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ABSTRACT 

The problem of efficient load distribution and scaling of 
large-scale wireless communication system simulation on 
multiprocessor architectures (both shared memory and 
cluster arrangements) is considered. A flexible architecture 
based upon DaSSF, the Dartmouth Scalable Simulation 
Framework discrete event engine, is presented and evalu-
ated. The architecture is designed to deal with the compu-
tationally intensive aspects of radio communication 
simulation in a distributed environment. Results are 
presented that show how the architecture scales on a shared 
memory multiprocessor SGI Origin with increasing 
problem size and available processors. 

1 INTRODUCTION 

With the complexity of current cellular communications 
systems and the time-to-market pressures on manufactur-
ers, it is becoming increasingly important that the dynam-
ics of a communications system are understood before 
committing to development and deployment. The means to 
this understanding is through detailed system simulations.  
Perhaps due to the way communication systems are struc-
tured, simulations tend to focus on certain aspects of the 
system (e.g., simulating the protocol stack or link level per-
formance). There is, of course, a great deal to gain from 
these types of simulations in terms of understanding the 
processes involved and any inherent problems. Each of 
these components can be extremely complex in their own 
right; however, focusing on these smaller components of 
the system does not allow their interaction with the system 
to be investigated. What is really required is a much more 
detailed simulation which includes all of these smaller 
components. With a suitable means to evaluate the system, 
problems may be identified and investigated and solutions 
tested. 

The scale of the simulation required for an in-depth 
knowledge of the system can sometimes appear daunting. 
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In order to study dynamic problems such as call origination 
or handover, for instance, it is often necessary to simulate a 
densely populated virtual city containing buildings and 
streets, hundreds of basestation, and hundreds, if not thou-
sands of mobile users. Simulation of the basestation, user, 
and infrastructure protocols must be performed to ensure 
system fidelity. For this virtual city, details of the RF 
propagation both inside and outside of buildings must be 
known in order to evaluate signal propagation for the 
communications equipment. Whenever one of the commu-
nications devices (basestation or user) changes a property 
that affects the RF environment (e.g., position or transmit 
power), the RF environment needs to be recalculated to 
make communications devices aware of the interference 
that they are receiving. These aspects of the simulation al-
low call statistics to be gathered and effects of protocol and 
signal processing algorithms to be evaluated. 

One of the main problems associated with creating 
complex system simulations is clear: the large amount of 
time it takes to simulate a system. Clearly, there are a num-
ber of simulation approaches that can be used to attack this 
problem (e.g., sampled discrete time, discrete time with 
data flow, and conservative and optimistic discrete event). 
However, there is no escaping the fact that a considerable 
amount of processing is required. Whilst in principle this 
type of simulation may be possible on single processor 
architectures, the amount of time a simulation would take 
to complete would be unacceptable. 

Accepting that system simulations of this scale are not 
practical on single processor architectures brings up the 
next question: how can we efficiently map the problem to a 
multiprocessor architecture to reduce the simulation time? 
It would be reasonable to state that a common method of 
performing simulations is to evaluate the outputs of system 
entities at discrete, but equally spaced, points in time, 
working through from the simulation start-time to the end-
time. With this discrete time approach, it is often difficult 
to map the problem onto multiple processor architectures. 
When the problem can be mapped, it often requires a 
1
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shared memory architecture to efficiently access common 
data inherent in this type of simulation. Whilst this ap-
proach has been effective on this type of architecture, its 
effectiveness is limited on a cluster architecture. We re-
quire a more suitable approach for both multiprocessor 
shared memory and cluster architectures. This was the fo-
cus of our work. 

We decided that the best approach to creating a system 
simulator was to make use of a third party simulation en-
gine allowing the development team to concentrate on the 
main problem: development of a flexible architecture suit-
able for simulations of current and future technologies. 
Given the tight coupling between the RF environment and 
the communications entities in the simulation, we felt that 
a conservatively scheduled, parallel discrete event simula-
tion engine was best suited to the task. After a review of 
possible options, the Dartmouth Scalable Simulation 
Framework (DaSSF) was chosen as the simulation engine. 
This paper presents the development of a suitable architec-
ture based upon the DaSSF engine and the performance of 
the prototype system. 

