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ABSTRACT

In this paper we validate through simulations a duality model
of TCP and active queue management (AQM) proposed ear-
lier. In this model, TCP and AQM are modeled as carrying
out a distributed primal-dual algorithm over the Internet to
maximize aggregate source utility. TCP congestion avoid-
ance algorithms, such as Reno and Vegas, iterate on source
rates, the primal variable. AQM algorithms, such as RED
and REM, iterate on marking probability, the dual variable.

1 INTRODUCTION

Congestion control is a distributed algorithm to share net-
work resources among competing sources. An optimal rate
allocation problem is formulated in (Kelly 1997) where the
goal is to choose source rates so as to maximize aggregate
source utility subject to capacity constraints. This problem
is solved using a penalty function approach in (Kelly et al.
1998, Kunniyur and Srikant 2000, Golestani et al. 1998),
and extended in, e.g., (Mo and Walrand 2000, Massoulie
and Roberts 1999, La and Anantharam 2000). It is solved
using a duality approach in (Low and Lapsley 1999) leading
to a basic algorithm whose convergence has been proved in
an asynchronous environment. A practical implementation
of this algorithm is studied in (Athuraliya and Low 2000).
This set of work leads to abstract congestion control al-
gorithms that can be regarded as distributed computations
over a network to solve the optimal rate allocation prob-
lem. On the surface, the various TCP and active queue
management (AQM) schemes proposed for or deployed on
the Internet are not designed to maximize any global ob-
jective function. In (Low 2000) a connection between the
abstract optimization problem and these practical schemes
is proposed. It is shown there that indeed these schemes are
distributed algorithms to solve the optimal rate allocation
problem with appropriate utility functions and these func-
tions are derived. These characterizations are used to derive
performance properties such as throughput, loss, delay and
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queue length in equilibrium. In this paper we validate these
properties through simulations.

In feedback congestion control, sources adjust their
rates in response to congestion information on their paths,
that is fed back either implicitly through buffer overflow
or round trip delay, or explicitly through AQM. Different
schemes adopt different measures of congestion, e.g., TCP
Reno (Jacobson 1988, Stevens 2000) measures congestion
by packet loss, TCP Vegas (Brakmo and Peterson 1995) by
queuing (excluding propagation) delay (Low et al. 2001b),
RED (Random Early Detection) (Floyd and Jacobson 1993)
by queue length, and REM (Random Exponential Marking)
(Athuraliya et al. 2001) by a quantity that is decoupled
with performance measures such as loss or delay. With
RED or REM these quantities get mapped either to a packet
dropping or marking probability. These congestion measures
in turn evolve in response to the source rates, closing the
control loop. The key idea is to regard the source rates as
primal variables, the congestion measure (or equivalently
the loss/marking probability that the congestion measure
gets mapped into) as dual variable, and these TCP/AQM
schemes as carrying out Lagrangian methods (Bertsekas
1995) to maximize aggregate source utility.

Specifically consider a network of links (scarce re-
sources) l with finite capacities that is shared by a set of
sources. Each source s attains a utility Us(xs) when it trans-
mits at rate xs . Each link updates a congestion measure
pl(t) in response to the aggregate source rate at link l, and
each source updates its rate xs(t) in response to the sum
of congestion measures, summed over the links in its path.
This can be represented in vector form as:

x(t + 1) = F(x(t), p(t)) (1)

p(t + 1) = G(x(t), p(t)) (2)

Here the function F models source algorithm, such as
TCP Reno or Vegas, and the function G models queue
management, active or inactive, such as DropTail, RED
or REM. We have interpreted in (Low 2000) (F, G) as a
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Lagrangian method to maximize aggregate source utility∑
s Us(x) subject to capacity constraints on the links. Then

different TCP congestion controls, such as Reno/DropTail,
Reno/RED, Reno/REM, Vegas/DropTail, Vegas/REM, sim-
ply correspond to different combinations of (F, G). Equi-
librium properties of these algorithms can be derived from
the fixed point of (1–2). Moreover, by regarding the fixed
point equation (x, p) = (F(x, p), G(x, p)) as the Karush-
Kuhn-Tucker condition, we can derive the utility functions
of these protocols. Hence each TCP/AQM scheme can be
characterized by a triple (F, G, U ) describing the dynam-
ics of source rates and congestion measures and the utility
function that the scheme is implicitly optimizing.

