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ABSTRACT 

ATLAS is a specification language defined to outline city 
sections as cell spaces. A static view of the city section to 
be analyzed can be defined and a modeler is able to define 
complex traffic models in a simple fashion. A compiler for 
this specification language (called TSC) was built. The 
language implements the ATLAS constructions as Cell-
DEVS models. The rule generation for describing the traf-
fic behavior is based on macro templates, entitling changes 
in the model implementation in a flexible way. The formal 
specification avoids a high number of errors in the devel-
oped application, and the problem solving time is highly 
reduced. 

1 INTRODUCTION 

Urban traffic analysis and control is a problem whose 
complexity makes difficult the analysis with traditional 
analytical methods. The degree of complexity of vehicle 
movement in urban centers is such that modeling and 
simulation techniques have been gaining popularity as 
analysis tool. Simulation entitles the study of particular 
problems, allowing providing solutions based on experi-
mentation. Here, we present the results of a project to build 
modeling and simulation tools with this purpose.  

The first stage of this project was devoted to define 
and validate a high level specification language represent-
ing city sections (Davidson and Wainer 2000a). This lan-
guage, called ATLAS (Advanced Traffic LAnguage Speci-
fications) focuses on the detailed specification of traffic 
behavior. The models are represented as cell spaces, allow-
ing elaborate study of traffic flow according with the shape 
of a city section and its transit attributes. A static view of 
the city section can be easily described, including defini-
tions for traffic signs, traffic lights, etc. A modeler can 
concentrate in the problem to solve, instead of being in 
charge of defining a complex simulation.  
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The constructions defined in this language are mapped 
into DEVS (Zeigler, Kim, and Praehofer 2000) and Cell-
DEVS models (Wainer and Giambiasi 2001a). DEVS pro-
vides high performance for discrete-event systems simula-
tion. It also provides a formal framework that can be used 
to validate and verify the models. Cell-DEVS was pro-
posed to describe cell spaces as DEVS models with timing 
delays, improving the definition of the models using ex-
plicit delays.  

A real system modeled using DEVS can be described 
as composed of atomic or coupled submodels. A DEVS 
atomic model is defined by: 

 
M = < X, S, Y, δint, δext, λ, ta >`. 

 
Input external events in X are received in input ports. 

When an event arrives, the model executes the external 
transition function δext to produce a state change. Each 
state has an associated lifetime ta. When this time is con-
sumed the internal transition function δint is activated to 
produce internal state changes. The internal state S can be 
used to provide model outputs Y, which are sent through 
the output ports. They are sent by the output function λ, 
which executes before the internal transition. 

A DEVS coupled model is defined as: 
 

CM = < X, Y, D, {Mi}, {Ii}, {Zij} >. 
 

Each coupled model consists of a set of D basic mod-
els Mi connected through input/output ports. The list of in-
fluencees Ii of a given model is used to determine the mod-
els to which outputs must be sent. These sets are used to 
build the translation function Zij, in charge of translating 
outputs of a model into inputs for the others. An index of 
influencees is created for each model (Ii). For every j in the 
index, outputs of model Mi are connected to inputs in 
model Mj.  

Cell-DEVS (informally described in Figure 1) allows 
defining cellular models that can be integrated with other 
6
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DEVS. Here, each cell of a space is defined as an atomic 
model. Transport and inertial delays are used to define the 
timing behavior of each cell explicitly. A transport delay 
allows us to model a variable response time for each cell. 
Instead, inertial delays are preemptive: a scheduled event 
is executed only if the delay is consumed. Cell-DEVS 
atomic models are specified as: 

 
TDC = < X, Y, S, N, delay, d, δint, δext, τ, λ, D >. 

 
Each cell will use the N inputs to compute the future 

state S using the function τ. The new value of the cell is 
transmitted to the neighbors after the consumption of the 
delay function. Delay defines the kind of delay for the cell, 
and d its duration. This behavior is defined by the δint, δext, 
λ and D functions. 

 

 
 

Figure 1: Informal Definition of Cell-DEVS 
 

A Cell-DEVS coupled model is defined by: 
 

GCC = < Xlist, Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z >. 
 