The organization of the paper is as follows. In Sec-
tion 2 we present an overview of DaSSF, describing its 
features and general principles of operation. In Section 3 
we describe the areas we have identified as the main bot-
tlenecks in the system simulation and present a prototype 
architecture. In Section 4 we present a number of the key 
results showing simulation performance with various prob-
lem sizes and available processors. Conclusions are pre-
sented in Section 5. 

2 OVERVIEW OF DASSF 

DaSSF is an implementation of the Scalable Simulation 
Framework (SSF) as proposed and maintained by the SSF 
Research Network (SSFNET 2001) and sponsored by 
DARPA, the Institute for Security Technology Studies at 
Dartmouth, and the Renesys Corporation. It is a conserva-
tive, process-oriented, parallel, discrete event engine. 

Simulations consist of a number of co-aligned entities 
grouped together into timelines. A timeline is considered to 
be a group of tightly coupled entities that are all dependent 
on one another. When running in a cluster or on a multi-
processor machine, timelines are spread across the avail-
able machines and/or processors. 

The basic layout of a DaSSF simulation consists of a 
number of entities each containing processes and channels. 
The channels of the entities are connected together so that 
the entities can pass events back and forth amongst them-
selves. A breakdown and more detailed explanation of 
these components and their function is included below. A 
complete description of DaSSF may be found in the Dart-
mouth Scalable Simulation Framework User Manual (Liu 
and Nicol 2001). 
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2.1 Channels 

A simulation channel provides a generic mechanism for 
delivering events from one entity to another. This is also 
the exclusive delivery mechanism for events between enti-
ties. There are two main types of channels: in and out. 

Out-channels and in-channels are mapped together to 
create a network of connections. When an event is written 
to an out-channel it is delivered some non-negative time 
later on a corresponding in-channel. If an out-channel is 
mapped to more than one in-channel, then the transmitted 
event is delivered to all corresponding in-channels after 
applying all appropriate delay (see Section 2.4). The oppo-
site it also true. Multiple out-channels can be mapped to 
the same in-channel. 

While most channels are considered public, or exter-
nal, an entity can also have a private channel, called an in-
ternal channel, that can only be accessed by the processes 
within the entity. Internal channels can be used to deliver 
events from one part of an entity to another. 

Channels exist from the beginning of the simulation to 
the end. A channel cannot be deleted once the simulation 
has begun. While it is possible to create a new channel af-
ter the simulation has begun, the authors of DaSSF rec-
ommend against doing so due to the relatively high associ-
ated cost (Liu and Nicol 2001). 

2.2 Processes 

A process’ responsibility is to react to triggered events and 
schedule future events to occur. Processes wait for events 
to arrive on one or many of the incoming channels belong-
ing to the process’ associated entity. When an event ar-
rives, the process is woken up and given a list of all events 
that arrived on the channel of interest at the current simula-
tion time. After processing is completed, the process re-
turns to a wait state. 

A process can schedule itself to be woken up at some 
discrete point in the simulation (at time 3.0), or after some 
amount of simulation time has elapsed (in 10 simulated 
time-units). Alternatively, a process can request to be 
woken up when either some amount of simulated time has 
elapsed or an event has arrived. The process will be woken 
up by whichever of the two conditions is satisfied first. 

2.3 Entities 

An entity is a simulated object such as a mobile telephone 
or basestation. As already described, a simulation is built 
out of entities and their connections to one another. The 
entities interact with one another through the processes and 
channels that they control. The processes use the entity’s 
channels to send events to and receive events from other 
entities in the simulation. 
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2.4 Delay 

There are three types of delay in DaSSF:  channel, map-
ping, and per-write delay.  

Channel delay (C) and mapping delay (M) are closely 
related as they both affect the delay on a given channel. 
Channel delay is delay assigned to a channel when it is 
created. Mapping delay is delay assigned when an out-
channel is mapped to an in-channel and is specific to that 
mapping. When an event is written to an out-channel, the 
delay on that channel, calculated as C + M, is applied to 
the event and it is not delivered until that amount of simu-
lation time has elapsed. For instance, if the current simula-
tion time were 1.05 and an event were written to an out-
channel with a channel delay of 0.25 and a mapping delay 
of 0.25, the event would not arrive at the destination in-
channel until simulation time 1.55 (1.05 + C + M). 

