
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

USAGE TESTING OF MILITARY SIMULATION SYSTEMS

Gwendolyn H. Walton
Robert M. Patton

School of Electrical Engineering and Computer Science

University of Central Florida
Engr Bldg Room 407, P.O. Box 162450

Orlando, FL 32816-2450, U.S.A.

 Douglas J. Parsons

U.S. Army Simulation, Training
 and Instrumentation Command

AMSTI-ET
12350 Research Parkway

Orlando, FL 32826-3276, U.S.A.

ABSTRACT

Scalability and input domain explosion make it impossible
to exhaustively test simulation systems. Improved methods
such as statistical usage testing are needed to provide quan-
titative support for test planning and test management.
This paper describes the challenges and the state of the
practice of testing simulation systems. A brief introduction
to statistical usage testing is provided. An approach to de-
veloping an abstract usage model structure appropriate for
testing military simulation systems is suggested and illus-
trated. This approach supports the creation and analysis of
test scenarios that are flexible enough to handle a wide
range of uses in military simulations.

1 INTRODUCTION

A variety of authors have written in the publicly available
literature concerning the challenges in testing simulation
systems. (For example: Balchi 1995, Birta and Ozmizrak
1996, Gonzalez and Dankel 1993, Hartley 1997, Hopkin-
son and Sepulveda 1995, Jacobson and Yucesan 1992,
Page and Smith 1998, Shannon 1992, and Smith 1998.)
Three major challenges are scalability, size of the input and
output domains, and the need to tailor the verification and
validation processes to meet individual needs. As discussed
in Section 2, these and other challenges make it impossible
to exhaustively test simulation systems. Improved methods
are needed to provide quantitative support for test planning
and test management.

The DMSO Recommended Practice Guide (2001) de-
fines validation of simulations as “the process of determin-
ing the degree to which a model or simulation is an accurate
representation of the real world from the perspective of the
intended uses of the model or simulation.” According to
Hartley (1997), the proper motive for validation and verifi-
cation is the intended use of the model. Robinson (1997)
771
states that a model can only be shown valid if it is demon-
strated to be accurate for the intended purpose. Sargent
(1998) echoes the DMSO definition by describing validity
as being “concerned with determining that the model’s out-
put behavior has the accuracy required for the model’s in-
tended purpose over the domain of its intended applicabil-
ity.” According to DMSO (2001), validation scenarios
should “sufficiently characterize the probability distributions
representing areas where the simulation’s behavior is sto-
chastic”, and validation scenarios should “sufficiently char-
acterize the behavior of the simulation that the application
will use most and, therefore, will introduce the greatest
probability of errors occurring.”

The DMSO Recommended Practice Guide (2001) fur-
ther states that: “Good scenarios will produce testing results
that sample a simulation’s behavior sufficiently enough to
enable accurate assessments of a simulation’s validity for
some application. A simulation with poorly understood be-
havior requires scenario designs that generate enough data to
sufficiently characterize those regions where a simulation
behaves well and poorly.”

The benefits of statistical usage testing for supporting
test planning, test generation, test automation, and software
certification have been demonstrated in numerous industry
and government software development projects in a variety
of domains. (For example: Agrawal and Whittaker 1993,
Sherer and Walton 1998, Walton et al. 1995). These suc-
cesses and the above statements from the DMSO Recom-
mended Practice Guide on Validation and Verification jus-
tify the investigation of the applicability to statistical usage
testing to military simulation systems.

2 TESTING CHALLENGES

In military simulations it is possible that many different
groups of objects exist at one time, with each group possi-
bly a different size. There is a scalability issue with regard
to the number of different objects that can coexist in the

Walton, Patton, and Parsons

simulation at one time. There is also a scalability issue
with regard to the number of objects of the same type that
can coexist. Each of these scalability issues can create a
combinatorial explosion of objects to be tested. For large
systems, due to time and resource constraints, not all com-
binations can be tested. For instance, suppose a tester
chooses to have four different kinds of objects with two
objects of each kind. The simulation system may be able
handle this configuration successfully, but may not be able
to handle the addition of a fifth different kind of object. If
the tester only tests four kinds of objects, the defect that
causes the system to fail at the fifth kind of object will not
be surfaced. To complicate matters, military simulations
can cover a wide variety of terrain. As a result, to fully test
the simulation system, all the combinations of different
types of objects and number of objects must be combined
with the each of the different types of terrain.

