
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

DEFINING MODELS OF URBAN TRAFFIC USING THE TSC TOOL

Mariana Lo Tártaro
César Torres

Departamento de Computación

FCEN – Universidad de Buenos Aires
Planta Baja, Pabellón I, Ciudad Universitaria

Buenos Aires.(1428), ARGENTINA

 Gabriel Wainer

Department of Systems and Computer Engineering

Carleton University
4456 Mackenzie Building, 1125 Colonel By Drive

Ottawa, ON, K1S 5B6, CANADA

ABSTRACT

ATLAS is a specification language defined to outline city
sections as cell spaces. A static view of the city section to
be analyzed can be defined and a modeler is able to define
complex traffic models in a simple fashion. A compiler for
this specification language (called TSC) was built. The
language implements the ATLAS constructions as Cell-
DEVS models. The rule generation for describing the traf-
fic behavior is based on macro templates, entitling changes
in the model implementation in a flexible way. The formal
specification avoids a high number of errors in the devel-
oped application, and the problem solving time is highly
reduced.

1 INTRODUCTION

Urban traffic analysis and control is a problem whose
complexity makes difficult the analysis with traditional
analytical methods. The degree of complexity of vehicle
movement in urban centers is such that modeling and
simulation techniques have been gaining popularity as
analysis tool. Simulation entitles the study of particular
problems, allowing providing solutions based on experi-
mentation. Here, we present the results of a project to build
modeling and simulation tools with this purpose.

The first stage of this project was devoted to define
and validate a high level specification language represent-
ing city sections (Davidson and Wainer 2000a). This lan-
guage, called ATLAS (Advanced Traffic LAnguage Speci-
fications) focuses on the detailed specification of traffic
behavior. The models are represented as cell spaces, allow-
ing elaborate study of traffic flow according with the shape
of a city section and its transit attributes. A static view of
the city section can be easily described, including defini-
tions for traffic signs, traffic lights, etc. A modeler can
concentrate in the problem to solve, instead of being in
charge of defining a complex simulation.
105
The constructions defined in this language are mapped
into DEVS (Zeigler, Kim, and Praehofer 2000) and Cell-
DEVS models (Wainer and Giambiasi 2001a). DEVS pro-
vides high performance for discrete-event systems simula-
tion. It also provides a formal framework that can be used
to validate and verify the models. Cell-DEVS was pro-
posed to describe cell spaces as DEVS models with timing
delays, improving the definition of the models using ex-
plicit delays.

A real system modeled using DEVS can be described
as composed of atomic or coupled submodels. A DEVS
atomic model is defined by:

M = < X, S, Y, δint, δext, λ, ta >`.

Input external events in X are received in input ports.

When an event arrives, the model executes the external
transition function δext to produce a state change. Each
state has an associated lifetime ta. When this time is con-
sumed the internal transition function δint is activated to
produce internal state changes. The internal state S can be
used to provide model outputs Y, which are sent through
the output ports. They are sent by the output function λ,
which executes before the internal transition.

A DEVS coupled model is defined as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij} >.

Each coupled model consists of a set of D basic mod-
els Mi connected through input/output ports. The list of in-
fluencees Ii of a given model is used to determine the mod-
els to which outputs must be sent. These sets are used to
build the translation function Zij, in charge of translating
outputs of a model into inputs for the others. An index of
influencees is created for each model (Ii). For every j in the
index, outputs of model Mi are connected to inputs in
model Mj.

Cell-DEVS (informally described in Figure 1) allows
defining cellular models that can be integrated with other
6

Lo Tártaro, Torres, and Wainer

DEVS. Here, each cell of a space is defined as an atomic
model. Transport and inertial delays are used to define the
timing behavior of each cell explicitly. A transport delay
allows us to model a variable response time for each cell.
Instead, inertial delays are preemptive: a scheduled event
is executed only if the delay is consumed. Cell-DEVS
atomic models are specified as:

TDC = < X, Y, S, N, delay, d, δint, δext, τ, λ, D >.

