
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

USE OF DASSF IN A SCALABLE MULTIPROCESSOR WIRELESS SIMULATION ARCHITECTURE

Trefor J. Delve
Nathan J. Smith

Wireless Access Technology Research

Motorola Labs
1501 West Shure Drive

Arlington Heights, IL 60004, U.S.A.

ABSTRACT

The problem of efficient load distribution and scaling of
large-scale wireless communication system simulation on
multiprocessor architectures (both shared memory and
cluster arrangements) is considered. A flexible architecture
based upon DaSSF, the Dartmouth Scalable Simulation
Framework discrete event engine, is presented and evalu-
ated. The architecture is designed to deal with the compu-
tationally intensive aspects of radio communication
simulation in a distributed environment. Results are
presented that show how the architecture scales on a shared
memory multiprocessor SGI Origin with increasing
problem size and available processors.

1 INTRODUCTION

With the complexity of current cellular communications
systems and the time-to-market pressures on manufactur-
ers, it is becoming increasingly important that the dynam-
ics of a communications system are understood before
committing to development and deployment. The means to
this understanding is through detailed system simulations.
Perhaps due to the way communication systems are struc-
tured, simulations tend to focus on certain aspects of the
system (e.g., simulating the protocol stack or link level per-
formance). There is, of course, a great deal to gain from
these types of simulations in terms of understanding the
processes involved and any inherent problems. Each of
these components can be extremely complex in their own
right; however, focusing on these smaller components of
the system does not allow their interaction with the system
to be investigated. What is really required is a much more
detailed simulation which includes all of these smaller
components. With a suitable means to evaluate the system,
problems may be identified and investigated and solutions
tested.

The scale of the simulation required for an in-depth
knowledge of the system can sometimes appear daunting.

132
In order to study dynamic problems such as call origination
or handover, for instance, it is often necessary to simulate a
densely populated virtual city containing buildings and
streets, hundreds of basestation, and hundreds, if not thou-
sands of mobile users. Simulation of the basestation, user,
and infrastructure protocols must be performed to ensure
system fidelity. For this virtual city, details of the RF
propagation both inside and outside of buildings must be
known in order to evaluate signal propagation for the
communications equipment. Whenever one of the commu-
nications devices (basestation or user) changes a property
that affects the RF environment (e.g., position or transmit
power), the RF environment needs to be recalculated to
make communications devices aware of the interference
that they are receiving. These aspects of the simulation al-
low call statistics to be gathered and effects of protocol and
signal processing algorithms to be evaluated.

One of the main problems associated with creating
complex system simulations is clear: the large amount of
time it takes to simulate a system. Clearly, there are a num-
ber of simulation approaches that can be used to attack this
problem (e.g., sampled discrete time, discrete time with
data flow, and conservative and optimistic discrete event).
However, there is no escaping the fact that a considerable
amount of processing is required. Whilst in principle this
type of simulation may be possible on single processor
architectures, the amount of time a simulation would take
to complete would be unacceptable.

Accepting that system simulations of this scale are not
practical on single processor architectures brings up the
next question: how can we efficiently map the problem to a
multiprocessor architecture to reduce the simulation time?
It would be reasonable to state that a common method of
performing simulations is to evaluate the outputs of system
entities at discrete, but equally spaced, points in time,
working through from the simulation start-time to the end-
time. With this discrete time approach, it is often difficult
to map the problem onto multiple processor architectures.
When the problem can be mapped, it often requires a
1

Delve and Smith

shared memory architecture to efficiently access common
data inherent in this type of simulation. Whilst this ap-
proach has been effective on this type of architecture, its
effectiveness is limited on a cluster architecture. We re-
quire a more suitable approach for both multiprocessor
shared memory and cluster architectures. This was the fo-
cus of our work.

We decided that the best approach to creating a system
simulator was to make use of a third party simulation en-
gine allowing the development team to concentrate on the
main problem: development of a flexible architecture suit-
able for simulations of current and future technologies.
Given the tight coupling between the RF environment and
the communications entities in the simulation, we felt that
a conservatively scheduled, parallel discrete event simula-
tion engine was best suited to the task. After a review of
possible options, the Dartmouth Scalable Simulation
Framework (DaSSF) was chosen as the simulation engine.
This paper presents the development of a suitable architec-
ture based upon the DaSSF engine and the performance of
the prototype system.