A related problem to scalability is the problem of the
size of the input and output domains. As a military simula-
tion scales up, the input domain can grow exponentially.
For example, the simulation can include any of a variety of
vehicles, troops, and structures that can be combined in a va-
riety of ways. In addition, there are many mission types and
terrains on which the vehicles, troops, and structures may be
used. Furthermore, there are a wide variety of environ-
mental conditions such as night, day, and type of weather
that may be added to the simulation. Each object has a vari-
ety of behaviors that it can perform. Even for a very small-
scale simulation, the combination of these input factors is
quite large. When the simulation is scaled upward, the input
domain will scale at a much faster rate.

The output domain may not grow as quickly as the in-
put domain. However, information about the output domain
may be incomplete, and there can be multiple possible re-
sponses for the same input data. For example, when a simu-
lation runs with human-in-the-loop, the outcome for a given
set of input data can be different each time the simulation is
run. In addition, when a simulation includes models of fu-
ture environments, scenarios, or weapons, field testing is not
possible and the expected output may not be completely
specified. Furthermore, the details of some combat scenarios
may not be well understood, and their outcomes can be de-
termined by or influenced by a human decision making
process that is not well understood. Consequently it is often
difficult, if not impossible, to completely identify the output
domain.

When it is not possible to determine whether the out-
come of a simulation is correct, the verification and valida-
tion process is used to build the user’s confidence in the
simulation system. This motivates verification and valida-
tion plans tailored to the user’s needs and emphasizing the
issues most important to the user.
772
3 CURRENT TESTING PRACTICE

A variety of verification and validation techniques have
been developed and employed on simulation systems.
These techniques have been categorized in different ways
by (Balci 1994 and Sargent 1998) Most of the validation
and verification techniques discussed in the simulation lit-
erature are standard software engineering techniques.
These will not be discussed here. However, a few tech-
niques specific to simulation systems have been reported.
These simulation specific techniques are generically cate-
gorized by (Sargent 1998) as either subjective or objective.
Important issues of each category are summarized below.

3.1 Subjective Testing

Subjective testing approaches rely heavily on expert opin-
ions, or third party evaluation. The simulation is run; the
expert evaluates the simulation experience and results
based on some specific criteria such as Turing tests or face
validity; and comparison to other valid models may be per-
formed. (Sargent 1998)

The advantage of the subjective approach is that there
are some aspects of a simulation that cannot be performed
objectively, or cannot be specified in a detailed manner such
as the audio or visual aspects of a simulation. For instance,
suppose a military simulation employed the sound of gunfire
as part of the simulation. How do you objectively evaluate
that a rifle does not sound like a small handgun? How do
you specify in a detailed manner or objectively evaluate that
a machine gun does not sound like a drum roll?

One disadvantage of the subjective approach is that
some aspects of the system may be inadvertently over-
looked. Another disadvantage is that the evaluation of the
simulation may change depending on which “expert” is
asked to do the evaluation. Another consideration is the
number and type of experts used. Some simulations may be
so large and complex that a variety of experts in different
fields may be needed. Consequently, the results of their re-
view may vary, making it difficult to determine the overall
validity of the simulation. Despite these drawbacks, the use
of expert opinion or third party evaluation provide an in-
valuable approach to validating and verifying aspects of a
simulation to which there is no alternative approach, espe-
cially for human-in-the-loop systems such as military simu-
lations.

3.2 Objective Testing

Objective testing approaches rely less on expert opinions
and more on statistical and automated methods. These ap-
proaches typically require that the system be observable,
meaning that data of particular variables can be recorded as
the simulation is running. This data that is recorded can then
be statistically compared to a set of data that has been re-

Walton, Patton, and Parsons

corded from the real system, or can be analyzed in some
other way by domain experts. For military simulations, this
approach can be particularly useful for comparing such
things as a weapon’s rate of fire, the hit/miss ratio, the speed
of a vehicle over a particular terrain, or environmental
conditions. Statistical techniques provide insight into the
accuracy of input-output data sets of the simulation. There
exist a variety of statistical approaches that can be
successfully used, including confidence intervals, hypothesis
tests, data plots, and multivariate statistical approaches.

Another approach is the use of a validation knowledge
base (VKB) (Birta and Ozmizrak 1996). This approach in-
corporates expert knowledge along with any observable data
from the system to determine validity of a simulation. One
advantage of this technique is that it attempts to formally
collect all aspects of the expected behavior as determined by
experts and then compare the expected behavior with the ob-
served data. Another advantage is that this approach can be
easily automated so that test results can very quickly be ana-
lyzed.