Each cell will use the N inputs to compute the future

state S using the function τ. The new value of the cell is
transmitted to the neighbors after the consumption of the
delay function. Delay defines the kind of delay for the cell,
and d its duration. This behavior is defined by the δint, δext,
λ and D functions.

Figure 1: Informal Definition of Cell-DEVS

A Cell-DEVS coupled model is defined by:

GCC = < Xlist, Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z >.

A cell space C defined by this specification is a cou-
pled model composed by an array of atomic cells with size
{t1 x...x tn}. Each cell in the space is connected to the cells
defined by the neighborhood N. The cell space can be
“wrapped”, meaning that cells in a border are connected
with those in the opposite one. Otherwise, the borders B
should have a different behavior than the remaining cells.
The Z function allows one to define the internal and exter-
nal coupling of cells in the model. This function translates
the outputs of output port m in cell Cij into values for the m
input port of cell Ckl. The input/output coupling lists can
be used to interchange data with other models.

The formal specifications for DEVS and Cell-DEVS
were used to build the CD++ tool (Rodriguez and Wainer
1999). This tool provides a specification language follow-
ing the formal specifications described in this section.

ATLAS was defined as a set of constructions mapped
into DEVS and Cell-DEVS models (Davidson and Wainer
2000b, Davidson and Wainer 2000c), whose behavior for
each of the constructions was validated. Then, a compiler
1057
was built following the specifications. The compiler, called
TSC (Traffic Simulator Compiler), generates code by using
a set of templates that can be redefined by the user. In this
way, the models can be mapped in different tools (avoiding
version problems).

The following sections are devoted to show how to de-
fine traffic models using the language, focusing in the
modeling problems. After, we present some results of the
execution of simple models, defined earlier using the
CD++ tool. This example was redefined using the TSC
compiler, and the previously defined models were used to
validate the compiled source code. Finally, several changes
were made to the original example, allowing checking the
efficiency in defining new models using the constructions
defined by the compiler.

2 TSC CONSTRUCTIONS

ATLAS allows representing the structure of a city section
defined by a set of streets connected by crossings. The lan-
guage constructions define a static view of the model,
which is considered to be built as grids composed of cells
(Davidson and Wainer 2000a). ATLAS formal specifica-
tions were used to build the TSC language sentences. Fol-
lowing, we present the main constructions of ATLAS and
its syntax in TSC.

a) Segments: they represent sections between two
corners. Every lane in a given segment has the same direc-
tion (one way segments) and a maximum speed. They are
specified as: Segments = { (p1, p2, n, a, dir, max) / p1, p2
∈ City ∧ n, max ∈ N ∧ a, dir ∈ {0,1} }, where p1 and p2
represent the boundaries of each segment (City = { (x,y) /
x, y ∈ R }), n is the number of lanes, and dir represents the
vehicle direction. The a parameter defines the shape of the
segment (straight or curve, allowing to define the city
shape precisely, and to include the exact number of cells),
and max is the maximum speed allowed in the segment.

TSC syntax entitles defining the segments by delimit-
ing them using the sentences begin segments and end
segments. At least one segment must be defined, using the
following syntax:

id = p1, p2, lanes, shape, direction, speed,
parkType

These values map the parameters mentioned previ-

ously, with shape: [curve|straight] and direction:
[go|back]. Finally, parkType is used to define parking
constructions, formally specified in the following para-
graphs.

b) Parking: border cells in a segment can be used for
parking, as seen in Figure 2. They are formally defined as:
Parking = { (s, n1) / s ∈ Segments ∧ n1 ∈ {0,1} ∧ s = (c1,
c2, n, a, dir, max) ∧ n > 1 }. Every pair (s, n1) identifies the
segment and the lane where car parking is allowed. If n1 = 0,
the cars park on the left; if n1 = 1, on the right (lane n-1).