A cell space C defined by this specification is a cou-
pled model composed by an array of atomic cells with size 
{t1 x...x tn}. Each cell in the space is connected to the cells 
defined by the neighborhood N. The cell space can be 
“wrapped”, meaning that cells in a border are connected 
with those in the opposite one. Otherwise, the borders B 
should have a different behavior than the remaining cells. 
The Z function allows one to define the internal and exter-
nal coupling of cells in the model. This function translates 
the outputs of output port m in cell Cij into values for the m 
input port of cell Ckl. The input/output coupling lists can 
be used to interchange data with other models. 

The formal specifications for DEVS and Cell-DEVS 
were used to build the CD++ tool (Rodriguez and Wainer 
1999). This tool provides a specification language follow-
ing the formal specifications described in this section. 

ATLAS was defined as a set of constructions mapped 
into DEVS and Cell-DEVS models (Davidson and Wainer 
2000b, Davidson and Wainer 2000c), whose behavior for 
each of the constructions was validated. Then, a compiler 
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was built following the specifications. The compiler, called 
TSC (Traffic Simulator Compiler), generates code by using 
a set of templates that can be redefined by the user. In this 
way, the models can be mapped in different tools (avoiding 
version problems).  

The following sections are devoted to show how to de-
fine traffic models using the language, focusing in the 
modeling problems. After, we present some results of the 
execution of simple models, defined earlier using the 
CD++ tool. This example was redefined using the TSC 
compiler, and the previously defined models were used to 
validate the compiled source code. Finally, several changes 
were made to the original example, allowing checking the 
efficiency in defining new models using the constructions 
defined by the compiler.  

2 TSC CONSTRUCTIONS 

ATLAS allows representing the structure of a city section 
defined by a set of streets connected by crossings. The lan-
guage constructions define a static view of the model, 
which is considered to be built as grids composed of cells 
(Davidson and Wainer 2000a). ATLAS formal specifica-
tions were used to build the TSC language sentences. Fol-
lowing, we present the main constructions of ATLAS and 
its syntax in TSC. 

a) Segments: they represent sections between two 
corners. Every lane in a given segment has the same direc-
tion (one way segments) and a maximum speed. They are 
specified as: Segments = { (p1, p2, n, a, dir, max) / p1, p2 
∈ City ∧ n, max ∈ N ∧ a, dir ∈ {0,1} }, where p1 and p2 
represent the boundaries of each segment (City = { (x,y) / 
x, y ∈ R }), n is the number of lanes, and dir represents the 
vehicle direction. The a parameter defines the shape of the 
segment (straight or curve, allowing to define the city 
shape precisely, and to include the exact number of cells), 
and max is the maximum speed allowed in the segment. 

TSC syntax entitles defining the segments by delimit-
ing them using the sentences begin segments and end 
segments. At least one segment must be defined, using the 
following syntax: 
 

id = p1, p2, lanes, shape, direction, speed, 
parkType 

 
These values map the parameters mentioned previ-

ously, with shape: [curve|straight] and direction: 
[go|back]. Finally, parkType is used to define parking 
constructions, formally specified in the following para-
graphs. 

b) Parking: border cells in a segment can be used for 
parking, as seen in Figure 2. They are formally defined as: 
Parking = { (s, n1) / s ∈ Segments ∧ n1 ∈ {0,1} ∧ s = (c1, 
c2, n, a, dir, max) ∧ n > 1 }. Every pair (s, n1) identifies the 
segment and the lane where car parking is allowed. If n1 = 0, 
the cars park on the left; if n1 = 1, on the right (lane n-1).  
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 Parking lane

Movement allowed  
 

Figure 2: Parking Segments 
 
The construction presented for Segments includes in-

formation for the parking segments. In this case,  
 

parkType: [parkNone | parkLeft | parkRight | 
parkBoth]  

 
defines in which area of the segment a car can park. 

