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ABSTRACT

The bulk of Internet traffic is carried using variants of the
TCP protocol. A realistic simulation-based performance
study of any distributed application run over the Internet
(e.g. reliable multicast) must therefore account for the
impact that TCP background traffic has upon application
behavior. Because TCP flows are shaped by other TCP
flows, it is difficult to model TCP and its impact on other
traffic other than by explicitly simulating it. This adds a sig-
nificant computational burden to the simulation. This paper
describes how we use fluid-based models of TCP to reduce
the computational workload of simulating background TCP
traffic. In particular we describe how a number of significant
aspects of TCP can be described within a fluid formulation,
how fluid models give rise to specific challenges that must
be addressed by modeler and simulation kernel, and how
we have addressed these in the DaSSF simulator.

1 INTRODUCTION

It is impossible to under-estimate the importance of TCP
to the Internet, or the effect it has on the behavior of
Internet traffic. Numerous studies have been done to tune
and optimize TCP traffic. One cannot realistically consider
how an application distributed over the Internet will behave
without accounting for the effects that TCP has on it, both
indirectly as its traffic interacts with TCP shaped traffic in
the network, and (if the application uses TCP itself) directly.

TCP is a moderately complex algorithm. Under TCP,
the injection of an application’s traffic is dynamically gov-
erned as a function of how much buffer space its intended
receiver has available, the estimated round-trip delay of a
packet from sender to receiver and back, and effects of
congestion in the network as reflected in time-outs and lost
packets.

The most straightforward way to model TCP is to
do segment level simulations of individual TCP flows (a
segment is TCP’s “packet” which holds both TCP header
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information and data, the maximum size of which is typically
between 1500 and 500 bytes,) because TCP’s behavior is
described in terms of its action on segments. However, this
is a computationally costly solution if we are interested in
the behavior of an application, and need only to capture
the effects of TCP on its traffic. For instance, if we are
interested in the behavior of a multicast session that involves
one hundred multicast entities, and expect that each link
involved will have 100 independent flows (only one of
which will be the flow of interest), then on the order of
ten thousand separate TCP flows have to be simulated. In
this case, to a first approximation, only one percent of the
simulation effort directly involves the multicast!

This paper develops a fluid-based simulation model of
TCP. The intuition is that we describe traffic flow in terms
of rate functions. At any point in time, at any place in
the network, the traffic flow of a given TCP sesssion is
described in terms of the rate at which its traffic flows
there, in bytes-per-unit-time. The rate functions we con-
sider are piece-wise constant in time. Computational work
occurs in the simulation only at instants when a flow’s rate
changes. The degree to which this represents a savings
over a segment-oriented approach depends, in part, on the
number of “equivalent” segment events that one rate change
represents—estimated as the rate times the length of simula-
tion time the flow rate remains constant, divided by segment
size (in bytes). Obviously, the potential for computational
savings is greatest when rates remain constant for significant
periods of time. However there are hidden ramifications
of fluid modeling that can significantly detract from this
potential. Nor should it be forgotten that the computational
grain of an event in a fluid-model may be different from
that of a segment-oriented model. Nevertheless, intuition
tells us that potential exists; we are working to exploit and
assess it.

The notion of using fluid to model communication traf-
fic has been explored primarily in mathematical contexts.
Its potential for performance gains in a simulator was recog-
nized in (Kesidis, Singh, Cheung, and Kwok 1996) and have
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been analyzed further in (Liu, Figueiredo, Guo, Kurose, and
Towsley 2001). In (Nicol, Goldsby, and Johnson 1999) we
show that under a wide range of conditions the mean packet
latency estimated from a fluid model through a network of
fluid-oriented switches is very close to that of an equiva-
lent packet-oriented simulator, as is the mean fraction of
successfully delivered packets.

Recently attention has turned to modeling TCP using a
fluid simulation. Past work ((Yan and Gong 1999), (Bonald
1998) and (Kumaran and Mitra 1998)) does so through differ-
ential equations, whose solution describes average transient
flow behavior than than specific sample paths. Because
complex interactions between flows within a network will
give rise for unpredictable boundary conditions for such
methods, we consider here an approach that is less mathe-
matically and more closely models individual sample paths.
Our model includes slow start, congestion avoidance, time-
outs, lost data, and the fast-retransmit mechanism. We
accomplish this by developing a modeling framework in
which both discrete events (like loss of a segment) and
continuous activity (the uninterrupted flow of traffic for
some period of time) can co-exist, with the continuous and
discrete parts of the model explicitly affecting each other.
This level of detail and interaction is generally not possible
to capture in a mathematical model.