However, there are several disadvantages to using a
validation knowledge base. First, there is the experiment
design problem described by Birta and Ozmizrak (1996).
Once the knowledge based expert system has been devel-
oped, how does one choose experiments such that the
knowledge base is covered efficiently and effectively? Ac-
cording to Birat and Ozmizrak, validation "requires generat-
ing all possible behavior instances which, of course, is not
possible in practice. Therefore, from a practical point of
view, it is necessary to regard validation as the process of
showing that any particular subset of a dynamic object's be-
havior is consistent with its VKB."

The subset of behavior should cover as much of the
VKB as possible. The subset should also minimize the num-
ber of tests that need to be done since each test will be quite
lengthy and consume substantial resources. This is a diffi-
cult problem. Birta and Ozmizrak suggest that a solution can
be achieved by properly setting up an experiment design
problem and, with additional restrictions, as a constraint sat-
isfaction problem. More than one optimal subset may need
to be determined depending on testing objectives, the fault-
finding abilities of the subset, and the cost-effectiveness of
the subset. Another disadvantage is that the VKB inherits
all the challenges of the development and validation of an
expert system.

Expert systems have also been applied to the validation
of military simulation training systems. According to Hop-
kinson and Sepulveda (1995), expert systems provide an ex-
cellent method for real-time evaluation of a trainee’s per-
formance. Their expert system was developed using case-
based reasoning to evaluate the trainee’s decisions as the
simulation progressed. The approach to developing the ex-
pert system was to identify the invalid techniques, which led
to favorable outcomes. Hopkinson and Sepulveda (1995)
refer to this as a “sandbox” approach, which encourages
773
creativity on the part of the trainee but without letting the
trainee go outside specific boundaries. An advantage of this
approach is that real-time evaluation of a trainee can be per-
formed automatically. Also, by focusing on invalid uses and
techniques, the number of test cases needed to effectively
and efficiently cover the known input domain can be signifi-
cantly reduced. A disadvantage of this system is that case-
based reasoning systems are restricted to variations of
known problems. This can potentially cause the validation
of such a simulation to be unnecessarily biased toward or
against particular problems. In addition, this approach does
not assist with the test planning process or with test scenario
generation.

These techniques each attempt to address a specific as-
pect of testing simulation systems. They each have advan-
tages and disadvantages. When viewed as a whole, they
cover a very broad spectrum of the problems with testing
simulation systems. However, from the discussion of tech-
niques in the literature, it is evident that the problem of ef-
fectively and efficiently validating the behavior of a simula-
tion system and the need to use domain-specific knowledge
persists.

3.3 Improvements Needed

Increasing the user’s confidence is one of the primary goals
of validation and verification of simulation systems. Thus,
an improved testing approach would be to identify fewer test
cases that cover the requirements but are more general in na-
ture with respect to the requirements, providing a better ap-
proximation to the way in which the user will use the sys-
tem. By doing this, the tester may be more likely to identify
problems that the user will find. If these problems can be
caught and fixed before the user sees them, then the confi-
dence of the user in the system can be increased.

Current simulation testing methods often make little use
of automation. As a result, very little testing can be accom-
plished in a given amount of time because each test case can
be tedious to setup, and it can be time consuming to execute
each test case and record the results. A considerable amount
of time is also required to analyze and understand the results
and to determine if an error found in the results is caused by
an improper conceptual model or improper implementation
of that model. Thus, any automation of any step in the test-
ing process could provide invaluable benefits in terms of
time and cost savings.

4 STATISTICAL USAGE TESTING

From the user's perspective, a software system is essen-
tially a translator. The user provides input, and the system
translates this input into some set of output. To the user,
how the system performs this translation does not matter,
as long as the desired output is produced. Testing a soft-
ware system according to inputs and outputs is called black

Walton, Patton, and Parsons

box testing, or functional testing. Essentially, the black
box testing process provides the system with a specified set
of inputs and compares the output with the desired output
to determine accuracy and precision.