The rest of the paper is organized as follows. We
summarize in section 2 several equilibrium properties of
the (F, G, U) models for several TCP/AQM algorithms.
In Section 3 we present simulation results to verify these
properties.

2 TCP/AQM

Consider a network that is modeled as a single link of
capacity c. A generalization to a multilink network can be
found in (Low et al. 2001a). The network is shared by a
set S of sources. Source s attains a utility Us(xs) when it
transmits at rate xs ≥ 0. Our objective is to choose source
rates x = (xs , s ∈ S) so as to:

max
xs≥0

∑
s

Us(xs) (3)

subject to
∑

s

xs ≤ c (4)

Constraint (4) says that the aggregate source rate does not
exceed the capacity. A unique maximizer, called the optimal
rates, exists if the objective function is strictly concave, since
the feasible solution set is compact. Associated with the
link is a dual variable p. As will be seen below, the dual
variable p for Reno can be regarded as loss probability
and that for Vegas can be regarded as queuing delay. A
primal-dual method to solve (3–4) takes the form (1–2)
where both the primal variable x(t) and the dual variable
p(t) are iterated in each step.

We now interpret TCP/AQM within this model. The
single link case can be represented pictorially as in Figure
1. Each TCP source algorithm is represented by a Fs that
determines how source rate xs(t) is adjusted based on the
information fed back from the link. The queue management
algorithm at the link G is driven by the aggregate input rate
y(t) := ∑

s xs(t).
Various TCP/AQM schemes can be modeled as different

Lagrangian methods (F, G) to solve (3–4) with different
utility functions Us . The algorithm model (F, G) is derived
from description of the protocols. To derive the utility
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Figure 1: Duality model of TCP/AQM

function U , we regard the fixed (equilibrium) point (x, p)

of (1–2) as the unique optimal rate vector and Lagrange
multiplier pair. The fixed point equation (x, p) = (F, G) is
then the Karush-Kuhn-Tucker condition, yielding the utility
function.

2.1 TCP RENO

For TCP Reno, we take source rates as the primal variable
x and link loss probabilities as the dual variable p. We
assume that the round trip time τs of source s is constant,
and that rate xs is related to window ws by

xs(t) = ws(t)

τs
(5)

We focus on the additive-increase-multiplicative-
decrease (AIMD) algorithm of TCP Reno. At time t , xs(t)
is the rate at which packets are sent and acknowledgments
received (ignoring feedback delay). A fraction (1 − p(t))
of these acknowledgments are positive, each incrementing
the window ws(t) by 1/ws(t); hence the window ws(t)
increases, on average, at the rate of xs(t)(1 − p(t))/ws(t).
Similarly negative acknowledgments are returning at an av-
erage rate of xs(t)p(t), each halving the window, and hence
the window ws(t) decreases at a rate of 2

3 xs(t)p(t)ws (t)
(see Figure 2). Hence, since xs(t) = ws(t)/τs , we have for
Reno

ẋs = 1 − p(t)

τ 2
s

− 2

3
p(t)x2

s (t) =: Fs (6)

To derive the utility function of TCP Reno, consider
the equilibrium of (6):

p = 3

3 + 2τ 2
s x2

s
(7)

The Karush-Kuhn-Tucker condition for the constrained op-
timization (3–4) is

U ′
s(xs) = p
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Hence (7) implies that the unique utility function of TCP
Reno is

Us(xs) =
√

3/2

τs
tan−1

(
τs xs√

3/2

)
(8)

This utility function for TCP Reno seems to appear first in
(Kelly 1999, Low 2000).