Lo Tártaro, Torres, and Wainer

 Parking lane

Movement allowed

Figure 2: Parking Segments

The construction presented for Segments includes in-

formation for the parking segments. In this case,

parkType: [parkNone | parkLeft | parkRight |
parkBoth]

defines in which area of the segment a car can park.

c) Crossings: these constructions represent points in
the plane where several segments intersect. They are speci-
fied as: Crossings = { (c, max) / c ∈ City ∧ max ∈ N ∧ ∃ s,
s’ ∈ Segments ∧ s = (p1, p2, n, a, dir, max) ∧ s’ = (p1’,
p2’, n’, a’, dir’, max’) ∧ s ≠ s’ ∧ (p1 = c ∨ p2 = c) ∧ (p1’ =
c ∨ p2’ = c) }. Crossings are built as rings of cells with
moving vehicles (Davidson and Wainer 2000b). A car in
the crossing has higher priority to obtain the next position
in the ring than the cars outside the crossing. In TSC, the
definitions for crossings are delimited by the separators
begin crossings and end crossings. Each sentence de-
fines a crossing using the following syntax:

id = p, speed, tLight, crossHole, pout

Parameters p and speed represent (p1,p2) and max of

the formal specification. Pout defines the probability of a
vehicle to abandon the crossing, used to simulate random
routing of different vehicles. The remaining parameters are
related with specific types of crossings, and will be ex-
plained in the following paragraphs.

d) Traffic lights: crossings with traffic lights are de-
fined as: TLCrossings = { c / c ∈ Crossings }. Here, c ∈
TLCrossings defines a set of models representing the traf-
fic lights in a corner and the corresponding controller, de-
picted in Figure 3. Each of these models is associated with
a crossing input. The model sends a value representing the
color of the traffic light to a cell in the intersection corre-
sponding to the input segment affected by the traffic light.
The following qualifier is added to a standard crossing
definition in TSC when a crossing must include traffic
lights: tLight: [withTL|withoutTL].
 e) Railways: they are built as a sequence of level
crossings overlapped with the city segments. The railway
network is defined by: RailNet = { (Station, Rail) / Station
is a model, Rail ∈ RailTrack }, where RailTrack = { (s, δ,
seq) / s ∈ Segments ∧ δ ∈ N ∧ seq ∈ N }. RailNet repre-
sents a set of stations connected to railways, thus defining

1058
Synchronizer

Traffic lights

Segments

Figure 3: Traffic Lights Definition

a part of the railway network. Railtrack associates a level
crossing with other existing constructions in the city sec-
tion. Each element identifies the segment that is crossed (s)
and the distance to the railway from the beginning of the
section (δ). Finally, a sequence number (seq) is assigned to
each level crossing, defining its position in the RailTrack.
When a railway is defined in TSC, the begin railnets
and end railnets act as separators. Each RailNet is de-
fined using the following syntax:

id = (s1, d1) {,(si, di)}

where si defines an identifier of a segment crossed by the
railway, and di defines the distance between the beginning
of the segment si and the railway. The compiler automati-
cally generates the sequence number.

f) Men at work: the construction defining men at
work is specified by: Jobsite = { (s, ni, δ, #n) / s ∈ Seg-
ments ∧ s = (c1, c2, n, a, dir, max) ∧ ni ∈ [0, n-1] ∧ δ ∈ N
∧ #n ∈ [1, n+1-ni] ∧ #n ≡ 1 mod 2 }. Here, each (s, ni, δ,
#n) ∈ Jobsite is related with a segment where the construc-
tion works are being done. It includes the first lane affected
(ni), the distance between the center of the jobsite and the
beginning of the segment (δ), and the number of lanes oc-
cupied by the work (#n). These values are used to define a
rhombus over the segment where vehicles cannot advance,
as shown in Figure 4.

