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ABSTRACT

Checkpointing overhead is a major obstacle for the effec-
tiveness of Time Warp parallel discrete event simulators.
Semi-asynchronous checkpointing is a recent solution to
tackle this obstacle for Time Warp simulations on distributed
memory systems based on Myrinet. In this solution, check-
point operations are offloaded from the host CPU and are
charged to a DMA engine on board of Myrinet network
cards. In this paper we report an empirical evaluation of
the benefits from semi-asynchronouscheckpointing for Time
Warp simulations of a large state Personal Communication
System (PCS) model. PCS simulation models are typically
characterized by high communication locality among the
LPs hosted by the same machine, therefore the hardware
on board of the Myrinet cards is typically underutilized if
used to support exclusively communication. We show that
the execution speed of Time Warp simulations of a large
state PCS model can be increased when semi-asynchronous
checkpointing is adopted.

1 INTRODUCTION

Time Warp parallel discrete event simulators are based on
checkpointing and rollback recovery techniques to ensure
causally consistent execution of simulation events at each
Logical Process (LP) (Jefferson 1985). It is widely recog-
nized that a central factor affecting the performance of this
type of simulators is the way in which checkpoint operations
are executed.

Commonly, checkpoint operations are charged to the
CPU and the reduction of the checkpointing overhead has
been pursued by the use of checkpointing strategies based
on infrequent or incremental saving of the LP state vector,
see for example (Bauer and Sporrer 1993, Bellenot 1992,
Fleischmann and Wilsey 1995, Lin et al. 1993, Quaglia
1999, Quaglia 2001, Ronngren and Ayani 1994, Skold and
Ronngren 1996, Steinman 1993, Unger et al. 1993). These
solutions pay the price of an increase in the expected rollback
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latency since a state to be recovered might not be available,
in which case it must be reconstructed during the rollback
phase. The “best suited” tradeoff is typically achieved
through adequate tuning of the proper parameter(s) of the
checkpointing strategy.

A completely different approach to the implementation
of checkpoint operations has been recently proposed in
(Quaglia and Santoro 2001) for the case of Time Warp
simulation on distributed memory systems based on Myrinet.
Specifically, the work in (Quaglia and Santoro 2001) presents
a Checkpointing and Communication Library (CCL) that
exploits data transfer potentiality offered by programmable
DMA engines on board of Myrinet network cards to support
not only communication but also checkpoint operations. In
this way, checkpoint operations are offloaded from the CPU,
thus allowing the CPU itself to perform other simulation
specific operations (e.g. event list’s update, event execution)
while checkpointing is in progress.

On the other hand, DMA based checkpointing could
suffer from data inconsistency whenever the content of a
state buffer is accessed for further modifications while a
checkpoint operation involving it is not yet completed. To
avoid this, CCL includes also functionalities to suspend
on demand the execution of the simulation program in or-
der to wait, if needed, the completion of a pending DMA
based checkpoint operation. This leads to the so called
semi-asynchronous execution mode of checkpointing. Pre-
liminary performance results (Quaglia and Santoro 2001,
Quaglia, Santoro and Ciciani 2001) have shown that this
mode is an effective solution to reduce the completion time
of the simulation by reducing the delay associated with any
single checkpoint operation.

However, semi-asynchronous checkpointing produces
extra-utilization of the hardware on board of the Myrinet
network card since that hardware is not used to support com-
munication functionalities alone. Such an extra-utilization
might harm the performance of the communication subsys-
tem, thus possibly originating an increase in the amount of
rollback (Carothers, Fujimoto and England 1994), which
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would reduce the effectiveness of the Time Warp mecha-
nism. This is likely to occur in all the circumstances in
which communication functionalities fully exploit the po-
tential of the network hardware, so that the extra-utilization
due to checkpointing is likely to overload the hardware.

In this paper we investigate on the performance im-
provements that can be achieved when adopting semi-
asynchronous checkpointing functionalities offered by CCL
for Time Warp simulations of a large state Personal Com-
munication System (PCS) model. Actually, PCS simula-
tions exhibit high locality of communication among the LPs
hosted by the same machine, thus yielding a situation in
which communication operations typically under-utilize the
network hardware. Therefore, PCS simulation should actu-
ally take advantage from semi-asynchronous checkpointing
since no additional rollback penalty (due to excessive in-
crease in the delivery delay of messages/antimessages at
the simulation application level caused by overload on the
hardware) should be paid.