2 MODELING ASSUMPTIONS

The most important modeling assumption is that traffic can
be thought of as a fluid. A simulator built around this
premise is driven by events that describe changes in the
average transmission rate of a traffic stream. Consider a
small system comprised of some hosts, each connected
to the same switch. A stream runs from a source host
through the switch and to a destination host. The source
initiates the stream with a message describing how often
the source injects bytes into the stream. The message is
scheduled to arrive at the switch, after a latency delay across
the channel. This is the same latency delay as a segment
would see. The switch model processes the message to
compute the effects of a rate change in one of its input
streams, may impose an additional latency delay internally,
and then sends a message to the destination host, again
after a latency period. Thus we see that a simulator of
a fluid model exchanges messages about rate changes in
very much the same way as would segments be exchanged,
imposing the same latencies on their transmission. A stream
can be thought of as a pipeline whose length is the sum of
the latencies between elements, holding at various places
in the pipeline messages (about rates) that are “moving”
through it. It is important to remember though that the rate
of movement through the pipeline is not the flow rate of
the traffic being modeled—the former reflects latency while
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the latter reflects bandwidth. Later we will say much more
about these messages and their content.

We view a TCP session in terms of two communicating
agents. We assume that each agent communicates with an
application that either provides it data, takes data from it,
or both. We assume that the network route from one agent
to another may involve multiple routers, but that this route
does not change over the life of the session. The route need
not be the same in both directions.

We describe an application’s presentation of data to TCP
with an offered rate function, and assume the application
is inter-locked with TCP with respect to data buffers (e.g.,
it doesn’t try to send data when TCP’s buffers are full.)
We assume that every data segment a given agent sends
has the same size, although sizes may be heterogeneous
among agents. This assumption allows both for an agent
that sends data in bulk, an agent that merely sends TCP
headers containing acknowledgment information in response
to that data, and an agent that sometimes sends segments
containing data, and sometimes send segments comprised
merely of a header.

We do not explicitly model the three-way handshake
that initiates a TCP session, although there is no fundamental
reason we could not—we assume the behavior of interest
is the long term transfer behavior and focus exclusively on
that. Similarly, in the interests of simplification, we assume
that an application consumes data received from TCP as
soon as it is available (in order). In this spirit we assume that
the receiver advertised window (space available to receive
data, advertised by the potential recipient in the header of
every segment it sends) is constant.

At any point along a route between a session’s agents,
we describe the traffic behavior of the session (in one
direction) there with a “rate function” that is piece-wise
constant in simulation time. The fluid model we explore is
deterministic, in the following sense. If at a given physical
location, between simulation time s and t (s < t), the flow
is λ bytes per unit time, then we assume that between s
and t , precisely (t − s)λ bytes flow through that location.
There is no variance in byte inter-arrival times while the
rate is constant.

Our fluid model explicitly accounts for latencies across
communication channels. If a flow is mapped across a
channel whose latency is d , then normally the behavior
of the flow at the output end of the channel is related to
the behavior at the input by a simple translation in time:
λ(out)(t) = λ(in)(t − d).

We describe the instantaneous state of a flow, at a
physical point, with four elements: raw flow rate, in bytes per
unit simulation time, delivered fraction (which is unitless)
specifying how much of the original transmission is being
delivered at this point, the data ratio in data bytes represented
per transmitted byte, and the acknowledged data ratio in
data bytes acknowledged represented per transmitted byte.
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A rate change describes a change in one or more ele-
ments of a flow description, specifies (possibility implicitly)
a place along a flow’s path where the change is effective,
and specifies a time at which it first becomes effective.
A model element (e.g. a router) can easily determine the
volume of flow that has past it, or even the index of the byte
currently flowing past it, given a history of rate changes.
We also allow a rate change to carry with it an additional
data element we call a “cork”. The idea is that the cork
is carried along positionally in the flow, containing infor-
mation placed there by a network element, to be read by
other network elements on the path as the cork flows by.
We employ corks to signal a variety of things, such as the
start of a retransmission, and whether a raw byte flow rate
of zero was set at the source.

3 TCP PRIMER

We can only sketch important characteristics of TCP. for a
full treatment see virtually any standard networking text.

TCP is a full duplex protocol. Traffic flows in both
directions between agents, even if one of the directions
contains only acknowledgments. TCP views data flow
(excluding header bytes) in terms of a contiguous sequence
of enumerated bytes. It refers to a segment by the index
of its first data byte, the sequence number Among other
things, the header contains the sequence number and the
number of bytes in the data segment. The recipient can
therefore compute the sequence number of the next segment
it expects to receive. This very quantity is carried in the
header’s acknowledgment number field.