One drawback to black box testing is that the number of
possible inputs can grow exponentially as the complexity of
the system grows. Testing all possible inputs very quickly
becomes impractical. However, because there are certain
inputs in the input domain that the user may never use, it is
possible to help reduce the number of inputs that need test-
ing by considering the way in which the user will use the
system. By doing this, the tester can perform fewer tests
while simultaneously gaining an understanding of the in-
tended use of the system and its expected reliability. This
type of testing is known as usage testing.

The justification for usage testing is well grounded in
software engineering theory and practice. Adams (1984)
showed that the vast majority of software failures observed
during operation of software are caused by a small propor-
tion of software faults, and a great proportion of latent soft-
ware faults will very rarely, if ever, result in observed fail-
ures of the software in practice. Adams confirmed this
failure/fault distribution across nine different major com-
mercial systems developed by IBM. Mills (1992), Musa
(1993), and others (for example, Walton et al. 1995) built on
Adams' findings and observed that targeted testing towards
high usage software can be very successful in reducing the
number of operational failures. Fenton and Ohlsson (2000)
verified Adams' findings on two major consecutive releases
of a large legacy project developing switching systems.

An efficient method for developing a plan for usage
testing is to create a model of the intended use or behavior of
the system. Such a model can be used to automatically
generate a series of test cases.

Military simulations are stochastic in nature. Markov
chain usage models are also stochastic in nature, and the test
cases that are generated from a Markov chain usage model
will reflect this. The testing process for military simulations
should take advantage of this commonality.

Markov chain usage testing is a well-defined, rigorous
method, which readily lends itself to automation. If the us-
age model is implemented as a Markov chain, the model and
the test cases can be analyzed using Markov chain mathe-
matics to determine such things as reliability, mean time to
failure, and confidence values concerning how much testing
of the system's uses is included in the series of test cases
(Whittaker and Poore 1993, Whittaker and Thomason 1994).

Markov chains are comprised of states and arcs, which
graphically describe the expected operational use of the soft-
ware system. In the software engineering literature, the
states are often states of use of the software and the arcs de-
fine an ordering that determines the event space, or se-
quences, of the experiment.

Figure 1 shows a Markov chain usage model that de-
scribes a greatly simplified operational profile for a US
774
Army Computer Generated Forces (CFG) simulation sys-
tem. Table 1 lists a subset of state designations used in the
model of Figure 1.

Figure 1: CGF Simulation System Markov Chain Model.

Table 1: State Definitions for Figure 1
State Definition

1 System ready for instruction
2 Select “New Scenario”
3 Select “Load Saved Scenario”
4 Open Unit Editor and create vehicle
5 Open Unit Editor and create platoon
6 Open Unit Editor and create company
7 Assign vehicle task

… …
25 End Scenario

Markov chain usage models can support the quantita-

tive analysis of test plans and test results. For example, Ta-
ble 2 shows a sample of the Markov chain analysis results
for Figure 1 when state-to-state transition probabilities were
based on the author's experience working with the CGF
simulation users.

Table 2: Markov Chain Analysis Results for Figure 1

Expected Script Length 8.80
Long run probability for state ‘S2’ 0.1020
Long run probability for state ‘S3’ 0.0110
Long run probability for state ‘S4’ 0.0300

Markov chain models can be used to automatically gen-

erate statistically correct samples of test cases. Simply by
changing the arc probability values, the tester can signifi-
cantly alter the kind of test cases that can be generated. This
greatly reduces the time spent on creating test cases and al-
lows more time to be spent on the analysis of test results.

Testing based on Markov chain usage models yields in-
formation that can be used to identify and document the as-
pects of the software that have been tested, how often they
have been tested, and which aspects have been ignored. For
regression testing, this information can be invaluable. It can
be tedious and difficult to identify which parts of a knowl-

Walton, Patton, and Parsons

edge base have been tested. With Markov chain usage mod-
els, the tester can very clearly identify what areas of the
models and what percentage of the model has been covered.

Domain specific knowledge can be used to help build
usage models, which are then used to test the software.
Domain knowledge can be quite valuable in that it provides
the tester with knowledge of potential weaknesses in the
software and insight into the way in which the software will
be used. Furthermore, usage models can be based on proce-
dures that explicitly define behavior or use of the system
such as control systems, or they can be based on some ab-
straction of the behavior of the system. Thus, usage model-
ing can be used to support both functional verification and
system validation.

With the application of usage modeling and Markov
chain analyses, the test plan can focus separately on different
use cases of the user’s domains. Markov chain usage mod-
els can also be used to model different types of missions
where the behavior will change based on the mission, type
of terrain, and time of day. For example, a usage model can
reflect whether a mission is a reconnaissance, search and de-
stroy, or search and rescue mission.

