
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

THE RAPID MODELLING SYSTEM: A COMPONENT BASED
APPROACH TO THE SIMULATION OF TACTICS

Phillip Martin

CORDA Ltd.
Apex Tower, 7 High Street

New Malden, Surrey, KT3 4LH, U.K.

ABSTRACT

A component based approach to the simulation and devel-
opment of tactics or procedures was presented at WSC’99.
This paper provides an update to the approach, describing
the substantial progress made in developing a modelling
tool set called the Rapid Modelling System (RMS) to take
advantage of the original concept. The paper describes the
problems encountered during the development and the
methods employed to overcome them, whilst keeping to
the overall aim of providing a generic structure to the
RMS. The current functionality is described including the
ability to use propagation data and target strength values
for sensor performance. An illustrative example of a tacti-
cal set of procedures is described and a worked example is
provided showing how the RMS allows variations to be
made in a controlled and repeatable manner. The RMS is
written in EXTEND ™ (Imagine That Inc).

1 AIM OF THE DEVELOPMENT

The aim of this development was to create a desktop tool
that could be used by analysts to investigate tactics in an
intuitive way.

2 INTRODUCTION

The concept of a method for the investigation of tactics us-
ing a component-based approach was presented by Martin
(1999).

In this paper the Rapid Modelling System (RMS) is
described, which has been developed using this concept.
Although a number of problems occurred during the devel-
opment, the overall concept has proven to be robust
providing a useful and flexible tool. The RMS has been
used in a tactical development study as well as a more
general simulation where tactics are involved.
655
2.1 What is a Tactic ?

The term tactic may mean different things to different people.
In this paper a tactic is a series of instructions and or proc-
esses which are stepped through, driven by external stimuli.
The path taken through these steps may vary according to the
particular stimuli present or the order of the stimuli, but all
the options are defined prior to the simulation. The tactic is
the set of instructions or the orders to be followed.

It is the basis of the concept that complex tactics can
be built up from a generic set of simple building blocks.

2.2 The RMS Development

A common problem of simulations is that they are de-
signed to model the performance of systems and where tac-
tics are an input. The tactics are embedded in the model
code and to change tactics beyond the level of parameter
changes involves altering the code with the inherent over-
head of testing and validation.

The RMS was to allow development and changing of
tactics to be undertaken by the analyst, who is computer
literate but does not generally have the time or inclination
to learn another detailed software product.

Software products such as EXTEND have addressed
similar problems for general simulation by providing oper-
ating systems in which models can be developed using li-
braries of blocks of code combined together using drag and
click techniques. The RMS applies the fundamentals of
EXTEND to the particular problem of tactical development
by allowing the analyst to build up tactics from generic
building blocks and providing an underlying model in
which to simulate the effects of the tactics.

The RMS consists of two distinct parts, which are now
described:

• The underlying model,
• The tactical representation.

Martin

3 THE UNDERLYING MODEL

The underlying model consists of units representing plat-
forms and sensors and a representation of the world in
which they exist.

3.1 Representation of the World

The model is based around a structure of environment
through which the units communicate and react.

• The physical environment. This is the “real
world” space into which the units are placed and
within which they move. This environment keeps
track of the units’ positions. It maintains the abso-
lute values, whereas the units themselves may be
provided with data to which errors have been
added. The physical environment has a flat earth
(x-y-z) structure.

• Sensor environments. The units interact with the
“Real World” through these environments Within
a particular environment, a unit can have:

1) Active sensors, which radiate into the

environment and process return reflec-
tions,

2) Reflectors, that reflect the radiation,
3) Modifiers that return a modified signal,
4) Passive receivers that receive signals,
5) Generators that generate radiation/ noise

continuously.

It is only through the use of their sensors in the differ-

ent environments that the units are aware of each other.
Examples of sensor environments, which all have

similar structures and operations are:

• Sonar,
• Radar,
• Visual,
• IR.