We make two remarks. First, the relation (7) between
equilibrium source rate and loss probability reduces to the
well known relation (see e.g. (Lakshman and Madhow
1997, Mathis et al. 1999) ):

xs = a

τs
√

p

when the probability p is small, or equivalently, when the
window τs xs is large compared with

√
3/2. The value

of the constant a, around 1, has been found empirically
to depend on implementation details such as TCP variant
(e.g., Reno vs. NewReno vs. SACK) and whether delayed
acknowledgment is implemented. Equating U ′

s(xs) with p,
the utility function of TCP Reno becomes:

Us(xs) = − a2

τ 2
s xs

This version is used in (Kunniyar and Srikant 2000, Mas-
soulie and Roberts 1999).

2.2 TCP Vegas

The model (F, G) and utility function Us of TCP Vegas
has been derived and validated in (Low et al. 2001b) We
now summarize the results.

The utility function of TCP Vegas is

Us(xs) = αsds log xs (9)

where αs is a protocol parameter and ds is the round trip
propagation delay of source s. In equilibrium, source s
buffered αsds packets in the routers in its path.
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Table 1: Duality Model of TCP (In the above xs(t) =
U

′−1
s (p(t)))

TCP Duality Model

Reno Fs ẋs = 1−p(t)
τ 2

s
− 2

3 p(t)x2
s (t)

Us

√
3/2
τs

tan−1
(

τs xs√
3/2

)
Vegas Fs ẋs =

{ 1
τ 2

s
if xs(t) < xs(t)

− 1
τ 2

s
if xs(t) > xs(t)

}

Us αsds log xs

The dual variable in TCP Vegas is queuing delay, which
evolves according to (again ignoring the nonnegativity con-
straint):

ṗl = 1

cl
(yl(t) − cl) =: Gl (10)

Note that this is similar to the basic algorithm in (Low and
Lapsley 1999) with γ replaced by 1/cl . To describe the
rate adjustment Fs , let

xs(t) = U ′−1
s (p(t)) = αsds

p(t)

be the target rate chosen based on the end-to-end queuing
delay p(t) and the marginal utility U ′

s , as in the basic
algorithm (Low and Lapsley 1999). Then Vegas source
algorithm is:

ẋs =
{ 1

τ 2
s

if xs(t) < xs(t)

− 1
τ 2

s
if xs(t) > xs(t)

}
=: Fs (11)

Again the Vegas algorithm can be regarded as an approximate
version of the basic algorithm, in that it moves the source
rate xs(t) towards the target rate xs(t) at a constant pace
of 1/τ 2

s .
The duality model of TCP Reno and Vegas is sum-

marized in Table 1. In this paper we do not consider the
dynamics of different TCP/AQM schemes. Hence G is not
included in the Table.

3 SIMULATION STUDIES

In this section we present simulation studies carried out
using ns-2, to empirically validate the duality model of TCP
congestion control. We consider the source algorithm TCP
Reno with REM, RED and DropTail as queue management
algorithms and TCP Vegas with DropTail. In the following
experiments we focus in particular on three main results
of the duality model. First, through simulation studies we
show that congestion control maximizes aggregate source
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utility. Then we validate two equilibrium properties: the
window size and the loss/marking probability at the link.

3.1 TCP Reno

The first experiment looks at the aggregate utility as a
function of time from when sources start till an equilibrium
is achieved. The experiment involves a single link with a
capacity of four pkts/msec. We use a buffer size of 120
pkts. We have REM, RED and DropTail at the queue. For
REM we set γ = 0.001, α = 0.1 and φ = 1.001. The
link algorithm is updated every 2msec. For RED we have
min thresh=10, max thresh=60 and w_q=0.002. We used
the gentle marking probability function. There are twenty
sources starting at time = 0sec with round trip propagation
delays equal to 20, 40, 60, ... 400ms. The experiment runs
for 20 seconds. We repeat the experiment twenty times thus
obtaining twenty different samples of the random process.
We take the average of the twenty different experiments.
For the Reno/DropTail experiment, in order to introduce
some randomness we made the starting times of the sources
uniformly distributed between 0 and 0.1 sec. Figure 3 plots
the aggregate utility of the twenty sources as a function
of time. We have used units of pkts/msec for the source
rate and msec for the delay. The initial overshoots present
in the plots are due to slow start. During transient, the
aggregate utility could exceed its equilibrium value since
the capacity constraint can be violated. The result confirms
that congestion control maximizes the aggregate source
utility given in Table 1.