TCP is a sliding window flow control protocol. Each
agent maintains variablesLBS(last-byte-sent) andLBA (last-
byte-acked). The former is the largest sequence number
of any segment sent by the agent, the latter is the largest
acknowledgment number seen by this agent in any segment
from its partner. TCP dynamically computes the maximum
value that the window (LBS − LBA) is allowed to have.
The agent is permitted to send the next segment only when
this difference is smaller than the permitted maximum.

An agent expects to receive segments in contiguous
order. Under normal circumstances an agent receives the
next segment it expects, and either explicitly sends a header
(with no data segment) with increased acknowledgment
number, or soon sends another data segment whose header
contains that acknowledgment number. It is possible for the
network to discard a segment or deliver segments out-of-
order. When an agent receives a segment other than the one
it expects, the fast retransmit scheme requires it to send an
acknowledgment—but the acknowledgment number will be
a duplicate of the last one sent. An agent that receives three
duplicate acks in a row considers the segment so identified
to be lost. An agent also detects lost segments by using a
timer, and considering a segment to be lost if it detected
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to be unacknowledged after a certain (dynamic) timeout
interval. However detected, an agent retransmits a segment
it considers to have been lost.

We now return to the dynamics of the maximum allowed
window size. Recalling that the window identifies the total
number of sent-but-unacknowledged bytes, one rule is that
the maximum allowed window size can never exceed the
advertised receive window, called adrw, inserted into every
segment’s header. An agent should never send more data
than the recipient has available. In this the window serves
a flow control purpose, additional rules provide congestion
control. Ideally, just before the application presents a new
segment for transmission to a full window, an acknowledg-
ment arrives that first opens the window and so permits the
segment to be sent. If there is congestion in the network
then the carrying capacity is smaller and so the window
ought to be smaller.

Congestion control rules govern the behavior of the
“congestion window” variable cwnd and the “slow-start
threshold” ssthresh; the maximum value of LBS−LBA
permitted is the minimum of cwnd and adrw. Updates to
cwnd depend on whether congestion control is in “slow-
start” or in “congestion avoidance” mode. In slow-start
mode the protocol attempts to find the general magnitude
of the proper window size. At initiation, cwnd is set
to the size of one segment’s data block, thereby allowing
exactly one segment to be sent before the window is full.
ssthresh is set to 65K. Then, for each segment that is
acknowledged, cwnd is incremented by one data block size.
The net effect is to effectively double the congestion window
every round-trip delay. Consider–after one round-trip delay
the acknowledgment for the first segment comes in. cndw
is increased to two segments worth, and two segments
are sent. After a round-trip-delay two more segments are
acknowledged, cwnd increases to four segment’s worth,
and four segments are sent, and so on. Slow start mode
ends when either cwnd reaches or exceeds ssthresh, or
if (first) a segment is thought to be lost (through a time-
out, or triple-duplicate acknowledgment). If a segment is
lost, ssthresh is immediately reduced to half the value
of cwnd. In both cases, “congestion avoidance” mode
is entered. Variable cwnd grows much more slowly in
this mode. An acknowledged segment causes cwnd to
be increased by 1.0/cwnd. An agent transitions from
congestion avoidance to slow-start mode in the event that
that a segment is lost. This means that ssthresh is set
to half the value of cwnd, cwnd is set to one (maximal)
data block size, and cwnd growth rules are then governed
by slow-start.

TCP must detect and retransmit lost segments. One
detection mechanism is for a agent to remember the trans-
mission time of each segment, then run a periodic timer
whose firing checks whether unacknowledged segments have
waited for longer than a timeout interval. If so, the segment
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is immediately retransmitted. An agent also uses the “fast
retransmit” mechanism. This works because a acknowledg-
ment segment is sent for (nearly) every segment received.
The acknowledgment number is the highest numbered con-
secutive byte received to date. Thus, if a segment is lost,
subsequent segments received each trigger an acknowledg-
ment segment that has the same acknowledgment number as
the previous acknowledgment segment. Under fast retrans-
mit, if an agent receives three consecutive segments with
the same acknowledgment number, it infers that the seg-
ment following the last one acked is lost, and immediately
retransmits it.

This sketch illustrates that the TCP specification is
inherently discrete. Our challenge is to model its essential
components with a fluid model.