Channel and mapping delay apply to both internal 
channels (channels wholly contained within an entity) and 
external channels (channels between two entities), though 
there are some differences between how the delay types 
may be used with the different channels. External channels 
between non-aligned entities (entities in different time-
lines) cannot have both a channel and mapping delay of 
zero. One benefit of internal channels and channels be-
tween co-aligned entities, though, is that both the channel 
and mapping delay can be set to zero allowing an event to 
arrive at the same simulation time in which it was sent. 

As noted in Section 2.1, it is possible to map a single 
out-channel to multiple in-channels. Different amounts of 
mapping delay can be assigned to each of these links caus-
ing an event to be delivered to the corresponding in-
channels at different simulation times. 

Event delivery can be further controlled through per-
write delay. Per-write delay is delay applied when an event 
is written to a simulation out-channel. This can be used to 
schedule an event for arrival some time in the distant future 
and is useful for simulating state-dependent delays. Revis-
iting our previous example, if the current simulation time is 
1.05 and the total delay on a channel (C + M) is set to 0.5 
we can force an event to not be delivered to the corre-
sponding in-channel until simulation time 3.0 by using a 
per-write delay value of 1.45. The channel, mapping, and 
per-write delay values are added together to determine the 
total event delay, which, in this case, is 1.95 simulation 
time units (0.25 + 0.25 + 1.45). 

3 ARCHITECTURE COMPONENTS  
AND DESCRIPTION 

Our architecture consists of three basic components:  
communications equipment, routers, and RF. These com-
ponents work together to allow for the simulation of both 
simple and complex radio networks. Because DaSSF re-
quires that all events being delivered from one entity to an-
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other be transmitted via a channel, we had to develop an 
efficient, yet versatile, method to allow for all parts of the 
simulation to be interconnected without having to create a 
connection pair (one in-channel, one out-channel) between 
each entity. 

By connecting every piece of the simulator to an event 
router, and then routers to routers, we are able to create a 
virtual network over which events can flow. The power of 
a virtual network is that fewer channels are required in or-
der to accomplish the same level of connection. The simu-
lation network will be broken into at least two logical 
components:  RF related communications will take place 
on the RF component of the simulation network while bas-
estation to switch type communications will take place on 
the infrastructure component. The details of how these 
connections are established are described in the following 
sections. 

3.1 Communication Equipment 

Communication equipment (CE) includes any piece of ra-
dio equipment that has the ability to receive and transmit to 
one or many listeners such as users and basestations. 

A CE is capable of communicating with many other 
CE simultaneously. A CE needs only to set the destination 
field of an event to have it delivered to a specific CE in the 
simulation network. The CE need not worry about how the 
event reaches its destination as that is taken care of by the 
simulation network routers. In order to deliver the same 
event to more than one CE, the destination field of the 
event should include all of the CE to which the event 
should be delivered. Alternatively, a CE can send events to 
more than one CE within the same simulation tick (see 
Section 3.2.3). There is no limit to the number of events 
that may be sent out at the same simulation time. 

This is equally important to both users and basesta-
tions. Because a basestation is listening and talking to 
many users at the same time, it needs to be able to send out 
multiple events all within the same simulation time. 

3.2 Routers 

The simulation router is the backbone of all simulation 
communications. As noted above, a simulation using the 
proposed architecture is built out of CE, routers, and RF. It 
is the router’s job to connect many entities together. The 
groups of entities form a logical simulation network. While 
the connected entities will most likely be groups of CE, a 
router’s functionality is not limited to CE event routing. A 
router can be used to route events between any two con-
nected entities in the simulation network. 
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3.2.1 The Simulation Network 

The network, from a router’s perspective, is broken into 
two conceptual pieces: local and remote entities. Local en-
tities are those entities that are directly connected to the 
router. Remote entities are those entities that must be con-
tacted through communications to some other router. 
Routers hold routing tables telling them how to direct an 
event from its originator to the destination.  

Router-to-router communications help overcome an 
inherent problem in parallel simulations:  cross-processor 
talk. Because, in general, there is a performance hit taken 
every time a piece of memory is accessed that belongs to a 
processor other than the one on which the current thread is 
operating, the number of cross-processor memory accesses 
needs to be kept to a minimum. Minimizing cross-
processor communications is especially important when 
dealing with clusters. Cross-processor memory accesses 
are not local to the current processor on which the thread is 
executing, and not likely to be local to the machine on 
which the thread is executing (except in cases of clusters of 
multiprocessor machines, and even then the chances are 
not great).  