0 1 2 3 4 5 6 7 8 9 10

0.2

0.4

time (sec.)

To
ta

l U
til

ity

REM/Reno

0 1 2 3 4 5 6 7 8 9 10

0.2

0.4

time (sec.)

To
ta

l U
til

ity

RED/Reno

0 1 2 3 4 5 6 7 8 9 10

0.2

0.4
DropTail/Reno

time (sec.)

To
ta

l U
til

ity

Figure 3: Aggregate Source Utility

The second experiment looks at equilibrium properties
that result from the interaction between Reno and the differ-
127
ent AQM’s. In particular we consider the equilibrium mean
window size and the loss/marking probability at the con-
gested link. According to (7), sources that see the same loss
probability have equal equilibrium window size, irrespective
of their propagation delay. As shown below, this relation
is observed for RED and REM, and for DropTail when the
buffer capacity is small. With large buffer capacity, sources
with the smallest delay always monopolize bandwidth to
the detriment of other groups. One possible cause for this
discrepancy could be the global synchronization that Drop-
Tail creates. We do not completely understand the behavior
of DropTail, and an in-depth investigation of this is left
for future work. Here we present simulation results with a
smaller buffer size that gives results in line with the duality
model.

The experiment involves four groups with twenty
sources in each group. The round trip propagation delay
of the sources within each group is identical but it differs
between different groups. Only one group is active at time
t=0sec. Every fifty seconds thereafter another group starts
transmitting until all the four groups are active at t=150sec.
The round trip propagation delays of the groups are 200,
150, 100 and 50 msecs in the order in which they start
transmitting. The congested link has a capacity of eight
packets per msec. For REM and RED we use a buffer size
of 120 pkts. For DropTail we used a buffer size of 40pkts.
With REM we have γ = 0.001, α = 0.1 and φ = 1.001.
The link algorithm is updated every 1msec. For RED we
have min thresh=10, max thresh=60 and w_q=0.002. We
used the gentle marking probability function.

Figure 4 gives the mean window size of each group
and Figure 5 gives the loss/marking probability at the link.
The mean window size is the average window size over
the twenty sources at each time instant. The straight line
in Figure 5 gives the loss/marking probability predicted by
the model. The loss probability is calculated at every 1sec.
The total number of packets dropped during an one sec.
interval is measured and then divided by the total number
of packets that could have been sent during a period of
1sec. With REM marking the marking probability in the
figure is the exact value the link algorithm has computed.
The corresponding value for RED marking is not presented
due to its severe oscillation.

As predicted by the duality model the mean window
size of each group is equal irrespective of its different
propagation delays. The loss probability for REM lies just
below the predicted. For RED the loss probability lies close
to the predicted. It lies above the predicted for DropTail.
With all three schemes the deviation of the predicted value
from experimental value increases as window size becomes
smaller. This is because the model does not capture timeout,
which occurs more frequently when congestion becomes
severe and window size becomes small.
2
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Figure 4: Mean Window Size

3.2 Vegas/DropTail

In this section we present simulation results for the same
experiments as in the last section but with TCP Vegas as the
source algorithm and DropTail at the queue. We set αs and
βs to be 3 pkts/rtt. The queue size is set to 400pkts thus
enabling the network to reach equilibrium. The equilibrium
properties of the interaction between Vegas and DropTail is
quite different to that encountered with Reno as the source
algorithm. Figure 6 plots the aggregate utility as a function
of time. Here the increase in the Total utility is more
apparent and more gradual.

Figures 7 and 8 plot the mean window size and queue
length respectively. The equilibrium mean window sizes
of the groups are not equal but with the choice of equal
values of αs and βs we expect a equal source rate for all the
sources. The simulation results confirm that. The round
trip delays seen by the sources, in particular the ones in the
group staring at last are distorted because of the nonzero
queue length present at the start of the last group. This
has the effect of increasing the baseRTT value (estimated
propagation delay) of that group by the queuing delay. This
explains the larger than expected mean window size of the
last group; see (Low et al. 2001b) for more details.
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