4 FLUID MODELING OF TCP

The heart and soul of TCP is its control of the window.
Whereas the TCP specification advances LBA and LBS by
integers, a fluid formulation describes their advance with
piece-wise linear functions of simulation time. These func-
tions are derived from rate change descriptions generated
and processed by the simulator, associated with a sending
flow and an acknowledgment flow back from the recipient.

Formalizing what we described earlier, a flow descrip-
tion at simulation time t (at some implicitly understood
location in the network) is a tuple (λbyte(t),p(t),τdata(t),
τack(t),φ(t)) where λbyte(t) is the rate at which raw bytes
are flowing in simulation time, τdata(t) is the ratio of data
bytes in the stream to transmitted bytes, and τack(t) is the
ratio of bytes acknowledged by the stream to transmitted
bytes; we define both ratios to be zero if λbyte(t) = 0. φ(t),
the flow position, is the byte index of this position in the
flow, set at the point of transmission and carried along in
the flow description. p(t) is the delivered fraction. Infor-
mally, the flow being received at time t corresponds to flow
transmitted by the source at some time s (s being the time
at which byte position φ(t) was transmitted). t − s is the
latency incurred by the transmitted flow. If we let λbyte(s)
denote the rate at which the application offers data to TCP
at time s, then p(t) = λbyte(t)/λapp(s), the instantaneous
fraction of flow transmitted at s, that is being received at
time t .

We will find it useful to refer to the rates at which
data bytes are delivered, and at which data bytes are being
acknowledged, per unit simulation time. These rates are
be λdata(t) = τdata(t) ∗ λbyte(t) and λack(t) = τack(t) ∗
λbyte(t)/p(t), respectively. (Our use of p(t) here models
the accumulating effect of acknowledgments, and will later
be discussed in more detail.)

Because TCP is a full duplex algorithm, a segment
carrying data may in its header carry an acknowledgment
number for data the sender has itself received in its dual
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role as data recipient. For example, an implementation of
HTTP that uses TCP may have data segments that carry
another URL as data and an acknowledgment number for
data segments received. We assume that each data-bearing
segment transmitted by an agent has the same size, allowing
for header-only segments that carry just acknowledgments.
However, different agents may have different data segment
sizes. Because we allow transmission of an arbitrary mixture
of data-bearing and non-data-bearing segments, we support
models of general applications using TCP, subject only to
the assumption of constant data segment sizes in a given
flow direction.

An agent’s transmission rate is a function of the rate
at which an application delivers bytes to TCP, the state of
the maximum allowed window size, and the rate at which
previously sent bytes are acknowledged. Thus the behavior
of two flows define a window. To distinguish between
outgoing and incoming flow descriptions at an agent, we
use superscript (out) to denote the flow the agent transmits,
and (in) to denote the flow it receives.

The model supposes that there are always two directional
flows associated with a pair of agents, each agent serving
as the source of one and destination of the other. Each flow
defines a path through network devices. An agent alters the
flow for which it is source by creating a time-stamped rate
change and passes it to the next simulated network device
on the path. The delivered fraction component of this rate
change is always 1.0. The other components reflect the
mixture of data and data acknowledgments that the agent
is inserting into the stream, and the rate at which it is
transmitting data.

An agent may end up retransmitting data, and may
receive retransmitted data. An agent can calculate byte
indices within a flow from a history (in simulation time)
of rate changes, and a reference point (s, b) which asserts
that at time s, byte index b passed this point. An agent
needs reference points for both outgoing and incoming
flows. When an agent retransmits, it attaches to the new
rate change a cork containing the reset starting byte index,
taking the current time and that index for its new reference
point. When an agent receives a cork, it sets incoming
flow’s reference point to the time of receipt, and the the
contained byte index. A flow’s initial reference point is
(0, 0).

Given simulation time t , if a flow’s reference point is
(s, b), then the upper edge of the send window at time t is
given by

LBS(t) = b +
∫ t

s
λ

(out)
data (x) dx .

The integral is easy to evaluate on the fly because the rate
function is piece-wise constant. The behavior of the lower
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edge LBA() function is similar.

LBA(t) = b +
∫ t

s
λ

(in)
ack (x) dx .

The subsections to follow discuss diverse components
of the TCP fluid model. Later in the paper we appeal to
these descriptions to concisely document all the discrete
events used by the simulation, and all the processing that
occurs at each event.