In TSC, the begin jobsites and end jobsites separa-
tors allow to define all the jobsites needed. Each jobsite is:

in t : firstlane, distance, lanes

In this case, firstlane defines the first lane affected

by the jobsite, distance is the distance between the center
of the jobsite and the beginning of the segment, and lanes
is the number of lanes occupied.

 c1 c2

 ni δ
 #n

 Jobsite

Figure 4: Segment with Men at Work

Lo Tártaro, Torres, and Wainer

g) Traffic signs: they are defined by: Control = { (s, t,
δ) / s ∈ Segments ∧ δ ∈ N ∧ t ∈ {bump, depression, pedes-
trian crossing, saw, stop, school} }. Each tuple here identi-
fies the segment where the traffic sign is used, the type of
sign, and the distance from the beginning of the segment
up to the sign. In TSC, begin ctrElements and end
ctrElements delimits the control elements, with:

in t : ctrType, distance

being the definition for each sign. Here, ctrType: [bump
| depression | intersection | saw | stop |

school] defines the different signs. The distance pa-
rameter defines the distance to the beginning of the seg-
ment. An extension of this construction allows us to define
potholes, whose size is one cell. The definition of these
elements is done using the begin holes and end holes
separators. Each hole is defined as:

in t : lane, distance

A pothole can also be included in a crossing. Previ-

ously defined in the Crossings paragraphs, crossHole:
[withHole|withoutHole] defines if a crossing contains a
pothole or not.

h) Experimental frameworks: experimental frame-
work constructions provide inputs and outputs to the city
section to be studied. They are associated with segments re-
ceiving inputs, or those used as outputs, and are defined as:

InputSegments = { s / s = (p1, p2, n, a, dir, max) ∧ s ∈
Segments ∧ [(dir = 0 ∧ (∃ v ∈ N : (p2,v) ∈ Crossings)) ∨
(dir = 1 ∧ (∃ v ∈ N : (p1,v) ∈ Crossings))] }
OutputSegments = { s / s = (p1, p2, n, a, dir, max) ∧ s ∈
Segments ∧ [(dir = 0 ∧ (∃ v ∈ N : (p1,v) ∈ Crossings)) ∨
(dir =1 ∧ (∃ v ∈ N: (p2,v) ∈ Crossings))] }

3 DEFINING TRAFFIC MODELS USING TSC

TSC takes an input written in ATLAS and provides, as
output, a specification in Cell-DEVS written to be exe-
cuted in the CD++ tool. Running a model in CD++, we can
analyze in detail the traffic flow in the chosen area. TSC
was built based on a set of templates that defines how to
code the output rules. The set of templates can be changed
in runtime. In this way, independence of the development
tool used can be achieved. For instance, the syntax in the
CD++ tool could be changed, or other tools allowing the
definition of Cell-DEVS models could be used. In these
cases, we just have to change the templates used to gener-
ate the model behavior.

Let us suppose that we want to define a city section
specified by the map depicted in Figure 5. As we can see,
we have defined 6 segments, connected by 3 crossings. For
instance, the segment t6 includes 2 lanes. We include a
jobsite, three holes and two control elements.
105

 Railway
 Crossing (No TL, no potholes)
 Crossing (TL, pothole)
 Crossing (No TL, potholes)
 Pothole
 Jobsite
 Traffic sign

Figure 5: Shape of a City Section

The definition of this city section in TSC has been de-

fined in the Figure 6. The constructions defined in that fig-
ure are used as inputs for the compiler, which translates
them into DEVS and Cell-DEVS models.

The first step carried out by the compiler is the invoca-
tion to a parser that processes the map using the definitions
presented in the previous section. Using the size definitions
of each construction, a Cell-DEVS model of the given size is
built. According to the number of input/output segments in a
crossing, the number of cells needed for the crossings are
created. Traffic lights, railways and other constructions are
used to modify the basic behavior defined for the segment
and crossing Cell-DEVS models, according to the definitions.

The parser is also used to validate the city map. The
map should include at least one segment, and a segment
cannot have the same beginning and end. More than one
crossing cannot be defined at the same point. The railways,
potholes, control signals and jobsites should be defined
within an existing segment, and cannot trespass the seg-
ment boundaries. The railways cannot cross the segments
close to their borders. Finally, segments in which parking
is permitted must have at least 2 lanes (to allow parking in
one side) or 3 lanes (if parking in both sides is allowed).

Once the components are generated and validated,
every lane in a segment is linked to an input cell in a corre-
sponding crossing, using the rules defined in (Davidson
and Wainer 2000b; Davidson and Wainer 2000c). In this
stage the tool checks that each crossing has at least one in-
put and one output segment.