c) Crossings: these constructions represent points in 
the plane where several segments intersect. They are speci-
fied as: Crossings = { (c, max) / c ∈ City ∧ max ∈ N ∧ ∃ s, 
s’ ∈ Segments ∧ s = (p1, p2, n, a, dir, max) ∧ s’ = (p1’, 
p2’, n’, a’, dir’, max’) ∧ s ≠ s’ ∧ (p1 = c ∨ p2 = c) ∧ (p1’ = 
c ∨ p2’ = c) }. Crossings are built as rings of cells with 
moving vehicles (Davidson and Wainer 2000b). A car in 
the crossing has higher priority to obtain the next position 
in the ring than the cars outside the crossing. In TSC, the 
definitions for crossings are delimited by the separators 
begin crossings and end crossings. Each sentence de-
fines a crossing using the following syntax: 

 
id = p, speed, tLight, crossHole, pout 

 
Parameters p and speed represent (p1,p2) and max of 

the formal specification. Pout defines the probability of a 
vehicle to abandon the crossing, used to simulate random 
routing of different vehicles. The remaining parameters are 
related with specific types of crossings, and will be ex-
plained in the following paragraphs. 

d) Traffic lights: crossings with traffic lights are de-
fined as: TLCrossings = { c / c ∈ Crossings }. Here, c ∈ 
TLCrossings defines a set of models representing the traf-
fic lights in a corner and the corresponding controller, de-
picted in Figure 3. Each of these models is associated with 
a crossing input. The model sends a value representing the 
color of the traffic light to a cell in the intersection corre-
sponding to the input segment affected by the traffic light. 
The following qualifier is added to a standard crossing 
definition in TSC when a crossing must include traffic 
lights: tLight: [withTL|withoutTL]. 
 e) Railways: they are built as a sequence of level 
crossings overlapped with the city segments. The railway 
network is defined by: RailNet = { (Station, Rail) / Station 
is a model, Rail ∈ RailTrack }, where RailTrack = { (s, δ, 
seq) / s ∈ Segments ∧ δ ∈ N ∧ seq ∈ N }. RailNet repre-
sents a set of stations connected to railways, thus defining  
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Traffic lights

Segments

 
 

Figure 3: Traffic Lights Definition 
 

a part of the railway network. Railtrack associates a level 
crossing with other existing constructions in the city sec-
tion. Each element identifies the segment that is crossed (s) 
and the distance to the railway from the beginning of the 
section (δ). Finally, a sequence number (seq) is assigned to 
each level crossing, defining its position in the RailTrack. 
When a railway is defined in TSC, the begin railnets 
and end railnets act as separators. Each RailNet is de-
fined using the following syntax: 

 
id = (s1, d1) {,(si, di)} 

 
where si defines an identifier of a segment crossed by the 
railway, and di defines the distance between the beginning 
of the segment si and the railway. The compiler automati-
cally generates the sequence number. 

f) Men at work: the construction defining men at 
work is specified by: Jobsite = { (s, ni, δ, #n) / s ∈ Seg-
ments ∧ s = (c1, c2, n, a, dir, max) ∧ ni ∈ [0, n-1] ∧ δ ∈ N 
∧ #n ∈ [1, n+1-ni] ∧ #n ≡ 1 mod 2 }. Here, each (s, ni, δ, 
#n) ∈ Jobsite is related with a segment where the construc-
tion works are being done. It includes the first lane affected 
(ni), the distance between the center of the jobsite and the 
beginning of the segment (δ), and the number of lanes oc-
cupied by the work (#n). These values are used to define a 
rhombus over the segment where vehicles cannot advance, 
as shown in Figure 4.  

In TSC, the begin jobsites and end jobsites separa-
tors allow to define all the jobsites needed. Each jobsite is: 

 
in t : firstlane, distance, lanes 

 
In this case, firstlane defines the first lane affected 

by the jobsite, distance is the distance between the center 
of the jobsite and the beginning of the segment, and lanes 
is the number of lanes occupied. 

 
      c1 c2

  ni δ
   #n

        Jobsite

 
 