The organization of the paper is as follows. In Sec-
tion 2 we present an overview of DaSSF, describing its
features and general principles of operation. In Section 3
we describe the areas we have identified as the main bot-
tlenecks in the system simulation and present a prototype
architecture. In Section 4 we present a number of the key
results showing simulation performance with various prob-
lem sizes and available processors. Conclusions are pre-
sented in Section 5.

2 OVERVIEW OF DASSF

DaSSF is an implementation of the Scalable Simulation
Framework (SSF) as proposed and maintained by the SSF
Research Network (SSFNET 2001) and sponsored by
DARPA, the Institute for Security Technology Studies at
Dartmouth, and the Renesys Corporation. It is a conserva-
tive, process-oriented, parallel, discrete event engine.

Simulations consist of a number of co-aligned entities
grouped together into timelines. A timeline is considered to
be a group of tightly coupled entities that are all dependent
on one another. When running in a cluster or on a multi-
processor machine, timelines are spread across the avail-
able machines and/or processors.

The basic layout of a DaSSF simulation consists of a
number of entities each containing processes and channels.
The channels of the entities are connected together so that
the entities can pass events back and forth amongst them-
selves. A breakdown and more detailed explanation of
these components and their function is included below. A
complete description of DaSSF may be found in the Dart-
mouth Scalable Simulation Framework User Manual (Liu
and Nicol 2001).
1322
2.1 Channels

A simulation channel provides a generic mechanism for
delivering events from one entity to another. This is also
the exclusive delivery mechanism for events between enti-
ties. There are two main types of channels: in and out.

Out-channels and in-channels are mapped together to
create a network of connections. When an event is written
to an out-channel it is delivered some non-negative time
later on a corresponding in-channel. If an out-channel is
mapped to more than one in-channel, then the transmitted
event is delivered to all corresponding in-channels after
applying all appropriate delay (see Section 2.4). The oppo-
site it also true. Multiple out-channels can be mapped to
the same in-channel.

While most channels are considered public, or exter-
nal, an entity can also have a private channel, called an in-
ternal channel, that can only be accessed by the processes
within the entity. Internal channels can be used to deliver
events from one part of an entity to another.

Channels exist from the beginning of the simulation to
the end. A channel cannot be deleted once the simulation
has begun. While it is possible to create a new channel af-
ter the simulation has begun, the authors of DaSSF rec-
ommend against doing so due to the relatively high associ-
ated cost (Liu and Nicol 2001).

2.2 Processes

A process’ responsibility is to react to triggered events and
schedule future events to occur. Processes wait for events
to arrive on one or many of the incoming channels belong-
ing to the process’ associated entity. When an event ar-
rives, the process is woken up and given a list of all events
that arrived on the channel of interest at the current simula-
tion time. After processing is completed, the process re-
turns to a wait state.

A process can schedule itself to be woken up at some
discrete point in the simulation (at time 3.0), or after some
amount of simulation time has elapsed (in 10 simulated
time-units). Alternatively, a process can request to be
woken up when either some amount of simulated time has
elapsed or an event has arrived. The process will be woken
up by whichever of the two conditions is satisfied first.

2.3 Entities

An entity is a simulated object such as a mobile telephone
or basestation. As already described, a simulation is built
out of entities and their connections to one another. The
entities interact with one another through the processes and
channels that they control. The processes use the entity’s
channels to send events to and receive events from other
entities in the simulation.

Delve and Smith

2.4 Delay

There are three types of delay in DaSSF: channel, map-
ping, and per-write delay.

Channel delay (C) and mapping delay (M) are closely
related as they both affect the delay on a given channel.
Channel delay is delay assigned to a channel when it is
created. Mapping delay is delay assigned when an out-
channel is mapped to an in-channel and is specific to that
mapping. When an event is written to an out-channel, the
delay on that channel, calculated as C + M, is applied to
the event and it is not delivered until that amount of simu-
lation time has elapsed. For instance, if the current simula-
tion time were 1.05 and an event were written to an out-
channel with a channel delay of 0.25 and a mapping delay
of 0.25, the event would not arrive at the destination in-
channel until simulation time 1.55 (1.05 + C + M).