We also recall that Time Warp simulation of large state
PCS models is an application for which the use of optimized
checkpointing not relying on the incremental saving of the
state vector is almost mandatory in practice. This is because,
still due to communication locality among the LPs hosted
by the same machine, the rollback pattern shows relatively
infrequent, long rollbacks which could originate excessive
state recovery delay for the case of incremental state sav-
ing. The experimental study we perform shows that, for
simulations of a large state PCS model, semi-asynchronous
checkpointing actually produces strong performance bene-
fits as compared to the classical checkpointing mode (i.e.
checkpointing charged to the CPU) used in combination
with strategies relying on the infrequent recording of the
whole state vector of the LP.

The remainder of this paper is structured as follows.
In Section 2 we report a brief overview of CCL. The PCS
simulation model we have used is described in Section 3.
The performance study is presented in Section 4.

2 AN OVERVIEW OF CCL

CCL has been designed for the M2M-PCI32C Myrinet card,
based on the LANai 4 chip (MYRICOM 1999), whose high
level structure is reported in Figure 1. Actually, this chip
is a programmable communication device consisting of:
(a) an internal bus, namely LBUS (Local BUS); (b) a pro-
grammable processor connected to the LBUS, which we will
refer to as LANai processor; this processor runs a control
program that, for the case of CCL, is structured to support
both data transfer operations between the host and the net-
work and semi-asynchronous checkpoint operations; (c) a
RAM bank of 1 Mbyte (LANai internal memory), connected
to the LBUS, which is used for storing both data and the
control program run by the LANai processor; this memory
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can be mapped into the memory address space of the host
so that the host itself can perform read and write operations
on it, which take place through a PCI bridge between the
host and the LANai chip; (d) a packet interface between the
Myrinet switch and the LANai chip, accessible by the LANai
processor; (e) three DMA engines, used respectively for
packet-interface/internal-memory transfer operations (Re-
ceive DMA), internal-memory/packet-interface transfer op-
erations (Send DMA), internal-memory/host-memory trans-
fer (or vice-versa) operations (EBUS DMA, namely External
Bus DMA).

We note that the LANai processor cannot access host
memory directly. Nonetheless, the control program run
by the LANai processor can program the EBUS DMA to
perform data transfer to/from that memory.

Communication functionalities provided by CCL have
been implemented to fully exploit the potential offered by the
hardware components on board of the chip (Quaglia, Santoro
and Ciciani 2001). Specifically, messages incoming from
the network are temporarily buffered into the LANai internal
memory (data transfer between the packet interface and the
internal memory takes place through the Receive DMA)
and are then transferred into the receive queue, located onto
host memory, through the EBUS DMA. This is a common
choice to fast speed messaging layers for Myrinet, see for
example (Pakin, Lauria and Chen 1995). Also, CCL adopts
a classical optimization called “block-DMA” to transfer
incoming messages from the LANai internal memory to
the host memory. It allows incoming messages stored in
contiguous message slots of the LANai internal memory to
be transferred using a single DMA operation. Following the
common design choice, any send operation issued by the
application involves copying the message content directly
into the LANai internal memory (this is also referred to as
“zero-copy” send). Then the message is transferred onto
the network through the Send DMA.

The responsibility to program the three DMA engines
anytime there is the need for supporting a given data transfer
operation pertains to the control program run by the LANai
processor. A detailed description of this program can be
found in (Quaglia, Santoro and Ciciani 2001).

2.1 Semi-Asynchronous Checkpointing Functionalities

Any semi-asynchronous checkpoint operation involves data
transfer from the LP current state buffer (located onto host
memory) to the stack of the checkpointed states of the LP
(also located onto host memory). As shown by the directed
dashed lines in Figure 1, the data transfer operation is
charged to the EBUS DMA that uses the LANai internal
memory as a temporary buffer. (Temporary buffering is
needed since the EBUS DMA does not support direct host
memory to host memory data transfer. It only supports host
memory to LANai internal memory transfer or vice versa.)
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Figure 1: High Level Structure of the M2M-PCI32C Card and Data Transfer Associated with Semi-Asynchronous Checkpointing
In addition to the classical API for usage of communi-
cation functionalities at the application level, the following
API is provided with CCL for usage of semi-asynchronous
checkpointing functionalities:

• semi_asynch_ckpt(int LP_id,
time_type simulation_clock), where
LP_id is the identifier of the LP whose
state vector needs to be checkpointed, and
simulation_clock is the value of the current
simulation time seen by that LP. Any checkpoint
operation issued at the application level through
this function actually means requesting the LANai
processor to program the EBUS DMA for the
data transfer associated with checkpointing.