Figure 4: Segment with Men at Work 
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g) Traffic signs: they are defined by: Control = { (s, t, 
δ) / s ∈ Segments ∧ δ ∈ N ∧ t ∈ {bump, depression, pedes-
trian crossing, saw, stop, school} }. Each tuple here identi-
fies the segment where the traffic sign is used, the type of 
sign, and the distance from the beginning of the segment 
up to the sign. In TSC, begin ctrElements and end 
ctrElements delimits the control elements, with: 
 

in t : ctrType, distance 
 
being the definition for each sign. Here, ctrType: [bump 
| depression | intersection | saw | stop | 

school] defines the different signs. The distance pa-
rameter defines the distance to the beginning of the seg-
ment. An extension of this construction allows us to define 
potholes, whose size is one cell. The definition of these 
elements is done using the begin holes and end holes 
separators. Each hole is defined as: 
 

in t : lane, distance 

 
A pothole can also be included in a crossing. Previ-

ously defined in the Crossings paragraphs, crossHole: 
[withHole|withoutHole] defines if a crossing contains a 
pothole or not. 

h) Experimental frameworks: experimental frame-
work constructions provide inputs and outputs to the city 
section to be studied. They are associated with segments re-
ceiving inputs, or those used as outputs, and are defined as: 

 
InputSegments = { s / s = (p1, p2, n, a, dir, max) ∧ s ∈ 
Segments ∧ [ ( dir = 0 ∧ (∃ v ∈ N : (p2,v) ∈ Crossings) ) ∨ 
(dir = 1 ∧ (∃ v ∈ N : (p1,v) ∈ Crossings) ) ] } 
OutputSegments = { s / s = (p1, p2, n, a, dir, max) ∧ s ∈ 
Segments ∧ [ ( dir = 0 ∧ (∃ v ∈ N : (p1,v) ∈ Crossings)) ∨ 
(dir =1 ∧ (∃ v ∈ N: (p2,v) ∈ Crossings)) ] } 

3 DEFINING TRAFFIC MODELS USING TSC 

TSC takes an input written in ATLAS and provides, as 
output, a specification in Cell-DEVS written to be exe-
cuted in the CD++ tool. Running a model in CD++, we can 
analyze in detail the traffic flow in the chosen area. TSC 
was built based on a set of templates that defines how to 
code the output rules. The set of templates can be changed 
in runtime. In this way, independence of the development 
tool used can be achieved. For instance, the syntax in the 
CD++ tool could be changed, or other tools allowing the 
definition of Cell-DEVS models could be used. In these 
cases, we just have to change the templates used to gener-
ate the model behavior. 

Let us suppose that we want to define a city section 
specified by the map depicted in Figure 5. As we can see, 
we have defined 6 segments, connected by 3 crossings. For 
instance, the segment t6 includes 2 lanes. We include a 
jobsite, three holes and two control elements.  
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 Railway 
 Crossing (No TL, no potholes) 
 Crossing (TL, pothole) 
 Crossing (No TL, potholes) 
 Pothole 
 Jobsite 
 Traffic sign 

 

Figure 5: Shape of a City Section 
 
The definition of this city section in TSC has been de-

fined in the Figure 6. The constructions defined in that fig-
ure are used as inputs for the compiler, which translates 
them into DEVS and Cell-DEVS models. 

The first step carried out by the compiler is the invoca-
tion to a parser that processes the map using the definitions 
presented in the previous section. Using the size definitions 
of each construction, a Cell-DEVS model of the given size is 
built. According to the number of input/output segments in a 
crossing, the number of cells needed for the crossings are 
created. Traffic lights, railways and other constructions are 
used to modify the basic behavior defined for the segment 
and crossing Cell-DEVS models, according to the definitions. 

The parser is also used to validate the city map. The 
map should include at least one segment, and a segment 
cannot have the same beginning and end. More than one 
crossing cannot be defined at the same point. The railways, 
potholes, control signals and jobsites should be defined 
within an existing segment, and cannot trespass the seg-
ment boundaries. The railways cannot cross the segments 
close to their borders. Finally, segments in which parking 
is permitted must have at least 2 lanes (to allow parking in 
one side) or 3 lanes (if parking in both sides is allowed).  

Once the components are generated and validated, 
every lane in a segment is linked to an input cell in a corre-
sponding crossing, using the rules defined in (Davidson 
and Wainer 2000b; Davidson and Wainer 2000c). In this 
stage the tool checks that each crossing has at least one in-
put and one output segment.  