Channel and mapping delay apply to both internal
channels (channels wholly contained within an entity) and
external channels (channels between two entities), though
there are some differences between how the delay types
may be used with the different channels. External channels
between non-aligned entities (entities in different time-
lines) cannot have both a channel and mapping delay of
zero. One benefit of internal channels and channels be-
tween co-aligned entities, though, is that both the channel
and mapping delay can be set to zero allowing an event to
arrive at the same simulation time in which it was sent.

As noted in Section 2.1, it is possible to map a single
out-channel to multiple in-channels. Different amounts of
mapping delay can be assigned to each of these links caus-
ing an event to be delivered to the corresponding in-
channels at different simulation times.

Event delivery can be further controlled through per-
write delay. Per-write delay is delay applied when an event
is written to a simulation out-channel. This can be used to
schedule an event for arrival some time in the distant future
and is useful for simulating state-dependent delays. Revis-
iting our previous example, if the current simulation time is
1.05 and the total delay on a channel (C + M) is set to 0.5
we can force an event to not be delivered to the corre-
sponding in-channel until simulation time 3.0 by using a
per-write delay value of 1.45. The channel, mapping, and
per-write delay values are added together to determine the
total event delay, which, in this case, is 1.95 simulation
time units (0.25 + 0.25 + 1.45).

3 ARCHITECTURE COMPONENTS
AND DESCRIPTION

Our architecture consists of three basic components:
communications equipment, routers, and RF. These com-
ponents work together to allow for the simulation of both
simple and complex radio networks. Because DaSSF re-
quires that all events being delivered from one entity to an-
1323
other be transmitted via a channel, we had to develop an
efficient, yet versatile, method to allow for all parts of the
simulation to be interconnected without having to create a
connection pair (one in-channel, one out-channel) between
each entity.

By connecting every piece of the simulator to an event
router, and then routers to routers, we are able to create a
virtual network over which events can flow. The power of
a virtual network is that fewer channels are required in or-
der to accomplish the same level of connection. The simu-
lation network will be broken into at least two logical
components: RF related communications will take place
on the RF component of the simulation network while bas-
estation to switch type communications will take place on
the infrastructure component. The details of how these
connections are established are described in the following
sections.

3.1 Communication Equipment

Communication equipment (CE) includes any piece of ra-
dio equipment that has the ability to receive and transmit to
one or many listeners such as users and basestations.

A CE is capable of communicating with many other
CE simultaneously. A CE needs only to set the destination
field of an event to have it delivered to a specific CE in the
simulation network. The CE need not worry about how the
event reaches its destination as that is taken care of by the
simulation network routers. In order to deliver the same
event to more than one CE, the destination field of the
event should include all of the CE to which the event
should be delivered. Alternatively, a CE can send events to
more than one CE within the same simulation tick (see
Section 3.2.3). There is no limit to the number of events
that may be sent out at the same simulation time.

This is equally important to both users and basesta-
tions. Because a basestation is listening and talking to
many users at the same time, it needs to be able to send out
multiple events all within the same simulation time.

3.2 Routers

The simulation router is the backbone of all simulation
communications. As noted above, a simulation using the
proposed architecture is built out of CE, routers, and RF. It
is the router’s job to connect many entities together. The
groups of entities form a logical simulation network. While
the connected entities will most likely be groups of CE, a
router’s functionality is not limited to CE event routing. A
router can be used to route events between any two con-
nected entities in the simulation network.

Delve and Smith

3.2.1 The Simulation Network

The network, from a router’s perspective, is broken into
two conceptual pieces: local and remote entities. Local en-
tities are those entities that are directly connected to the
router. Remote entities are those entities that must be con-
tacted through communications to some other router.
Routers hold routing tables telling them how to direct an
event from its originator to the destination.