• ckpt_wait(). This function supports the “on
demand suspension” of the simulation program
mentioned in the Introduction, which is used for
data consistency maintenance in case the simulation
execution requires access to a state vector which
is currently being checkpointed through the EBUS
DMA. Invocation of this function suspends the
execution of the simulation application until a semi-
asynchronous checkpoint operation, if any, is still
in progress. If there is no pending checkpoint
operation, ckpt_wait() returns immediately.

Note that data transfer associated with checkpointing
uses the EBUS DMA, the LBUS, the internal memory and
the PCI bridge, therefore semi-asynchronous checkpointing
causes extra-load on these components (we use the term
“extra” since these hardware components are used also for
data transfer operations associated with communication).
As pointed out in the Introduction, we expect that the
extra-load does not produce performance degradation of the
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communication subsystem anytime it will not result in an
overload on these components.

3 THE PCS SIMULATION MODEL

A PCS is a system that provides communication services
to mobile units. In our simulation model the service area
is partitioned into cells, each of which is modeled by a
distinct LP. Each cell represents a receiver/transmitter having
either some fixed number of channels allocated to it (Fixed-
Channel-Assignment, namely FCA) or a number of channels
dynamically assigned to it (Dynamic-Channel-Assignment,
namely DCA). In this paper we consider an FCA model with
50 channels per cell. The model is call-initiated (Carothers,
Fujimoto and Lin 1995) since it only simulates the behavior
of a mobile unit during conversation (i.e. the movement
of a mobile unit is not tracked unless the unit itself is in
conversation). Therefore, the model is organized around
two entities, namely cells and calls.

Call requests arrive to each cell according to an ex-
ponential distribution (Boukerche et al. 1999, Carothers,
Fujimoto and Lin 1995, Carothers, Bauer and Pearce 2000)
with inter-arrival time 20 seconds. All the calls initiated
within a given cell are originated by the LP associated with
that cell, therefore no external call generator is used. There
are three main types of events, namely hand-off (due to
mobile unit cell switch), call termination and call arrival.
When a call arrives at a cell, channel availability must be
determined. If all channels are busy, the incoming call is
simply counted as a “block”. If at least one channel is
available, then channel assignment for the new call takes
place. A call termination simply involves the release of the
associated channel and statistics update.

Hand-off takes place each time a mobile unit currently
involved in conversation moves from one cell to another.



Santoro and Quaglia
In our model there are two distinct classes of mobile units.
Both of them are characterized by a residence time within
a cell which follows an exponential distribution, with mean
5 minutes (fast movement units) and 40 minutes (slow
movement units), respectively. The average holding time
for each call associated with both fast and slow movement
units is 2 minutes. When a call arrives at a cell, the type
(slow or fast) of the mobile unit associated with the incoming
call is selected from an uniform distribution, therefore any
call is equally likely to be destined to a fast or a slow
movement mobile unit.

When a hand-off occurs between adjacent cells, the
hand-off event at the cell left by the mobile simply involves
the release of the channel. Instead, the hand-off event at the
destination cell checks for channel availability. If there is no
available channel, then the call is simply cut off (dropped),
otherwise an available channel is assigned to the call. Hand-
off events for destination cells are not pre-computed, i.e.
they are scheduled only upon the occurrence of the hand-off
event at the cell left by the mobile unit.

The state vector of any LP records statistics, information
about busy channels and, for each channel, information
about features of the mobile unit involved in the ongoing
call (e.g. scheduled call termination time, call initiation
time, class of the mobile unit etc.), if any. As a result, the
size of the state vector is about 2Kbytes, thus giving rise to a
large state model. (Depending on the abstraction level, PCS
models might exhibit smaller LP state granularity (Carothers,
Fujimoto and Lin 1995, Carothers, Bauer and Pearce 2000).
This might happen when information maintained in the LP
state vector are almost exclusively related to the current
state of the channels within the associated cell, or when the
number of channels per cell is small.)

We have simulated a PCS in which each cell is hexag-
onal, therefore all the cells, except bordering cells of the
coverage area, have six neighbor cells. The model size, in
terms of number of cells, has been fixed at 64.