4.1 Overview

While still lacking precise definitions, we can still get a sense
of how a fluid model operates. In TCP the decision to trans-
mit a segment depends on the relationship of LBS−LBA to
the maximum data window size min{adrw,cwnd}. In
the fluid formation, the data transmission rate at time
t depends on the relationship of LBS(t) − LBA(t) to
min{adrw,cwnd(t)}. To illustrate, consider Figure 1. At
the beginning of the period depicted, λ

(in)
ack (t) > λ

(out)
data (t) for

t < 2. In this interval LBS(t) − LBA(t) actually decreases
as a function of t . At time 2 however the acknowledged byte
rate diminishes so that LBA(t) grows more slowly in t , and at
time 4 the acknowledged byte rate drops to zero and LBA(t)
stops growing in t entirely. The value of LBS(4)−LBA(4) is
presumed here to be less than min{adrw,cwnd(4)}, and so
transmission can continue unabated until the window is full,
at time 6, when LBS(6)−LBA(6) = min{adrw,cwnd(6)};
at this point transmission stops. The acknowledged byte
flow starts up again at time 8, which “opens” the window
to allow transmissions, at a rate no larger than that at which
the window is being opened.

Time

0 2 4 6 8 10 12 14

LBS(t)

LBA(t)

Figure 1: Sender window behavior in fluid formulation
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Figure 1 also serves as a background for describing the
nature of event processing in the fluid formulation. The
event at time 2 is triggered by the arrival of a rate change on
the acknowledged byte stream. Event processing recognizes
that in the absence of further rate changes (of which it has no
foreknowledge) LBS(t) − LBA(t) grows linearly in t . This
cannot continue ad infinitium for eventually the window
limits will be reached. Using this function, the earliest time
s such that LBS(s) − LBA(s) = min{adrw,cwnd(s)} is
computed, and a “window-filled” event to deal with this
occurrence is scheduled. However, the next event to occur
happens before s, at time 4, when a rate change arrives
reporting that the acknowledged byte ratio drops to zero
(hence the flow rate drops to zero). The event at s is
canceled, no longer being valid. LBS(t) − LBA(t) is still
linear in t , only now with different coefficients, and so
we compute the intersection with maximal window size
again and schedule a window filled event at 6. This event
executes, because no other events intervene. It sets the
transmission rate to zero (and generates a rate change),
because the window is full, and not moving. This state can
be changed only when the acknowledged byte flow starts
again, which it does at time 8. Transmission can begin
again, but at a rate that does not cause the window limits to
be exceeded. The window remains in this state until either
the sending application interrupts its data supply, or the
acknowledged byte rate changes. It is in such a state that
the fluid model achieves its greatest computational savings
over segment-oriented models.

4.2 Modeling The Data Arrival Process

We assume that a large buffer N-byte buffer exists between
TCP and an application using TCP to send data. The
application writes data into it, and TCP imposes its send
window pointers within it. The buffer is assumed to be at
least as large as the maximum window size TCP allows.
We let S(t) denote the number of bytes buffered at time t ,
and X (t) be the index of the last byte written into it, as
measured at time t .

We model the behavior of the application with a offered
load rate function λapp(x, f (t)), where x is byte index, and
f (t) is a flag indicating whether the flow is on or off at time
t . λapp(x, 0) = 0 whereas λapp(x, 1) > 0. The application
and TCP are interlocked, in the sense that if the buffer is
full at time t with greatest byte index x , then the application
writes data into it at the minimum of λapp(x, f (t)) and the
rate at which TCP is emptying the buffer at time t . If the
buffer is not full, the application fills it in accordance with
the offered load function (assumed to be piecewise constant
in x).

We also define function λsrc(t) to describe the maximum
rate at which data can be transmitted from the buffer, as a
function of simulation time t . If S(t) > 0, λsrc(t) is defined
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to be outgoing data bandwidth (accounting for bandwidth
consumed by non-data header bytes) ; if S(t) = 0 it is defined
to be λapp(X (t), f (t)), which simply means data cannot
leave any faster than it enters. The application toggles the
source on-off flag asynchronously from the TCP simulation.
Notation f (t) simply identifies the value of that toggle at t .

4.3 Modeling Maximum Window Size

One of the distinctive features of TCP is its congestion
control mechanisms and the effect they have on traffic. We
now describe how we can capture those features in a fluid
framework.

Congestion control is reflected in the TCP variable
cwnd, which we treat as a piecewise-linear function
cwnd(t). Slow start and congestion avoidance modes are
defined just as in TCP. We describe cwnd’s growth in slow-
start with rate function λcwnd (t) = λ

(in)
ack (t). This just says

that for every acknowledged byte, cwnd increases by one
byte. Whenever an event at time t is processed in slow-start
mode, the change in cnwd since its last update is computed
from the product of λcwnd () just prior to time t , and the
length of time since the last update.