Router-to-router communications help overcome an
inherent problem in parallel simulations: cross-processor
talk. Because, in general, there is a performance hit taken
every time a piece of memory is accessed that belongs to a
processor other than the one on which the current thread is
operating, the number of cross-processor memory accesses
needs to be kept to a minimum. Minimizing cross-
processor communications is especially important when
dealing with clusters. Cross-processor memory accesses
are not local to the current processor on which the thread is
executing, and not likely to be local to the machine on
which the thread is executing (except in cases of clusters of
multiprocessor machines, and even then the chances are
not great).

By breaking the communications down to local and
remote, we can optimize how events are routed to avoid
unnecessary cross-processor memory accesses. If a single
router were used (as was first attempted) almost every en-
tity-to-entity event would be traveling past the bounds of a
processor (see Figure 1). This produces extremely undesir-
able performance. By creating at least one router for each
processor in use and grouping all entities connected to that
router into the same timeline, the number of cross-
processor events can be kept to a minimum.

Processor 0

Processor 1

Router

CE

CE CE

CE

CE
CE CE

CE

CE

CE

CE

CE

Processor 2

Processor 3

CE

CE

CE

CE

Figure 1: Single Router System
1324
 While routers must be concerned with whether an en-
tity is local or remote, entities connected to the router
never need to worry about such details. When an entity
sends an event, that event is never sent directly to the des-
tination. Instead, a router intercepts the event and deter-
mines how to deliver the event to its intended destination.

In addition, local events are never routed further than
the source entity’s router (see Figure 2). When the destina-
tion of an event is some entity with which a router is not in
control, the source entity’s router looks in its routing table
to determine which router is in charge of that entity. The
source entity’s router then hands the event over to the
router in charge of the event’s destination entity (see Fig-
ure 3).

CE CE

Routing
Control

Router

Event
Event

Processor 0

Figure 2: Local-to-Local Event Routing

CE CE

Router 0

CE CE

Router 1

CE CE

��
��Routing

Table
Local

Routing
Control

��
��
��

Routing
Table

Local
Routing
Control

��
= Remote Routing Control

Ev
en

t

Event

Processor 0

Processor 1

Eve
nt

Figure 3: Local to Remote Event Routing

Delve and Smith

3.2.2 Routing Tables

A router contains two sets of connections: those to the enti-
ties being routed and those to other routers. All connected
entities share one in-channel while all connected routers
share another separate in-channel (See Figure 3). While all
connected entities may share a common in-channel, the
router must maintain a separate and unique out-channel for
each router and each routed entity.

If a router used a common out-channel to communi-
cate with all of its connected entities, every entity con-
nected to that router would receive every other entity’s
events. In general, it is much more important for a router to
maintain separate connections to other routers because
those channels cross-processor boundaries. If all routers
were connected to the same out-channel, the result would
be that routers would work in a broadcast mode creating a
disproportionate number of cross-processor events. How-
ever, if we maintain separate out-channels for each router
and routed entity, we can make the most efficient use of
our transfers (see Figure 3).

This introduces the need for routing tables. A router
holds two routing tables: one for local entities and another
for remote routers. By using the local routing table, a
router can determine the link to which every local entity is
connected. The remote routing table lists all of the entities
that are connected to each remote router. Each remote
router’s entity list is held in the remote routing table. If an
event’s target is located on a remote router, the local router
passes the event to that remote router which then handles
delivery. While dedicated channels help to reduce the
number of cross-processor events, there is an inevitable in-
crease in cross-processor messaging as the simulation pro-
gresses. At the beginning of every simulation, the architec-
ture attempts to place users on the same router as the
basestation with which they are communicating. As prior-
ity is placed on balancing the number of entities on each
router, not every user will be able to be placed local to its
basestation. As users move and their signal strength rises
and falls, they will perform handoffs to other basestations.
The longer a user remains in a call in the simulation, the
less likely it is for that user to be local to the basestation
with which it is communicating.

3.2.3 End-to-End Event Delivery

The architecture utilizes two types of events: simulation
events and framework events. A simulation event is any-
thing that pertains to the system that we are simulating. For
instance, a power change request in a CDMA system would
be a simulation event. Framework events are events that do
not directly pertain to the system being simulated, but are
necessary to communicate some piece of information or
state change to an entity in the simulation. For instance, a
1325
framework event could be sent to an entity in charge of
movement when a user in the system changes its position.