A specialist sensor environment is the Communication

Environment. This differs from the other sensor environ-
ments because of the variety of messages that could be
passed. These do not mirror the verbal communication, but
provide the information and triggers that would result.
However, the counter detection of these messages is possi-
ble as is the ability to switch on / off receivers.

Units are capable of logging into and out of the envi-
ronments as the simulation proceeds. Units that are regis-
tered with the Physical Environment are “in” the simulation.
This registering / de-registering can also happen within a
simulation to represent the creation or destruction of units.
656
3.1.1 Signal Propagation

Initially detection probability was given a “cookie cutter”
representation. More recently this has been modified to al-
low the propagation of the signal through the environment
to be calculated and the relative aspect of the sensor and
target to be taken into account. This has been achieved by
providing look up tables generated externally by a detailed
propagation model and the appropriate values being ex-
tracted by the environment as the simulation takes place.
However this facility would not be appropriate for all
simulations so it can be switched off when necessary. This
main aim must be to keep the model in balance, in terms of
the fidelity of the input data and the calculations being un-
dertaken using that data.

3.2 Units

The units are made up of blocks, contained in libraries,
which allow the units to interact with the environments,
Figure 1.

Figure 1: Structure of a unit

This unit has two sensors, a sonar and a radar, a tacti-

cal block and the blocks required to interact with the
underlying model. The majority of these blocks are hierar-
chies and contain further structures themselves. For
example the sonar, Figure 2.

Within the sensor hierarchy, the transmissions are
passed as messages (items) to the appropriate sensor envi-
ronment where they are processed and returned as necessary.
A variety of information is returned with the message which
is then used by the receiving sensor to process the data

Within the navigator block, the unit manages
parameters such as course, speed rate of climb, which de-
fine how it moves about the physical environment. The
unit does not control where it is in the world. That is done
by the physical environment using the parameters passed
to it from the navigator block.

Martin

Figure 2: Structure of the Sonar

3.3 Scenario Set-up

The analyst interacts with the model through EXTEND’s
working window. Figure 3. This is scaled by the model to
have real world dimensions. The units are placed in this
window to set up the scenario for the simulation and the
positions within the window are used as start positions.
Additional blocks can be placed in the window to represent
such things as search areas or route waypoints with which
the units can interact.

Figure 3: Model Window

The unit icons can be set to move about this window to

mirror the movement of the units within the physical sce-
nario. This facility is very useful for presenting the effects of
tactical changes although it does have a cost of increased run
time. This movement can be switched off for batch running.

4 TACTICAL REPRESENTATION

The representation of tactics is built up within a hierarchy
contained within the unit structure. This Tactical hierarchy

Units
Area

Route
65
contains almost exclusively custom blocks, which can be
grouped into 4 types, Figure 4.

• Tactical blocks, that make up the tactics,
• Decision blocks, in which the steps or logic of the

tactics are generated,
• Controller Blocks, that control when each part of

the tactics is to be used,
• Helper Blocks, that extract / store information to

allow the decider blocks to make the decisions.

Figure 4: Tactical Hierarchy

It is in this tactical structure that the principles of
EXTEND have been modified for the RMS. In EXTEND
the simulation progresses by messages or items being passed
between blocks. But whereas this occurs in the standard
EXTEND in a flow like process from start to finish, in the
Tactical hierarchy only one item is generated and this is
passed between the Tactical blocks like a relay baton.

In this Tactical hierarchy any number of Tactical
blocks can be combined. Unlike other methods which em-
ploy a flow diagram like structure to link the blocks and
where all the links have to be pre-set, in the tactics all the
block are effectively linked to all other blocks via the Con-
troller blocks. The actual links used are created as and
when they are needed.

Which particular block is operating at a specific time
is controlled by the decider block. This has a dialog in
which the operator can specify when the tactic is per-
formed (the logic), Figure 5.