By breaking the communications down to local and 
remote, we can optimize how events are routed to avoid 
unnecessary cross-processor memory accesses. If a single 
router were used (as was first attempted) almost every en-
tity-to-entity event would be traveling past the bounds of a 
processor (see Figure 1). This produces extremely undesir-
able performance. By creating at least one router for each 
processor in use and grouping all entities connected to that 
router into the same timeline, the number of cross-
processor events can be kept to a minimum.  
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Figure 1:  Single Router System 
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 While routers must be concerned with whether an en-
tity is local or remote, entities connected to the router 
never need to worry about such details. When an entity 
sends an event, that event is never sent directly to the des-
tination. Instead, a router intercepts the event and deter-
mines how to deliver the event to its intended destination. 

In addition, local events are never routed further than 
the source entity’s router (see Figure 2). When the destina-
tion of an event is some entity with which a router is not in 
control, the source entity’s router looks in its routing table 
to determine which router is in charge of that entity. The 
source entity’s router then hands the event over to the 
router in charge of the event’s destination entity (see Fig-
ure 3). 
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Figure 2:  Local-to-Local Event Routing 
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3.2.2 Routing Tables 

A router contains two sets of connections: those to the enti-
ties being routed and those to other routers. All connected 
entities share one in-channel while all connected routers 
share another separate in-channel (See Figure 3). While all 
connected entities may share a common in-channel, the 
router must maintain a separate and unique out-channel for 
each router and each routed entity.  

If a router used a common out-channel to communi-
cate with all of its connected entities, every entity con-
nected to that router would receive every other entity’s 
events. In general, it is much more important for a router to 
maintain separate connections to other routers because 
those channels cross-processor boundaries. If all routers 
were connected to the same out-channel, the result would 
be that routers would work in a broadcast mode creating a 
disproportionate number of cross-processor events. How-
ever, if we maintain separate out-channels for each router 
and routed entity, we can make the most efficient use of 
our transfers (see Figure 3). 

This introduces the need for routing tables. A router 
holds two routing tables: one for local entities and another 
for remote routers. By using the local routing table, a 
router can determine the link to which every local entity is 
connected. The remote routing table lists all of the entities 
that are connected to each remote router. Each remote 
router’s entity list is held in the remote routing table. If an 
event’s target is located on a remote router, the local router 
passes the event to that remote router which then handles 
delivery. While dedicated channels help to reduce the 
number of cross-processor events, there is an inevitable in-
crease in cross-processor messaging as the simulation pro-
gresses. At the beginning of every simulation, the architec-
ture attempts to place users on the same router as the 
basestation with which they are communicating. As prior-
ity is placed on balancing the number of entities on each 
router, not every user will be able to be placed local to its 
basestation. As users move and their signal strength rises 
and falls, they will perform handoffs to other basestations. 
The longer a user remains in a call in the simulation, the 
less likely it is for that user to be local to the basestation 
with which it is communicating. 

3.2.3 End-to-End Event Delivery 

The architecture utilizes two types of events:  simulation 
events and framework events. A simulation event is any-
thing that pertains to the system that we are simulating. For 
instance, a power change request in a CDMA system would 
be a simulation event. Framework events are events that do 
not directly pertain to the system being simulated, but are 
necessary to communicate some piece of information or 
state change to an entity in the simulation. For instance, a 
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framework event could be sent to an entity in charge of 
movement when a user in the system changes its position. 

The architecture handles these two types of events in 
different ways. Framework events are allowed to travel 
across the simulation network as quickly as possible with-
out introducing any delay in addition to the channel and 
mapping delay. Simulation events, though, are guaranteed 
to take a constant amount of simulation time to travel be-
tween their source and destination. This enforced end-to-
end delay is referred to as a tick. 

Because the architecture uses routed event delivery, 
events sent between entities on the same router flow more 
quickly than events sent to entities on remote routers. The 
tick ensures that this does not occur to simulation events. 
When a router receives a simulation event destined for a 
local entity, some amount of per-write delay smaller than 
the tick is applied when the event is sent to its destination. 
The amount of delay applied is calculated so that the simu-
lation event will be delivered exactly one tick after it was 
sent. This is performed for both simulation events received 
from local entities and those received over a routed link 
and is possible only because the router is aware of how 
much delay has been assigned to each channel between the 
source and the destination. 