The Cell-DEVS model resulting of translating the 
specification of Figure 6 can be seen in the Figure 7. This 
figure shows parts of the Cell-DEVS specification gener-
ated by the compiler. The code here showed is executable 
in the CD++ tool.  

0      1       2       3       4       5       6       7       8       9      10      

c2 c1 

t6 

t4 

t3 

t2 

t5 

c3 

t1 
9
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begin segments 
t1=(1,5),(1,1),2,straight,go,60, parkNone 
t2=(1,1),(5,1),2,straight,go,60, parkRight 
t3=(3,3),(5,1),1,straight,go,40, parkNone 
t4=(5,1),(10,1),1,straight,go,40, parkNone 
t5=(5,1),(8,4),1,curve,go,40, parkNone 
t6=(10,8),(10,1),2,straight,back,60, parkLeft 
end segments 
 
begin crossings 
  c1=(1,1),11, withoutTL, withHole, .75 
  c2=(5,1),12, withTL, withoutHole, .9 
  c3=(10,1),13,withoutTL,withoutHole, .8 
end crossings 
 
begin railnets      
rn1 = (t1,1),(t2,1),(t6,2)    
end railnets  
 
begin jobsites 
in t1 : 1,2,1  
end jobsites 
 
begin holes      
in t2 : 1,2      
in t4 : 1,0 
in t5 : 1,3 
end holes 
 
begin ctrElements 
in t2 : stop,0 
in t4 : saw,2 
end ctrElements 

 

Figure 6: Definition of the Section in TSC 
 

The first lines in the figure show the Top model gener-
ated by the compiler. It includes one submodel for each of 
the models defined in the specification, an experimental 
framework (Generators and Consumers), traffic light con-
trollers, and a definition of the translation function for cou-
pled models. Then, we show the Cell-DEVS specification 
for the segment t4 and the crossing c3. In the segment t4 we 
only show the coupled model definition. This includes the 
parameter definition (size, type of delays, borders, neighbor-
hood shape), and the external couplings (defined using the 
specification for crossings connected to the segment).  

The same parameters are included for the c3 crossing. 
In this case we also show the specification for the rules 
generated to define the traffic behavior in the crossing. The 
first rule shows the arrival of a vehicle to the cell (from the 
previous cell in the crossing or from an external segment). 
After, a ‘1’ (representing a vehicle) is sent through the port 
y-t-room. In this way, the segment connected to the cell 
will know that a car is willing to leave the crossing and 
move to the segment. The second rule represents a car 
leaving the present cell. In this case, the send function in-
forms that the cell is now empty. The third rule also repre-
sents a car leaving the present cell, but, in this case, the 
send function informs that the cell is busy, because the 
previous cell in the crossing is busy (and cars in the cross-
ing have higher priority over new arriving cars). 
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[TOP] 
components: t1 t2 t3 t4 t5 t6 c1 c2 c3  
components: rn11@RailNet t2tl@TrafficLight 
components: t5Cons@Consumer t1Gen@Generator 
components: rn12@RailNet t6Cons@Consumer  
components: t3tl@TrafficLight t3Gen@Generator 
components: c2stl@SynchroTrafficLight  
components: rn1@SynchroRailNet rn10@RailNet 
link : y-t-train0bt@rn11 x-vt-train01@t2 
... 
link : y-vt-train2@rn1 x-if-train@rn12  
 
[t4] 
type : cell   
width : 5   
height : 1 
delay : transport  
border : nowrapped 
neighbors : t4(0,-1) t4(0,0) t4(0,1) 
in : x-c-vehicle00 x-c-room04    
out: y-c-vehicle04 y-c-room00  
link : x-c-vehicle00 x-c-vehicle@t4(0,0)  
link : y-c-room@t4(0,0) y-c-room00 
link : x-c-room04 x-c-room@t4(0,4)   
link : y-c-vehicle@t4(0,4) y-c-vehicle04 
localtransition : t4-lane0-rule 
... 
[c3] 
type : cell   
width : 3  
height : 1 
delay : transport  
border : nowrapped 
neighbors : c3(0,-1) c3(0,0) c3(0,1) 
in : x-t-vehicle2 x-t-room0 x-t-room1  
out: y-t-room2 y-t-vehicle0 y-t-vehicle1  
link : x-t-vehicle2 x-t-vehicle@c3(0,2)  
link : y-t-room@c3(0,2) y-t-room2 
link : x-t-room0 x-t-room@c3(0,0)    
link : x-t-room1 x-t-room@c3(0,1) 
link : y-t-vehicle@c3(0,0) y-t-vehicle0  
link : y-t-vehicle@c3(0,1) y-t-vehicle1 
localtransition : c3-cellIn-rule 
 