In this example the trigger occurs when the target
range is less that 3000. When the logic is true, i.e. the Re-
sult = 1, a message is passed to the controller block to
move the “relay baton” item to the selected Tactical block.

Tactical

Decision

Helper

Controller

7

Martin

Figure 5: The Decider Block Dialog

The choice of Tactical block is selected using the pick

list, also shown in Figure 5, which appears automatically
when the mouse pointer is placed upon the dialog parame-
ter. This list contains all the Tactical blocks in this unit and
is automatically updated if additional blocks are dragged
across from the Tactical library. Therefore the particular
tactic can be changed simply using the computer mouse.

Any number of decision blocks can be used which
may use the same Tactical block for different conditions.

Within the simulation, if the conditions set up in the
decision blocks are met then a message is sent to the Con-
troller to start the chosen tactic. This is achieved by pass-
ing the Item (relay baton) from its current position to the
chosen tactic.

The decision block does not need to be told where the
item is; it merely signals the next step. With this arrange-
ment the tactics are reactive to the conditions within the
model.

This could be:

• time based, where a trigger occurs at a set point in

the simulation,
• an effect of sensor contacts such that a tactic oc-

curs when a target is found,
• a unit parameter, a tactic is triggered by a course

change or fuel limit being reached,
• because a previous tactic has now finished.

The conditions and the tactics have to be set up by the

analyst, but additional tactics can be brought in or the con-
ditions changed without affecting the existing set-ups.

The effect is to have total flexibility in how the tactics
are set up, but without resorting to extensive coding changes.

Pick List
Logic
658
One of the particular helper blocks is the State block.
With this block the user can specify the various states in
which a unit could find itself during a simulation. This
block is a focus for state changes and it maintains a record
of changes for later analysis. Tactical blocks can be set up
to react differently depending upon the state and the cur-
rent state is extracted from the State block when required.

5 WORKED EXAMPLE

In this section a simple example is presented to show how
tactics can be built up from distinct stages and how this can
be easily represented within the RMS.

5.1 Model Set-up

The example is a barrier search by an ASW ship and the
attempted penetration of that barrier by a submarine. The
ship is following a “bow- tie” barrier pattern and the sub-
marine moves towards the barrier from its starting position
shown in Figure 6.

Figure 6: Model Set-up

The ship unit is set up to have an active sonar by plac-

ing the general sonar hierarchy within a generic ship unit
and setting the parameters for an active sonar. The subma-
rine is given the same general sonar hierarchy but with the
parameters set to be a sonar reflector and also a passive re-
ceiver. These RMS hierarchy structures are show in Fig-
ures 7 and 8 for the ship and submarine.

Ship

Submarine

Barrier

Submarine Start line

Martin

Figure 7: Ship Unit Hierarchy

Figure 8: Submarine Unit Hierarchy

5.2 Initial tactics

To start, the submarine is set to have a basic tactic of cross-
ing the barrier in a straight line. The state transition dia-
gram for this is shown in Figure 9.

Figure 9: Initial Tactics

Finish

Start

Transit
Barrier

659
This basic tactic is created in RMS using one block of
code called “Transit”, which is placed in the Tactical hier-
archy as shown in Figure 10. This block is then selected in
the decision block dialog, shown in Figure 11. The deci-
sion logic is extremely simple being “just to do this tactic”.

Figure 10: Initial Tactical Set-up.

5.3 Developing the tactics

As the ship patrols the barrier, it is actively searching for
the submarine. The submarine receives these signals pas-
sively and can be made to react. The submarine is given
the tactic that when the range R to the ship is less than Y
then avoid the ship by going around it with a minimum
separation distance X, as shown in the state transition dia-
gram Figure 12. Note that while performing the avoidance
tactic, if the range to the ship opens to beyond Y then the
submarine will return to the transit behaviour.
 It is possible for the submarine to find itself within the
distance X so another part of the tactic is created to “Play
Dead”, that is, to point towards the ship and to slow right
down. When the distance increases again then the submarine
continues with the previous activity. Because the ship is not
transmitting continuously, the “Play Dead” could be required
from both the transit or the avoid behaviour. Figure 13.