Figure 2 illustrates the effect. Suppose that at bandwidth
speeds transmission of a segment takes one unit of time, and
that the round-trip delay is 20. cwnd(0) is initialized to one
segment’s worth of data bytes. The transmission stops at
time 1, and the start of the acknowledgment flow is received
at time 20, which turns the transmission flow back on. In this
case we assume that data and acknowledgment flows are at
bandwidth speed so bytes are acknowledged at the rate they
were sent. The acknowledged bytes flow stops after one
unit of time, but between times 20 and 21 λcwnd (t) equals
the acknowledged byte rate. Event processing at time 21
determines cwnd(21) by adding to cwnd(20) the integral
of λcwnd (t) over [20, 21], yielding 2. It then recognizes that
LBS(21)−LBA(21) < cwnd(21) and schedules a “window
filled” event to occur at 22. The window filled event stops
the transmission because the acknowledgment rate is zero.
cwnd(22) is updated using the same logic as was cwnd(21),
but with no change effected as its rate of change is zero over
[21, 22]. The same sequence is triggered at time 40 with
the arrival of an acknowledged byte rate change. However,
now the acknowledgment rate stays non-zero for 2 units of
time because two segments are being acknowledged. At
time 42, when the acknowledgments stop, cndw(42) has
grown to reflect four segments, enabling the transmission
to continue until time 44. This pattern continues every 20
units of time, each time doubling the volume of data sent
out, just as does real TCP in slow-start mode.

We define the maximum allowed window size at time
t as

mxwnd(t) = min{adrw,cwnd(t)}, (1)
129
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Figure 2: Behavior of Slow-Start in Fluid Model

and define its rate function as

λmxwnd (t) =
{

λ
(in)
ack (t) if cwnd(t) < adrw

0 if cwnd(t) ≥ adrw
. (2)

The model logic has to account for the possibility ofcwnd(t)
exceeding adrw. When scheduling the next window filled
event, two times are computed. One is the earliest time s at
which LBS(s)−LBA(s) = adrw, given the present rates of
flow, the other is the earliest time t when LBS(t)−LBA(t) =
cwnd(t), given the present rates of flow and growth in
cwnd(). The earlier of s and t define the time of the event.
It is possible for s = t = ∞, in which case the event is not
scheduled.

In congestion avoidance mode cwnd grows by a seg-
ment’s worth every time a full window of data is acknowl-
edged. As cwnd grows, the window size grows, so the
addition to cwnd becomes less and less frequent. Conse-
quently the growth of cwnd is non-linear in the number of
acknowledged bytes. It is important for us to model the
instantaneous growth of cnwd, so we define λcwnd (t) to
approximate the real non-linear growth, with a piece-wise
constant function. As the growth in cwnd is small in this
regime, piecewise constant approximations are fairly accu-
rate, and the constants can be chosen to change only after
significant numbers of segments have been acknowledged.

4.4 Modeling Raw Transmission Rate

An agent maintains a flow description for its outgoing flow.
The components of the flow description are a function of
four binary conditions.
6
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• Source outflow state : Either on (λapp(t) > 0), or
off (λapp(t) = 0).

• Acknowledged bytes inflow state : Either on
(λ(in)

ack (t) > 0,) or off (λ(in)
ack (t) = 0.)

• Data inflow state : Either on (λ(in)
data(t) > 0,) or

off (λ(in)
data(t) = 0.)

• Window state : Either open ( LBS(t) − LBA(t) <

mxwnd(t)), or saturated ( LBS(t) − LBA(t) =
mxwnd(t) ).

We will describe an agent’s state as a vector of these,
e.g., (on,on,off,open), with components in the order given
above. It is a bit tedious to go through all sixteen possible
states. We can however give the general principles used to
implement transitions between vector states.

The first principle is that if state constraints force the data
outflow ratio to be zero, (i.e. τ

(out)
data (t) = 0) while the data

inflow state is on, then the raw transmission rate is crafted
to reflect sending of data-free headers that acknowledge the
incoming data. The raw transmission rate is modeled as the
header size divided by the time between successive segment
arrivals :

λ
(out)
byte (t) = Bhdr

(B(in)
data/λ

(in)
data(t))

= Bhdr

B(in)
data

λ
(in)
data(t).

If on the other hand logical conditions call for positive
outgoing flow of data, then any acknowledgment traffic is
assumed to be piggy-backed onto the data segments. The
raw transmission rate is entirely defined by other conditions,
and we set τ

(out)
data (t) = B(out)

data /B(out)
seg .