The Cell-DEVS model resulting of translating the
specification of Figure 6 can be seen in the Figure 7. This
figure shows parts of the Cell-DEVS specification gener-
ated by the compiler. The code here showed is executable
in the CD++ tool.

0 1 2 3 4 5 6 7 8 9 10

c2 c1

t6

t4

t3

t2

t5

c3

t1
9

Lo Tártaro, Torres, and Wainer

begin segments
t1=(1,5),(1,1),2,straight,go,60, parkNone
t2=(1,1),(5,1),2,straight,go,60, parkRight
t3=(3,3),(5,1),1,straight,go,40, parkNone
t4=(5,1),(10,1),1,straight,go,40, parkNone
t5=(5,1),(8,4),1,curve,go,40, parkNone
t6=(10,8),(10,1),2,straight,back,60, parkLeft
end segments

begin crossings
 c1=(1,1),11, withoutTL, withHole, .75
 c2=(5,1),12, withTL, withoutHole, .9
 c3=(10,1),13,withoutTL,withoutHole, .8
end crossings

begin railnets
rn1 = (t1,1),(t2,1),(t6,2)
end railnets

begin jobsites
in t1 : 1,2,1
end jobsites

begin holes
in t2 : 1,2
in t4 : 1,0
in t5 : 1,3
end holes

begin ctrElements
in t2 : stop,0
in t4 : saw,2
end ctrElements

Figure 6: Definition of the Section in TSC

The first lines in the figure show the Top model gener-
ated by the compiler. It includes one submodel for each of
the models defined in the specification, an experimental
framework (Generators and Consumers), traffic light con-
trollers, and a definition of the translation function for cou-
pled models. Then, we show the Cell-DEVS specification
for the segment t4 and the crossing c3. In the segment t4 we
only show the coupled model definition. This includes the
parameter definition (size, type of delays, borders, neighbor-
hood shape), and the external couplings (defined using the
specification for crossings connected to the segment).

The same parameters are included for the c3 crossing.
In this case we also show the specification for the rules
generated to define the traffic behavior in the crossing. The
first rule shows the arrival of a vehicle to the cell (from the
previous cell in the crossing or from an external segment).
After, a ‘1’ (representing a vehicle) is sent through the port
y-t-room. In this way, the segment connected to the cell
will know that a car is willing to leave the crossing and
move to the segment. The second rule represents a car
leaving the present cell. In this case, the send function in-
forms that the cell is now empty. The third rule also repre-
sents a car leaving the present cell, but, in this case, the
send function informs that the cell is busy, because the
previous cell in the crossing is busy (and cars in the cross-
ing have higher priority over new arriving cars).

106
[TOP]
components: t1 t2 t3 t4 t5 t6 c1 c2 c3
components: rn11@RailNet t2tl@TrafficLight
components: t5Cons@Consumer t1Gen@Generator
components: rn12@RailNet t6Cons@Consumer
components: t3tl@TrafficLight t3Gen@Generator
components: c2stl@SynchroTrafficLight
components: rn1@SynchroRailNet rn10@RailNet
link : y-t-train0bt@rn11 x-vt-train01@t2
...
link : y-vt-train2@rn1 x-if-train@rn12

[t4]
type : cell
width : 5
height : 1
delay : transport
border : nowrapped
neighbors : t4(0,-1) t4(0,0) t4(0,1)
in : x-c-vehicle00 x-c-room04
out: y-c-vehicle04 y-c-room00
link : x-c-vehicle00 x-c-vehicle@t4(0,0)
link : y-c-room@t4(0,0) y-c-room00
link : x-c-room04 x-c-room@t4(0,4)
link : y-c-vehicle@t4(0,4) y-c-vehicle04
localtransition : t4-lane0-rule
...
[c3]
type : cell
width : 3
height : 1
delay : transport
border : nowrapped
neighbors : c3(0,-1) c3(0,0) c3(0,1)
in : x-t-vehicle2 x-t-room0 x-t-room1
out: y-t-room2 y-t-vehicle0 y-t-vehicle1
link : x-t-vehicle2 x-t-vehicle@c3(0,2)
link : y-t-room@c3(0,2) y-t-room2
link : x-t-room0 x-t-room@c3(0,0)
link : x-t-room1 x-t-room@c3(0,1)
link : y-t-vehicle@c3(0,0) y-t-vehicle0
link : y-t-vehicle@c3(0,1) y-t-vehicle1
localtransition : c3-cellIn-rule