[c3-cellIn-rule] 
rule : {1 + send(1, y-t-room)} 13 { (0,0) = 0 
and ( (0,-1) = 1 or x-t-vehicle = 1 ) } 
rule : {0 + send(0, y-t-room)} 13 { (0,0) = 1 
and (0,1) = 0 and (0,-1) = 0 } 
rule : {0 + send(1, y-t-room)} 13 { (0,0) = 1 
and (0,1) = 0 and (0,-1) = 1 } 
... 

 

Figure 7: CD++ Source Code Generated for the Example 
 

4 AN APPLICATION EXAMPLE 

In (Díaz, Vázquez and Wainer 2001), we showed the defi-
nition of a city section using the tool CD++. ATLAS con-
structs were used as basic definitions to build the models, 
and the tool was used to develop them according to the 
specifications. 
 

0
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Figure 8: A Sketch of the Area to be Simulated 
 
The sector defined is a part of residential neighbor-

hood of the city of Buenos Aires, Argentina, in which traf-
fic flow is non-significant, even in the peak hours. Never-
theless, the complexity in the city trace of the area 
produces frequent traffic jams. The section includes a park, 
a railway, several one way streets, dead ends, and avenues 
(one with four lanes in each direction). In several of these 
streets, parking is allowed, while in others it is forbidden. 
The following figure shows a sketch of the section. 

As it can be seen in Figure 8, there is a train station 
close to the crossing c1. The level crossing uses an auto-
matic barrier that closes when a train is approaching to the 
station. Therefore, while a train is stopped at the station, 
the barrier is closed. The city section was defined using the 
TSC language, and based on the specification, a model of 
traffic in the area was executed. This sector can be speci-
fied as shown in Figure 9. 

The first tests executed the specification using the pre-
sent behavior for the level crossing. The execution results 
of the models generated by the compiler were  compared 
with those obtained by coding the model specification by 
hand, previously defined in (Díaz, Vázquez and Wainer 
2001). The results obtained were similar with a significant 
reduction in the coding effort. The present specification 
(24 line length) generated source code of over 1000 lines 
of Cell-DEVS specifications for this example. This shows 
how the use of this specific purpose language can improve 
the definition of traffic models. In a previous study 
(Wainer and Giambiasi 2001b), the use of Cell-DEVS 
showed important improvements when compared against 
modeling the same kind of problems using other simulation 
languages, making even more significant the final gains in 
development times. 
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begin segments 
Donado_B=(7,16),(11,25),1,straight,go,40, 
parkNone 
Donado_A=(2,1),(7,16),1,straight,go,40, 
parkNone 
Donado_C=(11,25),(14,34),1,straight,go,40, 
parkNone 
Balbin_A1=(7,16),(22,16),2,straight,go,60, 
parkNone 
Balbin_A2=(7,16),(22,16),2,straight,back,60, 
parkNone 
Paroissien=(11,25),(22,16),1,straight,back,40 
,parkNone 
Garcia=(14,34),(21,31),1,straight,go,40, 
parkNone 
Holmberg_A1=(17,2),(22,16),4,straight,go,60, 
parkNone 
Holm-
berg_A2=(17,2),(22,16),4,straight,back,60,par
kNone 
Holm-
berg_B1=(22,16),(24,26),2,straight,go,60,park
None 
Holmberg_B2=(22,16),(24,26),2,straight,back, 
60,parkNone 
Balbin_B1=(22,16),(40,16),2,straight,go,60, 
parkNone 
Balbin_B2=(22,16),(40,16),2,straight,back,60, 
parkNone 
end segments 
 
begin crossings 
c1=(22,16),30, withoutTL, withoutHole, .7 
c2=(7,16),30, withoutTL, withoutHole, .65 
c3=(11,25),30, withoutTL, withoutHole, .8 
c4=(14,34),30, withoutTL, withoutHole, .8 
end crossings  
 
begin railnets 
Balbin = (Balbin_B1,8),(Balbin_B2,11) 
end railnets 

 