The architecture handles these two types of events in
different ways. Framework events are allowed to travel
across the simulation network as quickly as possible with-
out introducing any delay in addition to the channel and
mapping delay. Simulation events, though, are guaranteed
to take a constant amount of simulation time to travel be-
tween their source and destination. This enforced end-to-
end delay is referred to as a tick.

Because the architecture uses routed event delivery,
events sent between entities on the same router flow more
quickly than events sent to entities on remote routers. The
tick ensures that this does not occur to simulation events.
When a router receives a simulation event destined for a
local entity, some amount of per-write delay smaller than
the tick is applied when the event is sent to its destination.
The amount of delay applied is calculated so that the simu-
lation event will be delivered exactly one tick after it was
sent. This is performed for both simulation events received
from local entities and those received over a routed link
and is possible only because the router is aware of how
much delay has been assigned to each channel between the
source and the destination.

3.3 RF

It is important to distribute RF calculations across available
processors as much as possible as they have been identified
as the single most time consuming section of previous in-
house simulators.

As noted in Section 1, in order to provide an accurate
picture of the RF environment, interference must be calcu-
lated each time a CE moves or changes power. Proper in-
terference calculation requires determining the power for
every interferer in the system as received by every other
CE receiving on the same carrier. These power calculations
involve a number of non-trivial math functions such as
logarithms, inverse logs, roots, and powers. While a num-
ber of steps have been taken to speed up these calculations
(such as using tables rather than calculations, sacrificing
precision for speed), their sheer volume requires an archi-
tecture sensitive to their needs.

For instance, each user in the simulation of a single car-
rier must calculate their receive power of every basestation
in the system each time a basestation changes its power.
Likewise, each basestation in the system much recalculate
its receive power each time a user moves or changes its
power. In a CDMA system simulation, these power changes
could occur as often as every 1.25 ms, thus requiring the
complete reevaluation of the RF every 1.25 simulated ms.
By uniformly dividing the users up amongst the routers in
the system and making each router responsible for the RF
calculations for all of its local CE, we can easily distribute
the computational work amongst all available processors.

Delve and Smith

4 ARCHITECTURE PERFORMANCE

In order to effectively evaluate the combined performance
of the DaSSF engine and our architecture, we require a
simulation scenario that is representative of the final appli-
cation. We have identified and discussed some of the po-
tential bottlenecks, such as RF interference power calcula-
tion, cross-processor events, and memory accesses. The
simulation used to evaluate performance therefore includes
as many of these aspects as possible.

We have created a cellular wireless simulation for the
performance evaluation. Basestations and users are assigned
connections between each other. Similar to a real cellular
system, basestations will be connected to multiple users.
However, unlike real systems the basestation-user connec-
tions remain constant throughout the simulation. To allow
us to investigate the effect of cross-timeline and cross-
processor events and memory accesses, the basestation-user
connections can be created with an arbitrary number of
cross-timeline connections (i.e., a user communicating with
a basestation that is not connected to the same router). As
each router is mapped to its own timeline, we make the
cross-timeline connections by spreading the desired number
of cross-timeline users as evenly as possible across the
routers. Each of these spread users is mapped to a basesta-
tion that is least likely to be resident on the same processor.
However, because there may be more than one timeline on
each processor, there may be fewer cross-processor connec-
tions than cross-timeline connections.

The basestation-user communication models a simple
power control loop. It is the aim of the basestations and us-
ers to receive the signal being transmitted to them at a pre-
determined target power. To achieve this, the receiving de-
vice measures the received signal power, computes the
difference between it and its target power, and transmits a
command back to the sender instructing them (if required)
to modify their transmit power.

After each message is received by the local router (in
the form of an event), a signal-to-noise ratio (SNR) calcu-
lation is simulated. When the received message is from a
user, this is accomplished by performing one log and one
inverse log for each basestation in the system. When the
received message is from a basestation, the SNR calcula-
tion is simulated by performing one log and one inverse
log for each user in the system. When required, we can
disable the numerical loading provided by the power and
interference calculations. The simulations can be run on an
arbitrary number of processors with an arbitrary number of
routers, basestation and users.