4 THE EXPERIMENTAL STUDY

4.1 The Hardware/Software Architecture
and the Simulation Engine

The hardware/software architecture we have used to test
the effectiveness of semi-asynchronous checkpointing for
the previously described PCS model is a cluster of 8 PCs
Pentium II 300 MHz running LINUX (kernel version 2.0.32)
which are equipped with 128 Mbytes RAM, 512 Kbytes
second level cache and M2M-PCI32C Myrinet cards. The
experiments have been performed using the CCL based
Time Warp simulation engine described in (Quaglia and
Santoro 2001), whose main loop is structured as shown
below (for sake of simplicity GVT calculation and “fossil
collection” for memory recovery are not reported. Also,
134
rollback relies on aggressive antimessage sending (Gafni
1985), i.e. antimessages are sent as soon as the LP rolls
back):

1. pending_LP = no_LP;
2. while(not end)
3. <receive messages>
4. LP = schedule_next();
5. if (LP = pending_LP)
6. ckpt_wait();
7. pending_LP = no_LP;
8. if (rollback required for LP) rollback();
9. next_event_execution();

10. if (checkpoint required for LP)
11. ckpt_wait();
12. pending_LP = LP;
13. semi_asynch_ckpt();
14. <send messages>

This loop structure exhibits two distinct invocations of
the function ckpt_wait(). The invocation in line 6.
takes place only if the currently scheduled LP is associated
with a pending semi-asynchronous checkpoint operation.
This allows data consistency maintenance into the stack of
checkpointed state vectors of that LP. The invocation in line
11. actually leads to suspension of the simulation application
only in case a new checkpoint operation must be issued
while the last issued one is still in progress. This is required
since CCL does not support concurrent execution or queuing
of multiple EBUS DMA based checkpoint operations.

Even distribution of the 64 LPs of the simulation model
among the 8 machines has been adopted, with an obvious
mapping of LPs to machines (i.e. a mapping assigning to
any machine a specific group of adjacent cells).

4.2 Reference Checkpointing Technique

As a reference checkpointing technique to evaluate the
benefits from semi-asynchronous checkpointing we have
selected the Periodic State Saving (PSS) strategy relying
on classical checkpointing charged to the CPU. In our
implementation, a memcpy() call is issued to copy the
content of the current state vector of the LP into the stack of
checkpoints of the same LP. For CPU based checkpointing,
we have located the stack and the current state buffer of the
LP into reserved pages of physical memory that will never
be swapped out. This is done in order to ensure fairness in
the comparison since in semi-asynchronous checkpointing
both the stack and the current state buffer of each LP are
located into unswappable pages of physical memory. This is
because DMA based data transfer works only with physical
memory addresses.

Actually for CPU based checkpointing we have used
the previously described simulation engine with a minor
modification consisting in substituting the invocation of the
function semi_async_ckpt() with the invocation of a
proper memcpy() function. Also, code lines related to
2
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the management of the function ckpt_wait() have been
obviously removed.

We have selected PSS since simulations of the previ-
ously described PCS model with even distribution of the
LPs among the machines and with no other active user
load typically reaches a steady state of the rollback be-
havior. Therefore, observing the performance achieved by
PSS while varying the checkpoint period χ (evaluated in
terms of number of executed events between two consec-
utive checkpoint operations) is likely to point out the best
performance achievable with any (adaptive) strategy just
relying on periodic checkpoints.

We recall that recently infrequent checkpointing strate-
gies that do not rely on periodic checkpoints have been
proposed, see for example (Quaglia 2001). These strate-
gies exhibit the potential for performance improvement over
strategies based on periodic checkpoints. However the per-
formance gain for the case of PCS models is typically
limited (Quaglia 2001) due to the particular structure of the
rollback pattern that, as already pointed out, shows long,
relatively infrequent rollbacks. Therefore we do not include
data related to those techniques in the analysis. The par-
ticular nature of the rollback pattern is also the reason why
checkpointing based on incremental saving of portions of
the state vector is typically unused for PCS models, so we
do not consider incremental methods in the analysis.

Finally, we study the behavior of semi-asynchronous
checkpointing in combination with PSS while varying the
checkpoint period χ . This will allow us to point out possible
differences in the effects of the checkpoint period itself for
the case of DMA based and CPU based checkpointing.

