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ABSTRACT 

This paper discusses the objectives and requirements for a 
shipbuilding simulation. It presents an overview of a 
generic simulation of shipbuilding operations. The 
shipbuilding simulation model can be used as a tool to 
analyze the schedule impact of new workload, evaluate 
production scenarios, and identify resource problems. The 
simulation helps identify resource constraints and conflicts 
between competing jobs. The simulation can be used to 
show expected results of inserting new technologies or 
equipment into the shipyard, particularly with respect to 
operating costs and schedule impact. The use of DOD High 
Level Architecture (HLA) and Run Time Infrastructure 
(RTI) as an integration mechanism for distributed 
simulation is also discussed briefly. 

1 INTRODUCTION 

Scientists and engineers working on the Manufacturing 
Simulation and Visualization Program at the National 
Institute of Standard and Technology (NIST) performed 
the research presented in this paper.  The goal of the 
Manufacturing Simulation and Visualization Program is to 
develop data interfaces and test methods for integrating 
manufacturing simulation and visualization applications to 
improve the accessibility and interoperability of this 
technology for U.S. industry.  

The National Shipbuilding Research Program (NSRP) 
in part sponsored the research presented in this paper. The 
NSRP is a five-year program to achieve significant 
technology and process improvements in the U.S. 
shipbuilding industry.  NRSP is being carried out as a 
collaboration among U.S. shipyards, government, industry 
and academia. 
 The NSRP has six focus areas, which are listed below: 

 
• Shipyard Production Process Technologies 
• Business Process Technologies 
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• Product Design and Material Technologies 
• System Technologies 
• Facilities and Tooling 
• Crosscut Initiatives. 

 
The Shipyard Production Process Technologies is a 

major initiative that addresses all production processes 
used to transform raw material, components, and 
equipment into completed products (NSRP 2001). The 
simulation of shipbuilding operations presented in this 
paper was carried out as part of this initiative. For 
background on shipbuilding operation, see (Storch 1995). 

The objective of the simulation model for shipbuilding 
operations is to provide data to support shipyard 
management decisions including: 

 
• Analysis of schedule impact due to additional 

projects, differing production scenarios, and so 
forth 

• Identification of labor resource conflicts by craft 
and skill level 

• Analysis of cost and effects of exercising 
overtime, new hire, and/or subcontractor to cover 
labor shortages 

• Analysis of cost tradeoffs of holding over 
employees without work, versus lay-off, rehires 
and new hires 

• Prediction of optimum staffing levels based sales 
and labor demand forecasts 

• Demonstration of the expected results of inserting 
new technology or equipment into shipyard, 
particularly with respect to operating costs and 
schedule impact 

• Visual display of work location, resources, and 
identification resource constraints and conflicts 
between competing jobs (including cranes and 
forklifts) 
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• Archiving of simulation runs as files to preserve 
historical data. 

2 SHIPBUILDING SIMULATION OVERVIEW 

2.1 Functional Requirements 

Simulation models can help to identify project and 
resource management issues that have a major cost impact 
for manufacturing industry. Project management systems 
can realistically provide only a static view of project 
definition, resource, and constraint data. Simulation can be 
used to model and evaluate complex interactions between 
overall project workload and available resources. It also 
can be used to identify resource conflicts, “labor-hiding,” 
and obtain a big picture of overall operations that is not 
available by other means. Multiple runs of models can 
provide sensitivity data on the potential impact of random 
variations in operations. 

The next section outlines the simulation system 
architectures from the views of simulator, control logic, 
user interface, and internal data management.  

2.2 Simulation System Architecture 

Simulation system is used to refer to not only the 
simulation model and the simulation engine, but also the 
other software applications that are used to generate data 
for the model, a user interface system, and associated data 
files. The simulation system is divided into the following 
component elements: 

 
• Simulator 
• Control Logic 
• User interface 
• Internal Data Management. 

 
 These elements are briefly introduced below. 

Simulator – The simulation engine used to implement 
the simulation system in this paper is ProModel 4.22. 
ProModel is a commercial simulator that can be used for 
evaluating, planning, or re-designing manufacturing, 
warehousing, and logistics systems. The simulator allows 
users to build a graphical representation of an application 
system and test it in a variety of scenarios to provide better 
solution for the problems in the organization. The 
graphical animation and reports are useful tools for 
visualizing, understanding, and improving the real system. 
The development simulator includes functions for 
developing and running models.  A separate graphics 
library is used to generate displays.  A Microsoft COM 
interface is included that allows the simulator to execute 
external code. The COM interface was used to implement a 
remote user interface (PRG 1996). 
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Control Logic – The control logic is the “brain” of the 
simulation model. It is customized code and data 
developed to model the production process of the shipyard. 
The control logic for the simulation model manages the 
execution of the following modules:  

 
• Graphical user interface 
• Data input 
• Job and task management 
• Production area allocation and space management  
• Labor allocation 
• Resource allocation 
• Calendar and clock 
• Report generator 
• Remote user interface. 
 