By carefully applying Markov chain based usage test-
ing, we expect that test scenarios can automatically be gen-
erated that achieve the goals and guidelines set forth by the
DMSO. This practice should ultimately improve the state of
the practice of testing military simulation systems. However,
an analysis of the model of Figure 1 indicates that, using this
type of model syntax, the number of states could quickly
grow out of control. Useful abstractions and usage model
syntax are needed. A means to address this issue is discussed
in the following section.

5 USAGE MODEL GUIDELINES AND SYNTAX

Usage models directly affect the level of effectiveness and
efficiency of the testing process. Consequently, it is im-
perative that usage models be carefully developed accord-
ing to the user’s point of view and that usage models pro-
vide flexibility to the tester.

A number of challenges exist when developing usage
models. If there is too much detail, the model may not have
the flexibility to be reused. However, if there is not enough
detail, the model may not sufficiently test all aspects of the
use of the system. Clearly, the perfect amount of detail can
be elusive.

Usage models for military simulations must sufficiently
model the scenarios that are of interest to the user. Accord-
ing to the HLA Federation Development and Execution
Process document (2001), the primary input to the activity of
developing scenarios is “the operational context constraints
specified in the objectives statement.” In addition, this HLA
document states: “A federation scenario includes the types
and numbers of major entities that must be represented by
the federation, a functional description of the capabilities,
775
behavior, and relationships between these major entities over
time, and a specification of relevant environmental condi-
tions that impact or are impacted by entities in the federa-
tion. Initial conditions (e.g., force lay downs), termination
conditions, and specific geographic regions should also be
provided.”

An effective usage model must promote dialogue be-
tween the customer, developers, and testers. This dialogue
should enhance the clarity of the requirements, which ulti-
mately will reduce development and testing costs. If the us-
age models are to be used to verify requirements with the
customer, then the usage models should be simplistic
enough to be understood by the customer, but capable of be-
ing used by the testing team. Finally, the usage models need
to be easily verified, reused, and maintained. Usage models
that cannot be easily verified run the risk of not accurately
portraying the use of the software.

Walton et al. (1995) provided the following guidelines
for creating effective usage models:

1. Identify the test objectives.
2. Identify the test constraints.
3. Determine test environment and automation is-

sues.
4. Define the boundaries of each test.
5. Define "user" and "use" for the purpose of each

test.
6. Determine appropriate usage model strata.
7. Develop and document usage model structure for

each model.
8. Determine transition probabilities for each model.
9. Verify the model.
10. Iterate as needed.

For usage models of military simulation systems, we

recommend the following additional guidelines for use when
performing steps 6 and 7.

• Specify a specific geographic location at the be-

ginning. Do not change this location at any point
in the usage model.

• Identify force lay downs at the beginning.
• Weather conditions can change at various points

in the usage model.
• Formation can change at various points in the us-

age model.
• Number and type of targets can change at various

points in the usage model.
• Change the model structure as needed to add real-

ism, randomness, and variety of scenarios.
• Use mission types, mission objectives, and loca-

tion of mission to determine usage model strata.
• Use tactics and procedures to determine and ver-

ify the model structure.

Walton, Patton, and Parsons

• Change the model probabilities to reflect test ob-
jectives and constraints.

• Use uniform arc probabilities to increase model
entropy.

When performing steps 6 and 7, it must be understood

that, when executing test scripts derived from usage models,
the amount of detail given in the model is a critical issue.
Thus, a significant amount of thought is needed for deter-
mining the model strata and transition probabilities. As re-
ported in the literature, there are a variety of syntactic ways
to develop usage model structures. Usage models have been
developed for user interfaces (For example, Sherer and
Walton 1998), and for control systems in which the structure
of the behavior and inputs to the system were already clearly
documented (For example, Agrawal and Whittaker 1993).
For these examples, the states represent internal states of the
software and the transitions between states represent differ-
ent input to the system.

While these approaches are useful, they do not always
appropriately handle military simulations. Consequently,
we suggest a new syntactic approach:

• Identify the states of a usage model with the basic

behavioral units of a simulation system.
• Transitions to these states are given labels that de-

scribe how those basic behavioral units should be
performed.