Martin

Figure 11: Decision Dialog

Figure 12: Submarine to Avoid the Ship

Figure 13: Addition of “Play Dead”

Within the RMS Tactical hierarchy, two additional
blocks, for the Avoid and the Play Dead, are added from
the library, together with corresponding decision blocks to

Finish

Start

Transit
Barrier

Avoid
Ship by X

If R <Y

If R >Y

Transit
Barrier

Avoid
Ship by X

R (<Yand>X)

R >Y

Play Dead

R (<Yand>X)

R <X
R >Y R <X

Start

Finish
660
select them when the conditions are met. In Figure 14 the
Tactical hierarchy is shown with a dialog for one of the
additional decision blocks in Figure 15.

Figure 14: Tactical Hierarchy.

Figure 15: Multiple Dialog Choice

5.4 Ship Attack

Within the RMS all units can have independent tactics,
so it is possible, with this example, to have the ship react to
its own sonar contacts and attack the submarine. The sub-

Martin

marine can also react to this attack by say running away.
Figure 16.

Figure 16: Ship Attacks Submarine

This again is simply another Tactical block with asso-

ciated decision logic placed into the Tactical hierarchy.
With all the Tactical blocks, what the unit does in detail is
programmed into the block itself and modified by parame-
ters within the block dialog. The modularity of the design
is such that if a change of tactic was required this can be
done by simply changing the selection of the blocks in the
decision dialog.

For example, the submarine tactics are to change when
the ship range R is less than X. The submarine is to attack
the ship instead of playing dead, Figure 17.

Figure 17: Submarine Attack the Ship

Transit
Barrier

Avoid
Ship by X

R (<Yand>X)

R >Y

Attack
Ship

R (<Yand>X)

R <X R >Y R <X

Ship Attacks

Run
Away

Start

Finish

Transit
Barrier

Avoid
Ship by X

R (<Yand>X)

R >Y

Play Dead

R (<Yand>X)

R <X
R >Y R <X

Ship Attacks

Run
Away

Start

Finish

Ship Attacks

Ship Attacks
661
In the Decision dialog, which was selecting the play
dead tactic, the user can now select Attack from the pick
list which is automatically updated after Attack has been
brought down from the Tactical library, Figure 18.

Figure 18: Selecting Submarine Attack

5.5 Running the Model

The model is run, and the first step of the submarine tactics
is initiated, that is the transit. The ship produces sonar
transmissions that are passed into the sonar environment,
where return signals are generated off the submarine (as a
sonar reflector) and returned to the ship as well as the ac-
tive transmission being given directly to the submarine.
The Sonar Hierarchies calculate if the signals are strong
enough for a detection to occur or not.

The submarine reacts to its detections by “avoiding” or
“playing dead” depending upon the range to the ship. This
occurs as the decision blocks initiate the appropriate tactic,
defined by their decision logic. The simulation continues
with the Tactical blocks being switch on or off as the rela-
tive movements and positions of the units change.

5.6 Expansion of the Model

Beyond this simple example, the model can be set up with any
number of units that can interact with each other. For example,
the ship could operate with a helicopter, which it can launch to
investigate the sonar contact. The helicopter is a unit, which
when it is launched it registers with the physical environment,
and it becomes part of the simulation. The helicopter itself can
have sonobuoys which its drops. Again they are units and have
passive or active sonars, which operate in the sonar environ-
ment. Contacts can be passed back to the helicopter as mes-

Martin

sages which the helicopter reacts to using additional sets of
Tactical blocks. For example by dropping a torpedo.

The submarine can be set up to react to all these
events.

These tactics and reactions are all set up using the li-
brary of blocks, defining the reactions in the decision
blocks and setting up parameters in the block dialogs.