  All of the capabilities of these modules are functions 
built on top of basic ProModel capabilities.  More details 
are provided in Section 2.3. 

 User Interface – The user interface is the “face” of the 
simulation model, the animated graphic display allows the 
user to interactively use the simulation model to evaluate 
and analyze the production process model of the shipyard.  
Nine user interface screens were developed as showed in 
Figure 1 (PUG 1996), including: 

 
• Simulation status 
• Space allocation 
• Location status 
• Production schedule  
• Job status  
• Task status 
• Resource allocation 
• Part and inventory status 
• Statistical data summary. 
 

 These simulation screens can be used to monitor the 
system remotely by using distributed simulation 
mechanisms discussed in section 2.5. 

Internal Data Management – Four types of data files 
are currently used by the simulation system:  

 
• Project management data (one for each project) 
• Schedule loading (one for each simulation run) 
• Labor configuration file 
• Resource configuration file. 
 

 The primary sources for generating data for the 
simulation are Microsoft Excel and project management 
applications such as Primavera or Microsoft Project.  The 
project management data for the simulation includes 
project task decompositions, precedence relationships 
between tasks, resource requirements, timing data such as 
due dates and duration, other scheduling data such as 
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project loading for the shipyard, project due dates, 
production area assignment options, and resource 
configuration data. 

The preprocessor is a NIST-developed software 
module, written in the C programming language, that is used 
to translate project data into a form that can be easily read 
into ProModel.  The data files are read into the simulator 
during the initialization phase of the simulation run. 

2.3 Shipbuilding Control Logic 

Most manufacturing simulations concentrate on modeling 
material flow.  The shipyard simulation is different in that 
it concentrates on modeling the flow of work through 
various planning and processing stages. In the shipbuilding 
simulation discussed here, jobs and tasks are defined as 
logical entities in the simulation flow to simulate the 
production process. Each job is decomposed into many 
tasks. The following subsections discuss the detailed 
control logic. 

As showed in Figure 2, Job orders are created and 
placed at a Jobs_Arrival location. Once the job data is 
initialized from data files, it is moved to the 
Unstarted_jobs location. 

At the Unstarted_jobs location, if current date is later 
than or equal to the job start date, the job is moved to the 
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Job_area_selection location. Otherwise, the job remains at 
the schedule location waiting for its start date to arrive. 

At the Job_area_selection location, the production 
area where the job will be processed is determined.  
Production areas are assigned in order of most - late to 
least-late job.  A lateness attribute is set on the job by 
subtracting the start date from the current date. The 
Job_area_selection location will attempt to select a 
production area for the most - late job first.  The required 
space for the primary production area is computed. An 
attempt is made to allocate the required space in the 
primary production area.  If the allocation is successful the 
job moves to the Task_initialization location for the 
selected production area.  There is a unique set of “task ” 
locations that is associated with each major production 
area.  If the allocation of a production area is unsuccessful, 
the job remains at the Job_area_selection location until 
sufficient free space can be found in an appropriate 
production area for the job. The system rechecks for free 
space each simulation clock cycle. 

The subroutines in this module are responsible for 
dynamically allocating and releasing chunks of workspace 
within the production area. The space required is 
determined by job length and width data for the job that is 
contained in an external data file. 
 
 

Figure 1: Shipyard Simulation User Interface 
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Figure 2: Entity Processing Locations within the Shipyard Simulation 

 
At the Task_initialization location, another data file is 

used to identify the task decomposition of the job, the labor 
requirements, and bill of materials.  The production area 
that has been selected and the job type determine which 
data set will be used.  A precedent network array is filled 
in for all of the tasks in the job decomposition.  Work 
duration is computed for each task in the job.  Random 
number generators and constraint information is used to 
generate varying durations for each task. Totals are 
generated for the entire job. A unique task entity is created 
for each task in the job.  Task attributes are set and all 
entities move to the Task_evaluation location for the 
selected working area. 

At the Task_evaluation location is where a 
determination is made as to whether the task is ready to 
start.  Readiness is determined by whether or not there are 
any precedent conditions that are not satisfied. Precedent 
conditions include the satisfaction of overlapping task 
constraints (e.g., start-to-start relationships).  Ready tasks 
are moved to the Task_labor_allocation location.  Tasks 
that are not ready remain at the Task_evaluation location 
until their precedent tasks have completed.  Tasks 
remaining at this location are re-evaluated every clock 
cycle. 

