of the 9th European Simulation Symposium
ESS97, SCS Int., Erlangen, Germany, pp. 44–48.

Alfonseca, M., de Lara, J., Pulido, E. 1999. Semiau-
tomatic Generation of Web Courses by Means of an
Object-Oriented Simulation Language. Special issue of
"SIMULATION", Web-Based Simulation, Vol 73(1):5-
12.

Alfonseca, M., de Lara, J. 2000. Distributed Simulation of
systems based on Partial Differential Equations at the
Internet. IMACS’2000. Lausanne, Switzerland.

Alfonseca, M., de Lara, J. 2000. Distributed Simulation of
Ecosystems for the Internet. IMACS’2000, Lausanne,
Switzerland.

Berg,D.J., Fritzinger, S. 1998. Advanced Techniques for
Java Developers. Wiley Computer Publishing.

Cubert, R.M., Fishwick, P.A. 1998. OOPM: An Object-
Oriented Multimodeling and Simulation Application
Framework. SIMULATION, Vol. 70(6):379-395.

Dahmann, J.S., Fujimoto, R.M., Weatherly, R.M. 1997.
The Department of Defense High Level Architecture.
Proceedings of the 1997 Winter Simulation Conference.

de Lara, J., Alfonseca, M. 1999. Simulation partial differ-
ential equations in the World Wide Web. Proceedings
of the EUROMEDIA’99, SCS Int., Munich, Germany,
pp. 45-52.

de Lara, J., Alfonseca, M. 2001. Constructing Simulation-
Based Web Documents. IEEE Multimedia, Special
issue on Web Engineering. January-March. pp. 42-49.

Elmqvist,H., S.E.Mattson. 1997. An Introduction to the
Physical Modeling Language Modelica, Proc. 9th Eu-
ropean Simulation Symposium ESS97, SCS Int., Er-
langen, Germany, pp. 110–114. See also <http:
//www.modelica.org>

Field, D.A. 1988. Laplacian smoothing and Delaunay trian-
gulations. Comm. Applied Numer. Meth., 4:709-712.

Fishwick, P.A. 1996. Web-based Simulation: Some per-
sonal Observations. In Proceedings of the 1996 Winter
Simulation Conference, Coronado, CA, 1996, pp. 772-
779.

Fishwick, P.A. 1998. Issues with Web-Publishable Digital
Objects. In Proceedings of SPIE: Enabling Technolo-
gies for Simulation Science II, pp. 136-142.

HLA web page <http://hla.dmso.mil/>
Hsuan-Cheng, Lin. 1997. JAVAMESH- A two dimensional

triangular mesh generator for finite elements. MS thesis
at Pittsburgh University.

IBM Corp. 1972. Continuous System Modelling Program
III (CSMP III) and Graphic Feature (CSMP III Graphic
Feature) General Information Manual. IBM Canada,
Ontario, GH19-7000.

Alfonseca, de Lara, and Vangheluwe
Interim Java Grande Forum Report. Java Grande Forum
Technical Report JGF-TR-4, 1999, see : <http://
www.javagrande.org/report.htm>.

Monsef, Y. 1997. Modelling and Simulation of Complex
Systems. SCS Int. Erlangen.

Myers, B. et al. 1997. The Amulet v3.0 reference Manual.
Carnegie Mellon University School of Computer Science
Technical Report no. CMU-CS-95-166-R2 and Human
Computer Interaction Institute Technical Report CMU-
HCII-95-102-R2.

Page, E.H. 1998. The rise of web-based simulation : Impli-
cations for the High Level Architecture. Proceedings
of the 1998 Winter Simulation Conference, Washington
D.C, USA.

Page, E.H., Opper, J.M. Investigating the Application of
Web-Based Simulation Principles within the Architec-
ture for a Next-Generation Computer Generated Forces
Model. To appear in: Future Generation Computer
Systems, Elsevier Science Publishing.

Page, E.H., Nicol, D.M., Balci, O., Fujimoto, R.M., Fish-
wick, P.A., L’Ecuyer,P., Smith, R. 1999. Panel: Strate-
gic Directions in Simulation Research. Proceedings of
the 1999 Winter Simulation Conference, pp. 1509–
1520.

Page, E.H., Opper, J.M. 1999. Observations on the Com-
plexity of composable simulation. Proceeding of the
1999 Winter Simulation Conference, pp. 553-560.

Page E.H. Buss, A., Fishwick, P.A., Healy, K., Nance,
R.E., Paul, R.J. Web-Based Simulation: Revolution
or Evolution?. ACM Transactions on Modelling and
Computer Simulation.

Schmid, Ch. 1999. A Remote Laboratory Using Virtual
Reality on the Web. Special issue of SIMULATION,
Web-Based Simulation, 73(1):13-21.

Thompson, J.F., Warsi, Z.U.A., Mastin, C.W. 1985. Nu-
merical Grid Generation. Elsevier Science Publish-
ing CO.Inc. In internet at: <http://WWW.ERC.
MsState.Edu/education/gridbook>.

Strikwerda, J.C. 1989. Finite difference schemes and partial
differential equations. Chapman & Hall; New York.

Zienkiewicz, O.C, Taylor, R.L. 1989. The Finite Element
Method, 4th edn, vol. I. McGraw-Hill; New York.

AUTHOR BIOGRAPHIES

MANUEL ALFONSECA is the Faculty Subdirector in the
Department of Computer Science at the Universidad Au-
tonoma of Madrid (UAM) where he teaches and conducts
research. His research interests include computer languages,
simulation, complex systems, object-orientation and theo-
retical computer science. He received his PhD in electrical
engineering in 1972 and his MSc in computer science in
1976, both at the Universidad Politecnica of Madrid. He
is a member of the SCS, New York Academy of Sciences,
636
IEEE Computer Society, ACM, British APL Association,
and Spanish Association of Scientific Journalism. e-mail:
<Manuel.Alfonseca@ii.uam.es>

JUAN DE LARA is an associate professor at UAM, where
he teaches software engineering. His research interests
include Web based simulation, Meta-Modeling, distance
learning and social agents. He received his PhD in June
2000, at UAM. He graduated in 1994 with a Top of Class
Award as a Technical Engineer in Computer Science. In
1996 he received the honor of Higher Engineer in Computer
Science. At present, he is performing postdoctoral research
at McGill University with professor Hans Vangheluwe. e-
mail: <Juan.Lara@ii.uam.es>

HANS VANGHELUWE has been a Research Coordinator
in the Department for Applied Mathematics, Biometrics, and
Process Control (BIOMATH) of Ghent University, Belgium
for the past decade. He is currently an assistant professor
in the School of Computer Science of McGill University in
Montreal, Canada where he teaches Modelling and Simu-
lation, Software Design, and Computer Networks. He also
heads the Modelling and Simulation research lab. e-mail:
<hv@cs.mcgill.ca>

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