3.3 RF 

It is important to distribute RF calculations across available 
processors as much as possible as they have been identified 
as the single most time consuming section of previous in-
house simulators. 

As noted in Section 1, in order to provide an accurate 
picture of the RF environment, interference must be calcu-
lated each time a CE moves or changes power. Proper in-
terference calculation requires determining the power for 
every interferer in the system as received by every other 
CE receiving on the same carrier. These power calculations 
involve a number of non-trivial math functions such as 
logarithms, inverse logs, roots, and powers. While a num-
ber of steps have been taken to speed up these calculations 
(such as using tables rather than calculations, sacrificing 
precision for speed), their sheer volume requires an archi-
tecture sensitive to their needs.  

For instance, each user in the simulation of a single car-
rier must calculate their receive power of every basestation 
in the system each time a basestation changes its power. 
Likewise, each basestation in the system much recalculate 
its receive power each time a user moves or changes its 
power. In a CDMA system simulation, these power changes 
could occur as often as every 1.25 ms, thus requiring the 
complete reevaluation of the RF every 1.25 simulated ms. 
By uniformly dividing the users up amongst the routers in 
the system and making each router responsible for the RF 
calculations for all of its local CE, we can easily distribute 
the computational work amongst all available processors. 
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4 ARCHITECTURE PERFORMANCE 

In order to effectively evaluate the combined performance 
of the DaSSF engine and our architecture, we require a 
simulation scenario that is representative of the final appli-
cation. We have identified and discussed some of the po-
tential bottlenecks, such as RF interference power calcula-
tion, cross-processor events, and memory accesses. The 
simulation used to evaluate performance therefore includes 
as many of these aspects as possible. 

We have created a cellular wireless simulation for the 
performance evaluation. Basestations and users are assigned 
connections between each other. Similar to a real cellular 
system, basestations will be connected to multiple users. 
However, unlike real systems the basestation-user connec-
tions remain constant throughout the simulation. To allow 
us to investigate the effect of cross-timeline and cross-
processor events and memory accesses, the basestation-user 
connections can be created with an arbitrary number of 
cross-timeline connections (i.e., a user communicating with 
a basestation that is not connected to the same router). As 
each router is mapped to its own timeline, we make the 
cross-timeline connections by spreading the desired number 
of cross-timeline users as evenly as possible across the 
routers. Each of these spread users is mapped to a basesta-
tion that is least likely to be resident on the same processor. 
However, because there may be more than one timeline on 
each processor, there may be fewer cross-processor connec-
tions than cross-timeline connections. 

The basestation-user communication models a simple 
power control loop. It is the aim of the basestations and us-
ers to receive the signal being transmitted to them at a pre-
determined target power. To achieve this, the receiving de-
vice measures the received signal power, computes the 
difference between it and its target power, and transmits a 
command back to the sender instructing them (if required) 
to modify their transmit power.  

After each message is received by the local router (in 
the form of an event), a signal-to-noise ratio (SNR) calcu-
lation is simulated. When the received message is from a 
user, this is accomplished by performing one log and one 
inverse log for each basestation in the system. When the 
received message is from a basestation, the SNR calcula-
tion is simulated by performing one log and one inverse 
log for each user in the system. When required, we can 
disable the numerical loading provided by the power and 
interference calculations. The simulations can be run on an 
arbitrary number of processors with an arbitrary number of 
routers, basestation and users.  

In the following results, we represent the performance 
of the system by making use of an efficiency factor, or 
utilization metric. The efficiency of the simulation (η) is 
computed based upon the total CPU-seconds used by the 
simulation (i.e., the sum of all CPU-seconds used on all 
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processors in the simulation) relative to a reference CPU-
seconds measure. The efficiency factor is given by: 
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where Sref is the reference CPU-seconds, and Sx is the total 
number of CPU-seconds used in the simulation of interest.  

A performance metric used by a number of authors 
(e.g., Fujimoto 2000) is the speedup (K) in the simulation 
using N processors when compared to a single processor. 
Efficiency, η, is related to K (in terms of CPU-seconds) as 
follows: 

 
 NK  η=  (2) 
 

The following sections use Equation (1) to present key 
results demonstrating the performance of the DaSSF en-
gine and the proposed architecture. 