Each task is defined by its total work duration, work 
duration remaining, the labor skill category required, 
staffing constraints, number of workers currently assigned, 
and material handling (crane) requirements.  These 
parameters are stored on the task - entity and/or task - data 
arrays.  Work duration is maintained as the total number of 
minutes required to complete the task.  Remaining work 
content refers to the work that still must be performed.  
Remaining work content is updated as appropriate at the 
start of task processing, task completion, and/or at the end 
of the shift.  Number of workers assigned refers to the 
number of workers allocated to the task for the current 
shift.  The number may change from shift to shift 
depending on the relative lateness of the task. Crane 
requirements are specified as a percentage of the total 
duration beginning at the start of task.   
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Four types of precedence relationships may be defined 
in the project management data file: 

 
• Finish-to-start (FS) 
• Start-to-start (SS) 
• Finish-to-finish (FF) 
• Start-to-finish (SF). 
 

 Given tasks A and B, the relationship FS means that 
task B cannot start until task A finishes.  The relationship 
SS means that task B cannot start until task A starts.  FF 
means that task B cannot finish until task A finishes. SF 
means that task B cannot finish until task A starts.  
Furthermore, a relationship may be indicated as one of the 
following types plus or minus a percentage of the task 
duration. For an example, an SS + 50% relationship 
indicates that task B can start after 50% of the duration 
since the start of A has passed. 

At the Task_labor_allocation location, workers are 
allocated from the labor pool to each task.  Priorities for 
labor allocation are determined by the lateness of the job. 
Labor allocation decisions are revisited for all jobs’ tasks 
within a production area at the beginning of each shift. 
Labor is allocated to tasks at the location at the beginning 
of each shift. Labor allocated to a task will remain on the 
task until either the task completes or the shift ends, 
whichever comes first. When tasks complete, labor is 
reassigned to the pool until it is allocated to the next set of 
tasks that are ready to start or continue. Low priority tasks 
may not receive a new allocation in subsequent shifts. At 
the end of each shift, all tasks in the working area are 
routed back to the Task_labor_allocation location.  This 
logic ensures that jobs that have recently become late or 
gotten ahead of schedule will receive an appropriate labor 
allocation. 

Various scoring mechanisms for evaluating job 
lateness and performing resource allocation have been 
implemented.  One mechanism is described here.  In this 
mechanism, lateness is determined by comparing the 
percentage of work content that has completed against the 
percentage of the job duration that has passed. Labor pool 
data, i.e., availability of workers in each labor pool, is 
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initialized at startup from an external file.  Calculations 
used to determine lateness are as follows: 

 
• Scheduled job time = Job due date – Job start date 
• Percent job time elapsed = (Current date – Job 

start date) / Scheduled job time % 
• Percent job completed = 100% – (Work content 

remaining / Total work content)% 
• Lateness score = Percent job time elapsed – 

percent completed. 
 

 For example, a Lateness_score of 100% would mean 
that the job is past due and no work has been performed. 
On the other hand, a Lateness_score of  –100% would 
mean that work is completed, but its scheduled start date 
has not arrived. A Lateness_score of 0% means that the job 
is on schedule. 

All tasks that received a labor allocation are moved to 
the Task_processing location.  Tasks that did not receive a 
labor allocation remain at the location until labor resources 
can be allocated. 

At the Task_processing location, the task waits until 
either the work content is completed or the shift ends.  The 
current time to complete the work content is determined by 
dividing the total task work content by the number of 
workers assigned.  If the work completes before the end of 
the shift, the remaining work content for the task is set to 
zero and the task is moved to the Task_completion 
location.  If the shift ends before the work is completed, 
the work accomplished during the shift is subtracted from 
the remaining work content and the task is moved back to 
the Task_labor_allocation location.  The work 
accomplished during the shift equals the shift duration 
multiplied by the number of workers assigned. 

2.4 Shipyard Input Data Files Processing 

This module converts shipyard data files into appropriate 
formats for initialization of internal simulation data 
structures. The shipyard input data for the simulation may 
initially reside in Microsoft Excel spreadsheets, Microsoft 
Project files, Primavera project files, Microsoft Access 
databases, and Comma-Separated Value (CSV) text files.  
The data types used in shipyard source data files or 
databases are not the representation required for internal 
use within the ProModel simulator. The data files are 
preprocessed to put them in a format of the internal 
representation that is used to represent the data within 
ProModel.  In this version of ProModel, all data must 
essentially be represented as an integer or real numbers.  

Input data conversion utilities are implemented using 
C, Microsoft Access, and Microsoft Excel macro 
programming capabilities.  The data file used for input into 
ProModel is structured to facilitate the use of its input 
functions, i.e.; it is converted to appropriate integer and 
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real formats.  The following major sets of data are required 
to configure and run the shipyard simulation models: 

 
• Schedule file 
• Shipbuilding project plans 
• Labor configuration data 
• Calendar and shift information. 
 