When developing models for simulation systems, we

recommend that the states represent the functions or behaviors
of interest in the software being tested and the arcs represent
the different sequences or combinations of those functions.
The states and arcs comprise the structure of the model.

This approach to developing the usage model structure
helps to reduce the number of necessary states, and helps
create test scenarios that are flexible enough to handle the
wide range of uses in military simulations. This proposed
syntactic approach is demonstrated in the following section.

6 EXAMPLE USAGE MODEL

According to Smith (1998), a generic model that is used in
the development of military simulations is that of “Move-
Look-Shoot.” This sequence of events attempts to model
the general behavior of men and machines during combat.
Basically, a unit moves from its point of origin to some
specific location, looks for targets, and then shoots at tar-
gets. This sequence can be repeated multiple times, or per-
formed in a variety of sequences.

The usage model shown in Figure 2 was developed
based on this generic model. The structure of the model for
this example is intended to be simplistic. As appropriate, the
model can be made more complex and realistic using do-
main specific knowledge for a particular simulation system.
776
The model consists of five states: Start, Move, Look, Shoot,
and End. (For continuous application of the model, there is
an implied arc from "End" to "Start".)

S ta r t

M o v e

L o o k S h o o t

E n d

Figure 2: Usage Model of Move-Look-Shoot Behavior

Each of the Move, Look, and Shoot states could be

composite states in which there is a more detailed model
contained within the state. For instance, there may be dif-
ferent movement techniques based on the mission type.
Also, the entire five-state model of Figure 2 could be con-
tained within a higher abstraction layer.

In Figure 3 below, we have extended the usage model
of Figure 2 according to the guidelines previously specified.

Start

Move

<1>Decrease speed

Look Shoot

End

<0> <.9>Throw
grenade

<1>Mountainous
Terrain, Night

<1>Desert Terrain, Wedge Formation

<.5>
Reload

<.0001>
Game
Over

<1.75>Use
weapon scope

<2.25>Target: tank,
Weapon Bazooka

<0><2.1>
Full

Speed

<2.75>Target:
infantry, Weapon rifle

<2.3>Half Speed

<1>Use
infrared
sensors

<0>

Figure 3: Move-Look-Shoot with Uniform Arc Values

Markov chain analysis techniques (as described in

Walton and Poore 2000, Walton et al. 1995, Whittaker and
Poore, 1993, and Whittaker and Thomason 1994) are ap-
plied to the model. We examine the long run probability
values for the three major states (Move, Look, and Shoot),
and also the expected test scenario length. As indicated in
Table 3 below, the state ‘Look’ has the highest long run
probability. This means that 'Look' is more likely to show up
in the generated test scripts than the other states, and, for use
of the software as described by this usage model, the soft-
ware will spend most of its time in the 'Look' state.

Walton, Patton, and Parsons

Table 3: Markov Chain Analysis Results
Expected Script Length 95207.00
Long run probability for state ‘Move’ 0.3235
Long run probability for state ‘Look’ 0.3456
Long run probability for state ‘Shoot’ 0.3309

The model of Figure 3 focused on fairly generic behav-

ior model that is applicable to a variety of vehicles and sol-
diers. However, there are some units in military simulations
whose behavior or use cannot be modeled in such a way.
An example of such a unit is an air defense unit. These units
are typically either non-moving units or units which move
infrequently. They are composed on some type of radar and
weapon. Furthermore, air defense units only target aircraft
and typically do not have any ground defense of their own.
To handle units such as this, the usage model of Figure 3 has
been revised by adding another level of detail to the ‘Look’
state. The revisions are illustrated in Figure 4.

S ta r t

M o v e

L o o k

S ta r t L o o k in g

S e a rc
h

A c q u ir

T ra c
k E n d

L o o k in g

S h o o t

E n d

S e a rc h A c q u ire

T ra c k

 Figure 4: Simple Usage Model for Air Defense Units

The structure of the simple usage model of Figure 4 as-

sumes that the Fire command is not automated. Air defense
units begin by searching for new targets. Once a target is
within range of the radar, the air defense unit acquires the
target and begins tracking it. Once a target is being tracked,
a fire command is issued, and the air defense unit begins fir-
ing at the target.