[c3-cellIn-rule]
rule : {1 + send(1, y-t-room)} 13 { (0,0) = 0
and ((0,-1) = 1 or x-t-vehicle = 1) }
rule : {0 + send(0, y-t-room)} 13 { (0,0) = 1
and (0,1) = 0 and (0,-1) = 0 }
rule : {0 + send(1, y-t-room)} 13 { (0,0) = 1
and (0,1) = 0 and (0,-1) = 1 }
...

Figure 7: CD++ Source Code Generated for the Example

4 AN APPLICATION EXAMPLE

In (Díaz, Vázquez and Wainer 2001), we showed the defi-
nition of a city section using the tool CD++. ATLAS con-
structs were used as basic definitions to build the models,
and the tool was used to develop them according to the
specifications.

0

Lo Tártaro, Torres, and Wainer

Figure 8: A Sketch of the Area to be Simulated

The sector defined is a part of residential neighbor-

hood of the city of Buenos Aires, Argentina, in which traf-
fic flow is non-significant, even in the peak hours. Never-
theless, the complexity in the city trace of the area
produces frequent traffic jams. The section includes a park,
a railway, several one way streets, dead ends, and avenues
(one with four lanes in each direction). In several of these
streets, parking is allowed, while in others it is forbidden.
The following figure shows a sketch of the section.

As it can be seen in Figure 8, there is a train station
close to the crossing c1. The level crossing uses an auto-
matic barrier that closes when a train is approaching to the
station. Therefore, while a train is stopped at the station,
the barrier is closed. The city section was defined using the
TSC language, and based on the specification, a model of
traffic in the area was executed. This sector can be speci-
fied as shown in Figure 9.

The first tests executed the specification using the pre-
sent behavior for the level crossing. The execution results
of the models generated by the compiler were compared
with those obtained by coding the model specification by
hand, previously defined in (Díaz, Vázquez and Wainer
2001). The results obtained were similar with a significant
reduction in the coding effort. The present specification
(24 line length) generated source code of over 1000 lines
of Cell-DEVS specifications for this example. This shows
how the use of this specific purpose language can improve
the definition of traffic models. In a previous study
(Wainer and Giambiasi 2001b), the use of Cell-DEVS
showed important improvements when compared against
modeling the same kind of problems using other simulation
languages, making even more significant the final gains in
development times.
1061
begin segments
Donado_B=(7,16),(11,25),1,straight,go,40,
parkNone
Donado_A=(2,1),(7,16),1,straight,go,40,
parkNone
Donado_C=(11,25),(14,34),1,straight,go,40,
parkNone
Balbin_A1=(7,16),(22,16),2,straight,go,60,
parkNone
Balbin_A2=(7,16),(22,16),2,straight,back,60,
parkNone
Paroissien=(11,25),(22,16),1,straight,back,40
,parkNone
Garcia=(14,34),(21,31),1,straight,go,40,
parkNone
Holmberg_A1=(17,2),(22,16),4,straight,go,60,
parkNone
Holm-
berg_A2=(17,2),(22,16),4,straight,back,60,par
kNone
Holm-
berg_B1=(22,16),(24,26),2,straight,go,60,park
None
Holmberg_B2=(22,16),(24,26),2,straight,back,
60,parkNone
Balbin_B1=(22,16),(40,16),2,straight,go,60,
parkNone
Balbin_B2=(22,16),(40,16),2,straight,back,60,
parkNone
end segments