A second principle is that when the window state is sat-
urated, the data transmission rate is constrained by the rate
of received acknowledged bytes. Our model of raw trans-
mission rate in these states captures the obvious coupling
between receipt of acknowledgments, and transmission of
new segments. If the window size were constant, then a
saturated window would correspond to behavior where the
TCP window is full, an acknowledgment comes in, releas-
ing the transmission of another segment and the window is
immediately full again. The intuition then is to define the
data transmission rate to be equal to the acknowledged byte
rate, and inflate the raw transmission rate to include header
bytes. We amend the intuition to account for growth in the
window size. In either of the congestion control modes,
acknowledgment of one segment allows the transmission
of strictly more than one segment—in slow-start it enables
two, in congestion avoidance it enables one plus 1.0/cwnd.
The data transmission rate is designed to retain the equality
LBS(t) − LBA(t) = mxwnd(t) as t grows. The precise
details of this depend on whether either of the window
boundaries are moving at time t . If the acknowledged byte
129
boundary is moving (e.g. λ
(in)
ack (t) > 0), we need

λ
(out)
data (t) =

(
λ

(in)
ack (t) + λmxwnd (t)

)
,

so that we define λ
(out)
byte (t) = (B(out)

seg /B(out)
data )λ

(out)
data (t), and

τ
(out)
data (t) = B(out)

data /B(out)
seg . On the other hand, if the ac-

knowledged byte boundary is not moving, neither can the
sent byte boundary, so we require λ

(out)
data (t) = 0. The the raw

transmission rate is zero, unless the first principle applies.
The third principle is that if the window is not saturated,

then the data transmission rate is limited by the state of the
buffer between application and TCP, and the application’s
own data production rate. We earlier defined λsrc(t) to reflect
maximum data transfer from the buffer, the raw transmission
rate is scaled to account for header information.

4.5 Modeling Flow State

Our description of flows relies on the classification of an
agent’s incoming flow. First, the inflow is either sullied or
unsullied. It is sullied at time t , if at some time s a rate
change arrived with p(in)(s) < 1.0 and τ

(in)
data(s) > 0, and

no “reset” cork has arrived between times s and t . To be
sullied is to have lost data bytes and not yet have recovered
from that.

In addition, at time t , each of the data and acknowledged
byte components may be on (> 0) or off (= 0). This leads
us to describe the state of a flow as a vector of three
binary components : sullied state, data flow state, and
acknowledged byte flow state.

4.6 Modeling Acknowledgments

The role acknowledgments play in TCP is paramount— they
move the send window, and increase its size. We judge
therefore that timeliness of response to received data is
critical. Our fluid model acknowledges flow at the instant
it is received—it might be thought of as acknowledging
bytes rather than segments. If the receiving agent is trans-
mitting data, we model piggy-backing the acknowledgment
flow onto the data. If however the receiving agent is not
transmitting data, we model transmission of data-free TCP
headers carrying acknowledgment information.

In real TCP, any received segment carries acknowledg-
ment information, even if the receiver has detected a “hole”
in the incoming sequence of segments. We model this by
accepting transmitted acknowledgments, not the received
ones. The idea is that like real TCP, any acknowledgment
that is received serves as well as previous acknowledg-
ments that were not. To accomplish this we have defined
λ

(in)
ack (t) = τ

(in)
ack (t) ∗ λ

(in)
byte(t)/p(t) for p(t) > 0. The fac-

tor p(t) inflates the rate to account for any data lost after
7
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transmission. When p(t) = 0 then none of the sent data is
being received and so in this case we define λ

(in)
ack (t) = 0.

We have already described how the outgoing acknowl-
edgment flow affects the outgoing raw transmission rate;
we need still to define component τ

(out)
ack (t). This is simply

done. Since the acknowledged byte rate is identically the
rate at which data bytes are received in an un-sullied flow,
then we require that

λ
(out)
byte (t)τ (out)

ack (t) = λ
(in)
byte(t)τ

(in)
data(t).

Re-writing, we have τ
(out)
ack (t) = (λ

(in)
byte(t)τ

(in)
data(t))/λ

(out)
byte (t)

for an un-sullied flow where λ
(out)
byte (t) > 0, and τ

(out)
ack (t) = 0

when λ
(out)
byte (t) = 0 or the incoming flow is sullied at t .

These relations define the description of an agent’s
outgoing flow (with the exception of p(out)(t), which is
always 1.0 leaving an agent) as a function of agent state.