4.1 Performance with Numerical Loading Disabled 

To investigate the effect of cross-timeline and cross-
processor events, we ran a set of simulations, on various 
numbers of processors, with the numerical loading (inter-
ference calculations) disabled. In the absence of this nu-
meric loading, the basestations and users simply reply to 
each other’s messages with no calculations involved. The 
efficiency computed using Equation (1) gives a measure of 
the effect of the cross-timeline and cross-processor events. 
Figure 4 and Figure 5 show the simulation efficiency re-
sults for 128 and 512 users respectively. These figures 
show results for scenarios with 32 basestations and 32 
routers for various values of user spreading. 
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Figure 4: Simulation Efficiency as a Function of Number 
of Processors. 128 Users, Numerical Loading Disabled 
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Intuitively, simulations with a greater percentage of 
user spreading should be less efficient due to the increase 
in cross-timeline events. Inspection of Figure 4 and Figure 
5 confirms this belief; a greater degree of user spreading 
leads to a decrease in efficiency.  

Inspection of the figures shows that increasing the 
number of processors also decreases the efficiency of the 
simulation. This loss in efficiency is due partly to the 
DaSSF engine and partly to the architectural design. We 
can see from both Figure 4 and 5, the efficiency of the 
simulation for 0% user spreading also decreases with an 
increasing number of processors. Clearly, with no user 
spread there are no cross-timeline or cross-processor 
events. The drop in efficiency is due only to the engine. It 
is interesting to note (from both Figure 4 and 5) that the 
rate of decrease of efficiency is lower when user spreading 
is introduced. With user spreading introduced, another ef-
fect is present in the system. The number of cross-
processor events increases as more processors are used. 
This is because timelines that had previously been resident 
on the same processor, become resident on different proc-
essors. 

A closer inspection of Figure 4 and Figure 5 reveals 
that, in general, for the same user spread, a greater number 
of users in the system leads to a greater efficiency.  

Whilst allowing an interesting insight into the simula-
tion process, the no-load simulations are clearly not repre-
sentative of the final application; the complete wireless 
system simulator. The next section will present results with 
the interference calculations enabled. 
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Figure 5: Simulation Efficiency as a Function of Number 
of Processors. 512 Users, Numerical Loading Disabled 

4.2 Performance with Numerical Loading Enabled 

We have already discussed the significance of the RF cal-
culations that must be performed by the simulator and the 
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potential performance bottleneck they represent. In the re-
sults presented in the following sections, the interference 
calculations within the simulation aim to be representative 
both in the type and number of calculations performed in 
the final application. It is of particular importance that the 
reader be aware that regardless of the number of processors 
on which the simulation is executed, the number of calcu-
lations in the system remains constant. It is the same di-
mension problem to be solved by the multiprocessor simu-
lation as for the single processor case. 

Figure 6 and Figure 7 show the simulation efficiency 
results for 128 and 512 users respectively. These figures 
show results for scenarios with 32 basestations and 32 
routers for various values of user spreading. The initial ob-
servation that must be made is the efficiencies of both of 
the 128 and 512 user cases is higher than their correspond-
ing cases with numeric loading disabled. The simulation 
themselves took longer to run, but because of the numeric 
loading, relatively, less time was spent with cross-timeline 
events. 

The results of Figure 6 and Figure 7 again show that, 
in general, the efficiency drops off with increasing user 
spread and increasing number of processors. We can make 
a similar observation of the comparison of Figure 6 and 
Figure 7 as we did between Figure 4 and Figure 5. The 512 
user simulation is more efficient than the 128 user case, al-
though the difference appears more significant in this case. 

We have seen in this and the previous section that in-
creasing the number of users in the system leads to an im-
provement in simulator efficiency. This however must not 
be confused with a reduction in the time taken to simulate. 
More users will always take a longer time to simulate. 
However, the simulation will make better use of the avail-
able processors. In the next section we take a more detailed 
look at the effect of user spread on simulation efficiency. 
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Figure 6: Simulation Efficiency as a Function of Number 
of Processors. 128 Users, Numerical Loading Enabled 
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Figure 7: Simulation Efficiency as a Function of Number 
of Processors. 512 Users, Numerical Loading Enabled 

4.3 Performance as a Function of User Spread 

We have already seen that increasing user spread increases 
the number of cross-timeline events (and potentially the 
number of cross-processor events) thus reducing simula-
tion efficiency. As we have previously discussed, in a 
wireless system simulator, the user spread will continue to 
increase through the simulation as users move and interact 
with basestations. In this section we examine this effect. 