begin crossings
c1=(22,16),30, withoutTL, withoutHole, .7
c2=(7,16),30, withoutTL, withoutHole, .65
c3=(11,25),30, withoutTL, withoutHole, .8
c4=(14,34),30, withoutTL, withoutHole, .8
end crossings

begin railnets
Balbin = (Balbin_B1,8),(Balbin_B2,11)
end railnets

Figure 9: Definition of the Area in TSC

The simulations represent an execution of 10 minutes
simulated time. The experimental framework generated
different input rates according to the actual traffic flow in
the area. After running the first tests, we eliminated the
level crossing (supposing that a bridge is built in the area),
and repeated the tests. As a result, we could analyze the ef-
fect of the railways in the area. Figures 10 and 11 show the
results obtained in both cases.

The first graphic in Figure 10 shows the number of
cars in the section. In the first minutes we can see a traffic
jam in the area due to the closing of the barrier (although
the traffic flow generated was constant throughout the
simulation). The influence of the railway can be clearly
seen in the second figure, which shows the number of cars
leaving the Balbin-B1 segment. We can see that the traffic
flow in that segment improves, eliminating the problem
caused by the level crossing. This obstacle makes that
about half of the cars cannot leave the area.

Lo Tártaro, Torres, and Wainer

0

10

20

30

40

50

Time

C
ar

s
in

 th
e

se
ct

io
n

No railways/NoTL Railways/No TL

0
10
20
30
40
50
60
70
80

Time

C
ar

s
le

av
in

g
Ba

lb
ín

_B
1

No RW/No TL RW/No Tl

Figure 10: Execution Results in the Area

A second test changed the specifications for crossings

c1 and c2, by including non synchronized traffic lights.
The following lines were modified in the crossing section:

 c1 = (22,16),10, withTL, withoutHole, 3
 c2 = (7,16),10, withTL, withoutHole, 3

In Figure 11 we can see that the number of cars in the

city section is incremented when the traffic lights are in-
cluded.

Traffic lights are useful in ordering the traffic. Never-
theless, in this case, they are not synchronized, making the
number of cars in the area higher than without traffic
lights. This is even worse for this particular case, where the
number of cars in the area is so small that is not con-
strained by the ordering of the traffic light.

5 CONCLUSION

We showed how to use the TSC compiler to define city
sections to analyze traffic conditions. The language allows
defining a static view of a city section by including differ-
ent components. This approach provides an application-

1062
0

5

10

15

20

25

30

35

T im e

C
ar

s
in

 th
e

se
ct

io
n

N o R W /N o T L N o R W ./T L

0

10

20

30

40

50

60

Time

C
ar

s
in

 th
e

se
ct

io
n

No RW /No TL RW /TL

Figure 11: Execution Results Adding Traffic Lights

oriented specification language, which allows the defini-
tion of complex traffic behavior using simple rules for a
modeler. The models are formally specified, avoiding a
high number of errors in the application, thus reducing the
problem solving time.

Using this approach we could obtain the following ad-
vantages:

• Efficiency: by describing a high level specifica-
tion of the problem to be modeled, we have re-
duced the effort needed in developing the applica-
tion. The tool automatically builds the structure
for coupled models, generates rules for atomic
models, and takes care of validating the DEVS
specifications. In this way, changes in the system
specification can be done in a simple fashion,
without spending time in coding or testing every
proposed solution to existing problems.

• Adaptation: besides the ideas presented in the ar-
ticle, we needed to change some of the rules de-
fined originally in ATLAS, due to implementation
constrains of CD++. Therefore, two sets of tem-
plates were created. One of them followed pre-

Lo Tártaro, Torres, and Wainer
cisely the ATLAS specifications, assuming that
the underlying Cell-DEVS tools were able to im-
plement them. A second set modified these speci-
fications to be executed in CD++. The same
original specifications were used in both cases,
generating DEVS models adapted to each of the
tools.

• Abstraction: the specifications were translated
into executable models, without needing to write a
line of source code. In this way, a traffic analyzer
can focus in the problem solving task, avoiding
implementation or low level details.