Each of the data sets is briefly described below. 
Schedule file – The schedule is used to identify the 

jobs to be run during a particular run of the simulation. 
Two schedule file formats have been implemented.  The 
first format supports construction jobs within the shipyard.  
The second format supports repair and conversion jobs at 
shipyard piers. The schedule file is maintained in comma-
separated-value (CSV) format. For example, the repair and 
conversion file format is a table that contains: the project id 
number, scheduled start day, month, year, scheduled end 
day, month and year, ship length, width, draft, and three 
possible pier assignments in priority order. 

Shipbuilding project plans – Project planning data for 
the shipyard is maintained in a project management file 
that contains task identifiers, activity descriptions, total 
staff hours, remaining staff hours, early start date, early 
finish date, craft code, staff per shift, a calendar identifier, 
and precedence relationships between activities. A unique 
identifier is assigned for each project and job (subproject 
or group of activities/tasks). The identifier is used to 
reference the input data files and track the project/job 
through the simulation. 

Labor configuration data - The shipyard configuration 
data file is used to identify shipyard labor, material 
handling, machine, and space resources that are available 
during a particular simulation run. The file identifies the 
number of each craft type and skill level that is available 
on each shift during a typical day. It specifies labor rates 
by craft type and skill level, whether new hires or 
contractors may augment labor pools, and simple rules for 
laying-off idle workers. An Excel spreadsheet may be used 
for data entry.  ASCII CSV files are exported from Excel 
and read into the ProModel simulation. 

Calendar and shift information - This data is currently 
updated using the development interface. It includes 
production calendar information, i.e., holidays, shift 
schedules, overtime constraints, etc.  

2.5 HLA Interface 

The High Level Architecture (HLA) was developed by the 
U.S. Department of Defense’s Defense Modeling and 
Simulation Office (DMSO) to provide a consistent 
approach for integrating distributed, defense - department 
simulations (Kuhl 1999). In this project, the HLA 
integration mechanisms were used to manage 
communication and synchronization among simulation 
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models.  Integration is achieved through the use of the 
NIST-developed High Level Architecture (HLA) adapter. 
The HLA adapter is a software module that acts as an 
interface between the simulations and the HLA Run-Time 
Infrastructure (RTI). The NIST HLA adapter provides a 
simplified interface for using the HLA RTI communication 
mechanisms.  

An HLA-based distributed simulation is called a 
federation. Each simulation application that is integrated 
by the HLA RTI is called a federate.  One common data 
definition is created for domain data that is shared across 
the entire federation.  It is called the federation object 
model (FOM).  Each federate has a simulation object 
model that defines the elements of the FOM that it 
implements (McLean and Riddick 2000). 
 A DMS Adapter Module is incorporated into each 
DMS federate.  The DMS Adapter handles the 
transmission, receipt, and internal updates to all FOM 
objects used by a federate. Figure 3 illustrates the 
relationship between the various elements of the 
distributed manufacturing simulation execution 
environment. For the shipyard simulation, multiple 
visualization federates were implemented to run with a 
single simulation engine and manufacturing model.  The 
DMS Adapter and the HLA RTI provided remote updates 
of shipyard simulation data to remote user interface 
screens. 

 
3 CONCLUSIONS 

This document has provided a brief overview of the 
simulation of shipbuilding operations that is being 
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developed as a part of the NSRP Project by staff of the 
NIST Manufacturing Simulation and Visualization 
Program. By using simulation in shipbuilding operation, 
traditional problems in a shipyard can be solved. The 
simulation model enables the analysis of 

 
• Schedule impact due to additional projects 
• Differing production scenarios and identification 

of Labor resource problems 
• Identification resource constraints and conflicts 

between competing jobs (including cranes and 
forklifts) 

• Demonstration of the expected results of inserting 
new technology or equipment into shipyard, 
particularly with respect to operating costs and 
schedule impact. 

 
 The animated and graphical display of work location, 
resources, production flows, and simulation results will 
help shipyards to make better production management and 
resource allocation decisions. Formatted report and log 
files archive the simulation runs to preserve historical data 
for later use.  

The integration with the other simulation models using 
DOD High Level Architecture and Run Time 
Infrastructure as an integrating infrastructure currently 
enables remote interfaces and will ultimately enable the 
implementation of larger and larger distributed models of 
the entire shipyard manufacturing system.    
Manufacturing Simulation
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Manufacturing
Simulation
Federate

DMS Adapter

Real Manufacturing
System
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Figure 3: Distributed Manufacturing Simulation Environment Elements Integrated by the 
HLA Run Time Infrastructure 
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