4.7 Modeling Lost Traffic

Traffic can be lost in the interior of the network. In discrete
TCP an agent can infer that one or more segments are lost (or
out of order) by analyzing sequence numbers on segments
it receives. We accomplish the same thing by maintaining
the delivered fraction and flow position components in all
rate changes. Suppose a flow with description (λ(in)

byte(t),

p(in)(t), τ
(in)
ack (t), τ

(in)
data(t)) enters a device where some of

the flow is lost, e.g. due to buffer overflow. If bytes are
lost at rate λloss(t), then the flow description immediately
past the point of loss is (λ(in)

byte(t)−λloss(t), p(in)(t)∗ (1.0−
λloss(t))/λ

(in)
byte(t)), τ

(in)
ack (t), τ

(in)
data(t), φ(t)). Here φ′(t) must

be computed by the device model. If the device retained
the last flow descriptor received before introduction of the
loss, say at time s, it can compute φ(t) as

φ(t) = φ(s) + (t − s)λin
byte(s)/pin(s).

These modifications allow a device receiving the flow de-
scription to see what the corresponding raw transmission
rate was at the source, just by accessing the flow position.

An agent detects loss by examining the delivered frac-
tion component of incoming rate changes. If a value less
than 1.0 is observed at time t on a previously un-sullied
flow, the agent sets τ

(out)
ack (t) = 0 and generates an outgoing

rate change. Its outgoing acknowledged byte ratio remains
zero until the incoming flow is reset (implying that the lost
data is being retransmitted). The eventual consequence of
setting τ

(out)
ack (t) = 0 is to set into motion TCP’s mechanisms

for detecting loss, and retransmitting.
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4.8 Modeling Fast Retransmit

Under fast retransmit logic, when a TCP agent receives
three successive headers containing the same acknowledg-
ment index, it infers that the segment whose first byte is
identically the acknowledgment index is lost, and engages
in retransmission logic.

In our model an agent detects “retransmission” of ac-
knowledgment indices at time t upon receiving a rate change
with component τ

(in)
ack (t) = 0. In response, if there is not

already a retransmission event scheduled, one will be sched-
uled at t ′, which is the projected time by which three error-
free segment headers will be received. The projection is
based on the assumption that the λ

(in)
byte and τ

(in)
data components

of the incoming flow will not change. The event may have
to be rescheduled if inflow characteristics change before t ′.
The rescheduling takes into account the volume of headers
that have been received in error-free flow since the last
rescheduling.

The three consecutive segments TCP uses to trigger fast
retransmission need not be contiguous in the data stream—
one or more segments may have been lost between them.
Likewise, as we compute three segment’s worth of headers
before retransmitting, we skip over sullied flow and resume
the accumulation when (and if) the delivered fraction returns
to value 1.0.

Once a retransmission event is scheduled, it will even-
tually be executed.

4.9 Modeling Timeouts

TCP will retransmit a segment if an acknowledgment for
it is not received within a certain period of time (which is
dynamically computed as a function of measured round-trip
delay times). Some variants of TCP implement the timeout
mechanism at a fairly coarse level of granularity. Every
500 milliseconds a check is made for timed-out segments,
and any are retransmitted at that instant. An approximation
of this mechanism is easy to implement. When the timeout
timer fires at t , we compute the time s at which byte byte
L B A(t) was transmitted, and if t exceeds s plus the timeout
interval, the entire window is retransmitted. Finer resolution
mechanisms are possible.

4.10 Modeling Retransmission

Execution of the retransmission event changes the outgoing
flow description, and the congestion control state. We use
the same rules as TCP to transition between slow start and
congestion avoidance states, and to adjust values of cwnd
and ssthresh.

Suppose the retransmission event executes at time t .
All data bytes with indices between LBA(t) and LBS(t) are
considered lost; the stream resumes at LBA(t), so we reset
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LBS(t) = LBA(t). All of these bytes will be retransmitted
at bandwidth speed (since they reside already in memory).
A rate change event is created, with raw byte and data ratio
components for states (on,off,−,open). The acknowledged
byte ratio does not change, its definition being orthogonal
to the data being retransmitted. A “reset” cork containing
byte index LBA(t) is embedded in the rate change, and the
whole message is sent to the next device in the path.

5 SUMMARY

Our approach to fluid modeling of TCP is a work-in-progress.
This paper demonstrates the feasibility of modeling a rich
variant of TCP when traffic flow is described by piece-wise
constant rate functions. Significant tasks remain, including
development of fluid models of switching and routing that
do not suffer from the event explosion problem noted in
(Nicol, Goldsby, and Johnson 1999), validation and veri-
fication under diverse system models, and analysis of the
performance tradeoffs of this approach.
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