4.3 Observed Parameters

We report measures related to the following parameters:

(i) The efficiency, that is the ratio between the num-
ber of committed events and the total number
of executed events (committed plus rolled back).
This parameter allows us to evaluate whether
semi-asynchronous checkpointing produces rele-
vant variations in the amount of rollback of the
simulation, which might be an indication of a strong
increase in the message delivery delay (Carothers,
Fujimoto and England 1994) caused by possible
overload on the hardware of the Myrinet network
cards.

(ii) The frequency of application suspension (for semi-
asynchronous checkpointing only) due to invoca-
tions of the function ckpt_wait() in lines 6.
and 11. of the previously presented simulation
engine. This parameter is computed as the ratio
between the number of times the application is re-
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ally suspended and the total number of invocations
of the ckpt_wait() function.

(iii) The event rate, that is the number of committed
events per sec. This parameter indicates how fast
the simulation execution is, therefore it is repre-
sentative of the final performance perceived.

We report the average observed values of previous
parameters, computed over 10 runs that were all done with
different seeds for the random number generation. At least
5 × 106 committed events were simulated in each run.

4.4 Results

The results are reported in Figure 2, Figure 3 and Figure 4.
By the plots related to the efficiency, we note no relevant
difference between the values obtained with CPU based
checkpointing and those obtained with semi-asynchronous
checkpointing. As expected, this is an indication that com-
munication latency seems not to suffer from extra-load on
the network cards due to semi-asynchronous checkpointing.
Specifically, if relevant interference on the delivery delay
had been produced, we should have noted a decrease in
the efficiency due to an increase in the amount of rollback,
since delaying the delivery of messages/antimessages might
mean higher likelihood of incorrect computation (Carothers,
Fujimoto and England 1994).

A second interesting point relates to the frequency of
application suspension due to invocations of the function
ckpt_wait() when semi-asynchronous checkpointing is
adopted. The plot shows that when the checkpoint period χ

is increased from 1 to 4, the suspension frequency shows a
reduction and then assumes a stable value. This is one of the
reasons why the event rate produced by semi-asynchronous
checkpointing shows a steep growth while χ is increased
up to 4.

As respect to the event rate, the plots indicate that
semi-asynchronous checkpointing allows an acceleration of
the simulation model execution. In particular, the best event
rate of semi-asynchronous checkpointing is about 63 × 103

events per sec., while the best event rate with CPU based
checkpointing is about 58 × 103 events per sec., thus semi-
asynchronous checkpointing provides a performance gain
in the order of 9%.

As a last remark we would like to bring to the reader’s
attention, semi-asynchronous checkpointing does not pro-
vide unacceptable performance even in case the state vector
of the LP is saved at each event execution (i.e. even when the
checkpoint period χ is set to one). Specifically, the provided
performance is, at worst, 7% lower than the best performance
achievable with CPU based checkpointing while varying χ .
Instead, the performance provided by CPU based check-
pointing with χ set to one results definitely worse. This is a
relevant result for semi-asynchronous checkpointing since
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Figure 2: Efficiency vs the Checkpoint Period χ
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Figure 3: Frequency of Application Suspension vs the
Checkpoint Period χ

it is an indication that semi-asynchronous checkpointing
could even be used in combination with no optimized in-
frequent state saving strategy while still providing adequate
performance. Transparency at the simulator programmer’s
level can clearly take advantage from this feature.

5 SUMMARY

In this paper we have reported an experimental study on
the performance that can be achieved when adopting semi-
asynchronous checkpointing (i.e. CPU offloaded check-
pointing) for Time Warp simulations of a large state PCS
model on a distributed memory system based on Myrinet.
The study has been carried out using a Checkpointing and
Communication Library (CCL) recently presented to support
semi-asynchronous checkpointing on that type of systems.

The study points out the performance benefits from
semi-asynchronous checkpointing over classical CPU based
checkpointing combined with optimized checkpointing
strategies based on infrequent saving of the LP state vector.
The results show that using semi-asynchronous checkpoint-
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Figure 4: Event Rate vs the Checkpoint Period χ

ing in combination with those strategies yields a relevant
acceleration of the simulation model execution. They also
point out that semi-asynchronous checkpointing exhibits ad-
equate (but sub-optimal) performance even when the state
vector of the LP is saved at each event execution. If opti-
mal performance is not mandatory, then semi-asynchronous
checkpointing can be adopted in combination with no op-
timized infrequent strategy for saving the LP state vector,
which would allow better transparency at the level of the
PCS simulator programmer.
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