In the following results, we represent the performance
of the system by making use of an efficiency factor, or
utilization metric. The efficiency of the simulation (η) is
computed based upon the total CPU-seconds used by the
simulation (i.e., the sum of all CPU-seconds used on all
1326
processors in the simulation) relative to a reference CPU-
seconds measure. The efficiency factor is given by:

x

ref

S
S

=η (1)

where Sref is the reference CPU-seconds, and Sx is the total
number of CPU-seconds used in the simulation of interest.

A performance metric used by a number of authors
(e.g., Fujimoto 2000) is the speedup (K) in the simulation
using N processors when compared to a single processor.
Efficiency, η, is related to K (in terms of CPU-seconds) as
follows:

 NK η= (2)

The following sections use Equation (1) to present key
results demonstrating the performance of the DaSSF en-
gine and the proposed architecture.

4.1 Performance with Numerical Loading Disabled

To investigate the effect of cross-timeline and cross-
processor events, we ran a set of simulations, on various
numbers of processors, with the numerical loading (inter-
ference calculations) disabled. In the absence of this nu-
meric loading, the basestations and users simply reply to
each other’s messages with no calculations involved. The
efficiency computed using Equation (1) gives a measure of
the effect of the cross-timeline and cross-processor events.
Figure 4 and Figure 5 show the simulation efficiency re-
sults for 128 and 512 users respectively. These figures
show results for scenarios with 32 basestations and 32
routers for various values of user spreading.

1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ffi

ci
en

cy
 F

ac
to

r
(η

)

Simulator efficiency with no numerical loading
Users: 128, Basestations: 32, Routers: 32

0% user spread
25% user spread
50% user spread
75% user spread
100% user spread

Figure 4: Simulation Efficiency as a Function of Number
of Processors. 128 Users, Numerical Loading Disabled

Delve and Smith

Intuitively, simulations with a greater percentage of
user spreading should be less efficient due to the increase
in cross-timeline events. Inspection of Figure 4 and Figure
5 confirms this belief; a greater degree of user spreading
leads to a decrease in efficiency.

Inspection of the figures shows that increasing the
number of processors also decreases the efficiency of the
simulation. This loss in efficiency is due partly to the
DaSSF engine and partly to the architectural design. We
can see from both Figure 4 and 5, the efficiency of the
simulation for 0% user spreading also decreases with an
increasing number of processors. Clearly, with no user
spread there are no cross-timeline or cross-processor
events. The drop in efficiency is due only to the engine. It
is interesting to note (from both Figure 4 and 5) that the
rate of decrease of efficiency is lower when user spreading
is introduced. With user spreading introduced, another ef-
fect is present in the system. The number of cross-
processor events increases as more processors are used.
This is because timelines that had previously been resident
on the same processor, become resident on different proc-
essors.

A closer inspection of Figure 4 and Figure 5 reveals
that, in general, for the same user spread, a greater number
of users in the system leads to a greater efficiency.

Whilst allowing an interesting insight into the simula-
tion process, the no-load simulations are clearly not repre-
sentative of the final application; the complete wireless
system simulator. The next section will present results with
the interference calculations enabled.

1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ffi

ci
en

cy
 F

ac
to

r
(η

)

Simulator efficiency with no numerical loading
Users: 512, Basestations: 32, Routers: 32

0% user spread
25% user spread
50% user spread
75% user spread
100% user spread

Figure 5: Simulation Efficiency as a Function of Number
of Processors. 512 Users, Numerical Loading Disabled

4.2 Performance with Numerical Loading Enabled

We have already discussed the significance of the RF cal-
culations that must be performed by the simulator and the
132
potential performance bottleneck they represent. In the re-
sults presented in the following sections, the interference
calculations within the simulation aim to be representative
both in the type and number of calculations performed in
the final application. It is of particular importance that the
reader be aware that regardless of the number of processors
on which the simulation is executed, the number of calcu-
lations in the system remains constant. It is the same di-
mension problem to be solved by the multiprocessor simu-
lation as for the single processor case.

Figure 6 and Figure 7 show the simulation efficiency
results for 128 and 512 users respectively. These figures
show results for scenarios with 32 basestations and 32
routers for various values of user spreading. The initial ob-
servation that must be made is the efficiencies of both of
the 128 and 512 user cases is higher than their correspond-
ing cases with numeric loading disabled. The simulation
themselves took longer to run, but because of the numeric
loading, relatively, less time was spent with cross-timeline
events.