Transitions between these states are dependent strictly
upon three types of input. The first type of input is the target
aircraft. The target aircraft must be flying within range of
the radar and without an unobstructed line of sight. In addi-
tion, for certain types of air defense units, the aircraft must
be flying a specific altitude. (as described by the Air De-
fense Artillery web site 2001) The second type of input is
the terrain. Depending on the terrain, an aircraft may tempo-
777
rarily be invisible to the radar despite being within range of
the radar. For example, in a mountainous terrain, an aircraft
may become visible to the radar, but then become invisible
if the aircraft moves below the mountaintops such that the
mountains obstruct the line of sight of the radar. The third
type of input is the fire command. A fire command deter-
mines when to fire and at which target to fire. On some
units, this may be automated.

Arc labels and arc probabilities can be added to the
model to provide more descriptions about the input neces-
sary to transition between states. Depending on the prob-
abilities selected, the average test case length will increase
or decrease. Furthermore, changes in probabilities will
change the long-run probability of occurrence of each state
in test cases generated from the model. A careful analysis of
Markov chain mathematical results with respect to test ob-
jectives will assist the tester in selecting arc probabilities.

More detailed usage models are easily developed and
documented by the addition of lower-level models and addi-
tional arcs to describe data partitions of the input domain at
the desired level of detail. Generated test scripts from this
sort of abstract model were similar to test cases developed
by hand for the functional testing of the Army OneSAF
Testbed Baseline program.

7 CONCLUSIONS

Usage testing methods based on Markov chain models can
support effective and efficient validation of the behavior of
military simulation systems. An effective usage model is
built from domain-specific knowledge and incorporates
test management objectives and constraints. The modeling
process promotes dialogue between the customers, devel-
opers, and testers. This dialogue should enhance the clarity
of the requirements, which ultimately will reduce devel-
opment and testing costs and risks. Markov chain model-
based usage testing can support increased test automation
and quantitative analyses of test plans and testing results.

REFERENCES

Adams, E.N. 1984. Optimizing preventive service of soft-
ware products", IBM Journal for Research and Devel-
opment, Vol 28, No. 1, January 1984, 3-14.

Agrawal, K. and J. A. Whittaker.1993. Experiences in
applying statistical testing to a real-time, embedded
software system, Proceedings of the Pacific Northwest
Software Quality Conference, Portland, OR, October
1993.

Air Defense Artillery. 2001. http://www.airdefense artil-
lery.com, accessed March 30, 2001.

Balci, O. 1995. Principles and techniques of simulation
validation, verification, and testing. In Proceedings of
the 1995 Winter Simulation Conference, ed. C. Alexo-

Walton, Patton, and Parsons

Alexopoulos, K. Kang, W.R. Lilegdon, and D.
Goldsman, ACM, 1995, 147-154.

Balci, O. 1994. Validation, verification, and testing tech-
niques throughout the life cycle of a simulation study.
In Proceedings of the 1994 Winter Simulation Confer-
ence, ed. J.D. Tew, S. Manivannan, D.A. Sadowski,
and A.F. Seila, ACM, 215-220.

Birta, L.G. and F.N. Ozmizrak.1996. A knowledge-based
approach for the validation of simulation models: the
foundation. ACM Transactions on Modeling and
Computer Simulation, Vol. 6, No. 1, Jan. 1996, 76-98.

Currit, P.A., M. Dyer, and H.D. Mills. 1986. Certifying the
reliability of software. IEEE Transactions on Software
Engineering, Vol 12, No 1, January 1986, 3-11.

DMSO. 2001. http://www.dmso.mil, accessed March 30
2001.

Fenton, N.E. and N. Ohlsson. 2000. Quantitative analysis
of faults and failures in a complex software systems.
IEEE Transactions on Software Engineering, Vol 26,
No. 8, August 2000, 797-814.

Gonzalez, A.J. and D.D. Dankel. 1993. The Engineering of
Knowledge-Based Systems. Prentice Hall, Englewood
Cliffs, N.J., 1993.

Hartley III, D.S. 1997. Verification and validation in mili-
tary simulations. In Proceedings of the 1997 Winter
Simulation Conference, ed. S. Andradottir, K.J. Healy,
D.H. Withers, and B.L. Nelson, ACM, 925-932.

HLA Federation Development and Execution Process.
2001. http://www.dmso.mil/index.php? page=410,
accessed March 30, 2001.

Hopkinson, W.C. and J.A. Sepulveda. 1995. Real time
validation of man-in-the-loop simulations. In Proceed-
ings of the 1995 Winter Simulation Conference, , ed.
C. Alexopoulos, K. Kang, W.R. Lilegdon, and D.
Goldsman, ACM, 1250-1256.