Where new Tactical blocks are needed formal coding
has to be undertaken to create them, and the block design
has to conform to the requirements of the RMS, but this
can be undertaken by programmers to meet the require-
ments of the analyst. Once created the blocks can be stored
in the Tactical library and used by the analyst as required.

6 PROBLEMS ENCOUNTERED
DURING DEVELOPMENT

The aim of the development was to generate generic blocks
that could be built into any tactical definition. The main
problem was to make them general enough without

• requiring so many parameters that they became

unwieldy ,
• so simple that large numbers of blocks are needed

to perform simple tasks.

A related problem is the definition of when the tactic starts
and finishes (for example if the tactic is to search an area is
the going to the area part of the tactic?).

Although this is really an on-going problem, the solu-
tion found to be most convenient is to have generic blocks
that do specific tasks, but then set up customised versions
in libraries for different conditions. This then allowed the
customised blocks to be imported into models without the
need to set up the full set of parameters each time.

The unit undertaking a particular mission will usually
go through different states or conditions as the mission pro-
gresses. The basic tactical steps may well be different de-
pending upon the state the unit is in. To avoid having dupli-
cated Tactical blocks with slightly different parameters, a
specialist helper block was developed to record and keep
track of the state of the unit. By having a defined specialist
block, it made the task of referencing and communicating
from other blocks automatic.

The interaction between the Tactical blocks and the unit
functions such as speed height etc. were initially set up using
the EXTEND connections between blocks. But as the tactics
became more complicated it very quickly became necessary
to have a more automated solution. This was achieved by
setting up unit global arrays, which could be accessed by
any block within the unit. Additionally this change allowed
the building of a unit to be more automated as connections
do not have to be made. The down side is the lack of visibil-
ity as to what information blocks are using.
662
As the tactical representations have become more com-
plicated, it is apparent that having all Tactical blocks as
stand alone sets is not appropriate. It needs to be possible to
generate a more complicated block from a number of se-
quential simple blocks, rather than creating one super-block.
A solution is to create a shell block hierarchy which is seen
by the Controller as a single block, but contains inside itself
a combination of blocks in its own right. This internal com-
bination can be set up by the operator in the same way as the
standard blocks.

The general design of the RMS provides an easy and
convenient way of studying tactics, but the very open nature
of the simulation environment provides one of the biggest
problems. That is the problem of configuration control and
build standards. The problem can be alleviated by locking
libraries and not letting the analyst have access to the source
code. But this goes against the open philosophy of EXTEND
and the RMS development aim. The solution is to follow the
EXTEND example where the “operating system” is hidden
(in the RMS case the underlying model) and provide appro-
priate checks as blocks are created and at the start of runs.

7 CONCLUSIONS

The general concept described in Reference 1 has proved to
be sound and a working system has been developed.

There have been a number of problems relating to the
tactics becoming more complicated, but modifications to the
implementation have overcome them. Configuration control
remains the main problem due to the very flexible nature of
the modelling environment.

The RMS is being used to model tactics and as a gen-
eral simulation of military units.

REFERENCES

Martin, P. L. R. 1999 The Modelling of Tactics and Proce-
dures Using a Component Based System. In Proceed-
ings of the 1999 Winter Simulation Conference ed P.
A. Farrington, H. Black-Nembhard, D. T. Sturrock, G.
W. Evans.

AUTHOR BIOGRAPHY

PHILLIP MARTIN is a senior analyst and consultant within
the Centre for Operational Research and Defence Analysis
(CORDA), a wholly owned subsidiary of BAE SYSTEMS. He
is a graduate of Aeronautical Engineering from Bristol Univer-
sity, and has been an Operational Analyst for over twenty
years. During this time he has been involved with projects for
all the UK Armed Services. He is currently responsible for the
front line analysis undertaken by CORDA staff for the UK
MoD and was himself a front line analyst working for the
Maritime Warfare Centre (Fleet OA Staff) for six years. His e-
mail address is <phillip.martin@corda.co.uk>

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