The results of Figure 6 and Figure 7 again show that,
in general, the efficiency drops off with increasing user
spread and increasing number of processors. We can make
a similar observation of the comparison of Figure 6 and
Figure 7 as we did between Figure 4 and Figure 5. The 512
user simulation is more efficient than the 128 user case, al-
though the difference appears more significant in this case.

We have seen in this and the previous section that in-
creasing the number of users in the system leads to an im-
provement in simulator efficiency. This however must not
be confused with a reduction in the time taken to simulate.
More users will always take a longer time to simulate.
However, the simulation will make better use of the avail-
able processors. In the next section we take a more detailed
look at the effect of user spread on simulation efficiency.

1 2 3 4 5 6 7 8 9 10
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Number of Processors

E
ffi

ci
en

cy
 F

ac
to

r
(η

)

Simulator efficiency with numerical loading
Users: 128, Basestations: 32, Routers: 32

0% user spread
25% user spread
50% user spread
75% user spread
100% user spread

Figure 6: Simulation Efficiency as a Function of Number
of Processors. 128 Users, Numerical Loading Enabled

7

Delve and Smith

1 2 3 4 5 6 7 8 9 10
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Number of Processors

E
ffi

ci
en

cy
 F

ac
to

r
(η

)

Simulator efficiency with numerical loading
Users: 512, Basestations: 32, Routers: 32

0% user spread
25% user spread
50% user spread
75% user spread
100% user spread

Figure 7: Simulation Efficiency as a Function of Number
of Processors. 512 Users, Numerical Loading Enabled

4.3 Performance as a Function of User Spread

We have already seen that increasing user spread increases
the number of cross-timeline events (and potentially the
number of cross-processor events) thus reducing simula-
tion efficiency. As we have previously discussed, in a
wireless system simulator, the user spread will continue to
increase through the simulation as users move and interact
with basestations. In this section we examine this effect.

The efficiency results are computed using Equation (1)
for a range of values of percentage user spread. Sref is the
number of CPU-seconds required to execute the simulation
with 0% user spread for a particular number of users in the
system. Sx is the number of CPU-seconds required to exe-
cut the simulation with x% user spread for the same
number of users in the system.

Figure 8 and Figure 9 show simulation efficiency re-
sults as a function of percent-user-spread for simulation
scenarios using 4 and 8 processors respectively. The fig-
ures show results for scenarios with 32 basestations and 32
routers for various values of total number of users in the
system.

Figure 8 (4 processors) confirms the pattern exhibited
in Figure 4 through Figure 7; namely that for a particular
percentage of spread users in the simulation, the simulation
with the greatest user population will be the most efficient
(with the exception of 75% spread, 512 users). Also, that
as the user spread increases, (for any particular number of
total users) the efficiency decreases as expected.

Figure 9 (8 processors), also shows that for a particular
percentage of spread users in the simulation, the simulation
with the greatest user population will be more efficient
(again with a few exceptions below 25% spread). How-
ever, of particular interest is the efficiency of the simulator
with 512 users. Here, for user spreads of 25% and above,
132
the simulator has an efficiency greater than one. The rea-
sons for this are as yet unclear although they are most
likely related to a thread-to-processor ratio greater than one
resulting from multiple routers-per-processor.

0 10 20 30 40 50 60 70 80 90 100
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Percentage of spread users in the system
E

ffi
ci

en
cy

 F
ac

to
r

(η
)

Simulator efficiency with numerical loading
 Efficiency relative to 0% user spreading

Processors: 4, Basestations: 32, Routers: 32

128 users
256 users
384 users
512 users

Figure 8: Simulation Efficiency as a Function of User
Spread. 4 Processors, Numerical Loading Enabled

0 10 20 30 40 50 60 70 80 90 100
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Percentage of spread users in the system

E
ffi

ci
en

cy
 F

ac
to

r
(η

)

Simulator efficiency with numerical loading
 Efficiency relative to 0% user spreading