The efficiency results are computed using Equation (1) 
for a range of values of percentage user spread. Sref is the 
number of CPU-seconds required to execute the simulation 
with 0% user spread for a particular number of users in the 
system. Sx is the number of CPU-seconds required to exe-
cut the simulation with x% user spread for the same 
number of users in the system.  

Figure 8 and Figure 9 show simulation efficiency re-
sults as a function of percent-user-spread for simulation 
scenarios using 4 and 8 processors respectively. The fig-
ures show results for scenarios with 32 basestations and 32 
routers for various values of total number of users in the 
system. 

Figure 8 (4 processors) confirms the pattern exhibited 
in Figure 4 through Figure 7; namely that for a particular 
percentage of spread users in the simulation, the simulation 
with the greatest user population will be the most efficient 
(with the exception of 75% spread, 512 users). Also, that 
as the user spread increases, (for any particular number of 
total users) the efficiency decreases as expected. 

Figure 9 (8 processors), also shows that for a particular 
percentage of spread users in the simulation, the simulation 
with the greatest user population will be more efficient 
(again with a few exceptions below 25% spread). How-
ever, of particular interest is the efficiency of the simulator 
with 512 users. Here, for user spreads of 25% and above, 
132
the simulator has an efficiency greater than one.  The rea-
sons for this are as yet unclear although they are most 
likely related to a thread-to-processor ratio greater than one 
resulting from multiple routers-per-processor. 
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Figure 8: Simulation Efficiency as a Function of User 
Spread. 4 Processors, Numerical Loading Enabled 
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Figure 9: Simulation Efficiency as a Function of User 
Spread. 8 Processors, Numerical Loading Enabled 

4.4 Performance as a Function  
of Routers per Processor 

As each router represents a timeline and hence a separate 
thread, there is a potential benefit in having multiple 
routers per processor. A single router-per-processor would 
give little opportunity for the operating system to make use 
of context switching during I/O waits. In the results we 
have presented so far, the total number of routers in the 
system has been fixed at 32. This is because a fixed num-
ber of routers is required for deterministic results between 
8
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runs of different number of processors. However, for com-
pleteness, it is worth investigating the affect on efficiency 
of the number of routers per processor. 

Figure 10 shows the simulator efficiency as a function 
the number of routers-per-processor. The figure shows the 
results for scenarios with 512 users with 50% user spread, 
32 basestations for 4 and 8 processors. The figure shows 
that there is no significant loss in efficiency with an in-
creasing number of routers per processor, indeed, with a 
few exceptions, there is an efficiency gain. Clearly, Figure 
10 only shows the results for two processors and one user 
count and spread combination, however, the fact that the 
efficiency does not vary significantly over the range of 
routers per processor indicates that choosing a large but 
constant number of routers for determinism reasons will 
not unduly harm the simulation performance. 
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Figure 10: Simulation Efficiency as a Function of 
Routers per Processor. 512 users, Numerical Loading 
Enabled 

5 CONCLUSIONS 

We have presented an architecture suitable as a basis for a 
wireless system simulator and presented performance re-
sults to support the design. 

To create a wireless simulator that scales across proc-
essors efficiently there are two key factors that must be 
considered before, during, and after the design: distributing 
the processing and reducing the cross-processor memory 
accesses. We have shown that utilizing a network approach 
to divide the problem and limit the complexity proves to be 
an effective method of accommodating both these factors. 

Our prototype implementation of the architecture has 
proven to scale efficiently over both increased processor 
availability as well as increased workload. While the per-
formance of the architecture is influenced by the number of 
cross-timeline and cross-processor memory accesses, the 
overall performance is still excellent. We have shown that 
1329
a router-to-processor ratio greater than one has no adverse 
affect on the simulator performance. This is an important 
result given that for deterministic results across different 
number of processors, a constant number of routers in the 
system is required. 

It is our desire to begin evaluation of this architecture 
on clusters of workstations. We believe that it will continue 
to exhibit favorable scaling behaviors, though they will 
most certainly not be of the same scale of those shown in 
this paper due to the lower data transfer rates between clus-
ter nodes. 
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