Jacobson, S.H. and E. Yucesan. 1992. Building correct
simulation models is difficult. In Proceedings of the
1992 Winter Simulation Conference, ed. J.J. Swain, D.
Goldsman, R.C. Crain, and J.R. Wilson, ACM, 783-
790.

Mills, H.D. 1992. Certifying the correctness of software. In
Proceedings of the 1992 International Hawaii Interna-
tional Conference on Systems Sciences, Vol II, Soft-
ware Technology, ACM, 373-381.

Musa, J. D. 1993. Operational profiles in software reliabil-
ity engineering. IEEE Software, March 1993, 14-32.

Page, E.H. and R. Smith. 1998. Introduction to military
training simulation: a guide for discrete event simula-
tionists. In Proceedings of the 1998 Winter Simulation
Conference, ed. D.J. Medeiros, E.F. Watson, J.S. Car-
son, and M.S. Manivannan, ACM, 53-60.

Robinson, S. 1997. Simulation model verification and
validation: increasing the user’s confidence. In Pro-
ceedings of the 1997 Winter Simulation Conference,
778
ed. S. Andradottir, K.J. Healy, D.H. Withers, and B.L.
Nelson, ACM, 53-59.

Sargent, R.G. 1998. Validation and verification of simula-
tion models. In Proceedings of the 1998 Winter Simu-
lation Conference, ed. D.J. Medeiros, E.F. Watson,
J.S. Carson, and M.S. Manivannan, ACM, 121-130.

Shannon, R.E. 1992. Introduction to simulation. In Pro-
ceedings of the 1992 Winter Simulation Conference,
ed. J.J. Swain, D. Goldsman, R.C. Crain, and J.R. Wil-
son, ACM, 65-73.

Sherer, S.W. and G.H. Walton, 1998. Practical applications
of statistical testing. In Proceedings of the 4th Joint
Avionics and Weapon Support, Software, and Simula-
tion Conf. (JAWS S3), Las Vegas, Nevada, June 1998.

Smith, S.W. 1998. Essential techniques for military model-
ing and simulation. In Proceedings of the 1998 Winter
Simulation Conference, ed. D.J. Medeiros, E.F. Wat-
son, J.S. Carson, and M.S. Manivannan, ACM, 805-
812.

Walton, G.H. and J.H. Poore. 2000. Generating Markov
chain transition probabilities to support model-based
software testing. Software Practice and Experience,
Vol 30, August 2000, 1095-1106.

Walton, G.H., J.H. Poore, and C.J. Trammell. 1995. Statis-
tical testing of software based on a usage model. Soft-
ware Practice and Experience, Vol 25, No 1, January
1995, 97-108.

Whittaker, J.A. and J.H. Poore. 1993. Markov analysis of
software specifications. ACM Transactions on Soft-
ware Engineering and Methodology, Vol. 2, No 1,
January 1993, 93-106.

Whittaker, J.A. and M.G. Thomason. 1994. A Markov
chain model for statistical software testing. IEEE
Transactions on Software Engineering, Vol. 30, No.
10, October 1994, 812-824.

AUTHOR BIOGRAPHIES

GWENDOLYN H. WALTON is an Associate Professor
of Computer Engineering at the University of Central Flor-
ida. She received a Ph.D. in Computer Science from the
University of Tennessee. Her research interests include
software quality measurement and management and rigor-
ous methods for software specification, verification, and
testing. Her email is <gwalton@mail.ucf.edu>.

ROBERT M. PATTON is a doctoral student in Computer
Engineering at the University of Central Florida. He re-
ceived a B.S. and M.S. in Computer Engineering from the
University of Central Florida. His research interests in-
clude validation and verification of simulation systems,
automated testing and analysis of software intensive sys-
tems, and artificial intelligence systems. His email is
<rmpatton@yahoo.com>.

Walton, Patton, and Parsons

DOUGLAS J. PARSONS is a Sr. Systems Engineer at the
U.S. Army Simulation, Training, and Instrumentation
Command. He received a M.S. in Systems Management
(Operations Research) from Florida Institute of Technol-
ogy, and is currently working toward a M.S. in Industrial
Engineering (Interactive Simulation and Training) from the
University of Central Florida. His technical interests in-
clude software systems test design, software reliability, and
cognitive modeling. His email address is <doug_
parsons@stricom.army.mil>.
779

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