Processors: 8, Basestations: 32, Routers: 32

128 users
256 users
384 users
512 users

Figure 9: Simulation Efficiency as a Function of User
Spread. 8 Processors, Numerical Loading Enabled

4.4 Performance as a Function
of Routers per Processor

As each router represents a timeline and hence a separate
thread, there is a potential benefit in having multiple
routers per processor. A single router-per-processor would
give little opportunity for the operating system to make use
of context switching during I/O waits. In the results we
have presented so far, the total number of routers in the
system has been fixed at 32. This is because a fixed num-
ber of routers is required for deterministic results between
8

Delve and Smith

runs of different number of processors. However, for com-
pleteness, it is worth investigating the affect on efficiency
of the number of routers per processor.

Figure 10 shows the simulator efficiency as a function
the number of routers-per-processor. The figure shows the
results for scenarios with 512 users with 50% user spread,
32 basestations for 4 and 8 processors. The figure shows
that there is no significant loss in efficiency with an in-
creasing number of routers per processor, indeed, with a
few exceptions, there is an efficiency gain. Clearly, Figure
10 only shows the results for two processors and one user
count and spread combination, however, the fact that the
efficiency does not vary significantly over the range of
routers per processor indicates that choosing a large but
constant number of routers for determinism reasons will
not unduly harm the simulation performance.

1 2 3 4 5 6 7 8 9 10
0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

Routers per processor

E
ffi

ci
en

cy
 F

ac
to

r
(η

)

Simulator efficiency with numerical loading
Efficiency relative to 1 router per processor

Users: 512, Basestations: 32, User spread: 50%

4 processors
8 processors

Figure 10: Simulation Efficiency as a Function of
Routers per Processor. 512 users, Numerical Loading
Enabled

5 CONCLUSIONS

We have presented an architecture suitable as a basis for a
wireless system simulator and presented performance re-
sults to support the design.

To create a wireless simulator that scales across proc-
essors efficiently there are two key factors that must be
considered before, during, and after the design: distributing
the processing and reducing the cross-processor memory
accesses. We have shown that utilizing a network approach
to divide the problem and limit the complexity proves to be
an effective method of accommodating both these factors.

Our prototype implementation of the architecture has
proven to scale efficiently over both increased processor
availability as well as increased workload. While the per-
formance of the architecture is influenced by the number of
cross-timeline and cross-processor memory accesses, the
overall performance is still excellent. We have shown that
1329
a router-to-processor ratio greater than one has no adverse
affect on the simulator performance. This is an important
result given that for deterministic results across different
number of processors, a constant number of routers in the
system is required.

It is our desire to begin evaluation of this architecture
on clusters of workstations. We believe that it will continue
to exhibit favorable scaling behaviors, though they will
most certainly not be of the same scale of those shown in
this paper due to the lower data transfer rates between clus-
ter nodes.

REFERENCES

Fujimoto, R. M. 2000. Parallel and Distributed Simulation
Systems. John Wiley & Sons.

Liu, J. and D. M. Nicol. 2001. Dartmouth Scalable Simula-
tion Framework Version 3.1 Users Manual. Depart-
ment of Computer Science, Dartmouth College,
Hanover, New Hampshire. Available online via
<http://www.cs.dartmouth.edu/~jasonl
iu/projects/ssf/papers/dassf-manual-
3.1.ps> [accessed July 14, 2001].

SSFNet.org. 2001. SSF Research Network website.
<http://www.ssfnet.org> [accessed July 16,
2001]

AUTHOR BIOGRAPHIES

TREFOR J. DELVE is a Communications Research En-
gineer with Motorola Labs. He received his B.Eng (Hon-
ors) degree from the University of Birmingham, U.K., in
1991. He has worked as a communications engineer for
The MathWorks, a systems engineer for NEC and a re-
search associate working on underwater communications
for the Ministry of Defence, U.K. His research interests in-
clude channel coding and propagation modeling. His email
address is <Trefor.Delve@motorola.com>.

NATHAN J. SMITH is a Software Research Engineer
with Motorola Labs. He received his B.S. from Illinois
State University in 2000. He has worked as a lead applica-
tions developer for Illinois State University and an embed-
ded systems developer for Motorola. His email address is
<Nathan.Smith@motorola.com>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