Figure 9: Definition of the Area in TSC 
 

The simulations represent an execution of 10 minutes 
simulated time. The experimental framework generated 
different input rates according to the actual traffic flow in 
the area. After running the first tests, we eliminated the 
level crossing (supposing that a bridge is built in the area), 
and repeated the tests. As a result, we could analyze the ef-
fect of the railways in the area. Figures 10 and 11 show the 
results obtained in both cases.  

The first graphic in Figure 10 shows the number of 
cars in the section. In the first minutes we can see a traffic 
jam in the area due to the closing of the barrier (although 
the traffic flow generated was constant throughout the 
simulation). The influence of the railway can be clearly 
seen in the second figure, which shows the number of cars 
leaving the Balbin-B1 segment. We can see that the traffic 
flow in that segment improves, eliminating the problem 
caused by the level crossing. This obstacle makes that 
about half of the cars cannot leave the area.  
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Figure 10: Execution Results in the Area 
 
A second test changed the specifications for crossings 

c1 and c2, by including non synchronized traffic lights. 
The following lines were modified in the crossing section: 
 

 c1 = (22,16),10, withTL, withoutHole, 3 
 c2 = (7,16),10, withTL, withoutHole, 3 

 
In Figure 11 we can see that the number of cars in the 

city section is incremented when the traffic lights are in-
cluded. 

Traffic lights are useful in ordering the traffic. Never-
theless, in this case, they are not synchronized, making the 
number of cars in the area higher than without traffic 
lights. This is even worse for this particular case, where the 
number of cars in the area is so small that is not con-
strained by the ordering of the traffic light. 

5 CONCLUSION 

We showed how to use the TSC compiler to define city 
sections to analyze traffic conditions. The language allows 
defining a static view of a city section by including differ-
ent components. This approach provides an application- 
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Figure 11: Execution Results Adding Traffic Lights 
 
oriented specification language, which allows the defini-
tion of complex traffic behavior using simple rules for a 
modeler. The models are formally specified, avoiding a 
high number of errors in the application, thus reducing the 
problem solving time.  

Using this approach we could obtain the following ad-
vantages: 
 

• Efficiency: by describing a high level specifica-
tion of the problem to be modeled, we have re-
duced the effort needed in developing the applica-
tion. The tool automatically builds the structure 
for coupled models, generates rules for atomic 
models, and takes care of validating the DEVS 
specifications. In this way, changes in the system 
specification can be done in a simple fashion, 
without spending time in coding or testing every 
proposed solution to existing problems. 

• Adaptation: besides the ideas presented in the ar-
ticle, we needed to change some of the rules de-
fined originally in ATLAS, due to implementation 
constrains of CD++. Therefore, two sets of tem-
plates were created. One of them followed pre-
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cisely the ATLAS specifications, assuming that 
the underlying Cell-DEVS tools were able to im-
plement them. A second set modified these speci-
fications to be executed in CD++. The same 
original specifications were used in both cases, 
generating DEVS models adapted to each of the 
tools. 

• Abstraction: the specifications were translated 
into executable models, without needing to write a 
line of source code. In this way, a traffic analyzer 
can focus in the problem solving task, avoiding 
implementation or low level details. 

 
At present different research activities are related with 

this project. The first one considers using a GIS with in-
formation of city sections to be translated automatically 
into ATLAS constructions, entitling modeling and simula-
tion of traffic models based on geographical information. 
This set of tools will provide a GUI for the system, and 
will be used to provide automatic validation of the con-
structions based on the map definitions. 

A second set of activities is related with the extension 
of the TSC compiler to include other constructions already 
defined in ATLAS (for instance, big size vehicle move-
ment, dynamic routing, congestion avoiding). Also, differ-
ent control techniques are being applied to the traffic light 
controllers. Finally, we are analyzing performance issues 
by running the models in a parallel version of the CD++ 
toolkit. 
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