At present different research activities are related with

this project. The first one considers using a GIS with in-
formation of city sections to be translated automatically
into ATLAS constructions, entitling modeling and simula-
tion of traffic models based on geographical information.
This set of tools will provide a GUI for the system, and
will be used to provide automatic validation of the con-
structions based on the map definitions.

A second set of activities is related with the extension
of the TSC compiler to include other constructions already
defined in ATLAS (for instance, big size vehicle move-
ment, dynamic routing, congestion avoiding). Also, differ-
ent control techniques are being applied to the traffic light
controllers. Finally, we are analyzing performance issues
by running the models in a parallel version of the CD++
toolkit.

ACKNOWLEDGMENTS

This work was partially supported by ANPCYT (National
Agency of Science and Technology, Argentina; research
project No. 11-04460) and NSERC (Natural Sciences and
Engineering Research Council, Canada).

REFERENCES

Davidson, A., Wainer, G. 2000a. ATLAS: a language to
specify traffic models using Cell-DEVS. Technical
Report 00-003, Departamento de Computación,
FCEN/UBA. Argentina. Submitted.

Davidson, A., Wainer, G. 2000b. Specifying control sig-
nals in traffic models. In Proceedings of AI, Simula-
tion and Planning in High Autonomous Systems,
AIS’2000. Tucson, Arizona. U.S.A.

Davidson, A., Wainer, G. 2000c. Specifying truck move-
ment in traffic models using Cell-DEVS. In Proceed-
ings of the 33rd Annual Simulation Symposium. Wash-
ington, D.C. U.S.A.

Díaz, A., Vázquez, V., Wainer, G. 2001. Application of the
ATLAS language in models of urban traffic. In Pro-
ceedings of the 34th Annual Simulation Symposium.
Seattle, Washington, U.S.A.
10

Rodríguez, D., Wainer, G. 1999. New Extensions to the

CD++ tool. In Proceedings of Summer Computer
Simulation Conference. Chicago, U.S.A.

Wainer, G., Giambiasi, N. 2001a. Timed Cell-DEVS:
modeling and simulation of cell spaces. In Discrete
Event Modeling & Simulation: Enabling Future Tech-
nologies. Ed.: H. Sarjoughian, F. Cellier. Springer-
Verlag.

Wainer, G., Giambiasi, N. 2001b. Application of the Cell-
DEVS paradigm for cell spaces modelling and simula-
tion. Simulation. Vol. 76, No. 1. January 2001.

Zeigler, B., Kim, T., Praehofer, H. 2000. Theory of Model-
ing and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems. Academic
Press.

AUTHOR BIOGRAPHIES

MARIANA LO TÁRTARO received her B.Sc. M. Sc.
degree at the Universidad de Buenos Aires in 1997 and
2000 respectively. At present she works as a software de-
veloper in Computer Associates (Buenos Aires, Argen-
tina). Her e-mail address is <Mariana.LoTartaro@
ca.com>.

CÉSAR TORRES received his B.Sc. M. Sc. degree at the
Universidad de Buenos Aires in 1996 and 2000 respec-
tively. At present he works as a software developer in
Computer Associates (Buenos Aires, Argentina). His e-
mail address is <Cesar.Torres@ca.com>.

GABRIEL WAINER received his M. Sc. (1993) and Ph.D.
degree (1998) from the Universidad de Buenos Aires, Ar-
gentina, and Université d’Aix-Marseille III, France. He is
currently Assistant Professor at the SCE Department, Carle-
ton University (Ottawa, Canada). He was Assistant Profes-
sor at the Computer Sciences Department of the Universidad
de Buenos Aires, Argentina, being a Visiting Research
Scholar at the University of Arizona, Tucson, AZ. He has
been the PI of several research projects. He is author of a
book on real-time systems and another on Discrete-Event
simulation. He is a member of the Board of Directors of the
Society for Computer Simulation International, and a mem-
ber of a group on standardization of DEVS modeling tools.
His e-mail and web addresses are <Gabriel.Wainer@
sce.carleton.ca> and <www.sce.carleton.
ca/faculty/wainer.html>.
63

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

