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ABSTRACT 

This paper describes a process, implemented using two 
simulation engines that adopt, respectively, the event sched-
uling paradigm and the activity scanning paradigm. The 
process being modeled is design development in an unpre-
dictable environment. Unpredictability means that criteria 
are prone to change during design, thereby interrupting on-
going work and causing design iteration. Probability density 
curves, input to the simulation, capture uncertainties regard-
ing design criteria during the development of R&D semi-
conductor fabrication facilities. The simulation of process 
changes calls for preempting tasks or events, and scheduling 
new tasks or events. The implementations in alternative 
modeling paradigms illustrates the use of a top-down vs. a 
bottom-up approach in process modeling. The two engines 
that were used, SIGMA and STROBOSCOPE, both are pro-
grammable so that the model could be implemented without 
difficulty in either one.  

1 INTRODUCTION 

Analytical models have yielded managerial insight into de-
sign development processes unfolding in unpredictable 
environments (e.g., Krishnan et al. 1997, Bhattacharya et 
al. 1998). Unpredictability has been modeled in diverse 
ways, such as by assuming design changes in preliminary 
information, or by assuming faults in the information re-
sulting from upstream tasks. The goal of these models is to 
provide frameworks that help practitioners determine how 
to best exchange information, if changes in preliminary in-
formation are anticipated. By and large, these models claim 
that formulating a sharp product definition early on may 
not be desirable or even feasible for product development 
in unpredictable environments. Instead, they advocate that 
firms delay commitments and allow real-time definition 
along the development process, according to the level of 
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uncertainty they expect, their own risk profile, and the 
value of customer information. These findings are con-
firmed by empirical studies on new product development 
in unpredictable environments (e.g., Iansiti 1995, Eisen-
hardt and Tabrizi 1995, Ward et al. 1995, Thomke and 
Reinertsen 1998).  

Aside from the issue on how to characterize and model 
unpredictability in design, this paper describes the use of 
two computer simulation engines to model a design proc-
ess. SIGMA uses event scheduling whereas 
STROBOSCOPE uses activity scanning. We compare and 
contrast our subjective assessment of the ease with which 
these tools enable the modeler to represent the chosen pro-
cess and to capture process characteristics. This paper 
complements Gil et al.’s (2001) paper in this 2001 WSC 
conference, that uses SIGMA to study the effects of post-
poned commitment strategies to manage design develop-
ment processes in unpredictable environments. 

2 SELECTION OF TWO SIMULATION ENGINES 

2.1 Event Scheduling vs. Activity Scanning 

Event scheduling and activity scanning are two major 
modeling paradigms used by discrete-event simulation 
packages. A third paradigm is based on the use of block 
languages, but this alternative is not discussed here.  

Event scheduling systems focus on the concept of an 
event graph, comprising vertices and edges. Vertices are as-
sociated with state changes. Edges are associated with con-
ditions and delays. Event scheduling systems model a sys-
tem as it evolves over time by “identifying its characteristic 
events and then writing a set of event routines that give a de-
tailed description of the state changes taking place at the 
time of each event” (Law and Kelton 2000 p. 205). SIGMA 
(Schruben and Schruben 1999), the event scheduling engine 
used in this comparison, provides fundamental, low-level 
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programming language constructs on which higher-level 
constructs can be built. SIGMA can be used to model prob-
lems in any domain. It has been used in diverse applications, 
including queuing problems, scheduling problems, as well as 
systems dynamics problems such as the growth and decline 
of biological populations (e.g., Duenyas et al. 1994, Allore 
et al. 1998). 

Activity scanning systems provide mathematical and 
graphical modeling techniques that focus on the operating 
cycles of resident entities (physical or abstract resources). 
STROBOSCOPE (Martinez 1996), the activity scanning 
engine used in this comparison, provides several higher-
level programming language constructs. STROBOSCOPE 
can be also used to model problems in any domain. The 
program was created more recently and has since been 
used mainly to model queuing problems in architecture-
engineering-construction (AEC) at large, including design 
and construction operations (e.g., Ioannou and Martinez 
1996) and exchanges of information to support construc-
tion management (e.g., Tommelein 1998).  

Preemption is an action taken to check another action 
beforehand. Preemption is required to model either the 
cancellation of a scheduled activity before it has started 
because of an event that occurs beforehand, or the interrup-
tion of an activity because of an event that occurs during 
its execution. Preemption is useful, for instance, to simu-
late disruptions caused by machine breakdowns, to re-
schedule tasks because of (un)anticipated events (e.g., the 
expected mean time to failure is less than the planned ac-
tivity completion time), or to release or draw resources into 
an activity during the activity’s execution (e.g., when it is 
discovered that some resources are lacking). 

Event scheduling systems such as SIGMA have the 
ability to model both the process flows of transient entities 
as well as the operating cycles of resident entities. SIGMA’s 
graphical interface also includes scheduling edges and can-
celing edges, which makes it easy for users to build a model 
that can interrupt and cancel tasks in the course of a simula-
tion run. Thus, preemption is easily modeled. Ingalls et al. 
(1996) present alternative ways to model preemption using 
event graphs in SIGMA without using canceling arcs. Nev-
ertheless, they acknowledge the convenience and functional-
ity of the ‘canceling edge’ construct. 

STROBOSCOPE does not contain explicit language 
constructs to model preemption. This was the result of care-
ful deliberation by its developers. Preemption occurs in 
many systems beyond the most simple ones. Expressing the 
specifics of a case of preemption in a simulation language 
requires much more than merely interrupting an activity. It 
may require selecting one or a few instance(s) to interrupt 
among multiple instances of the same activity, or drawing 
one or a few resource(s) out of selected instances of multiple 
activities. Preemption may manifest itself differently for dif-
ferent instances of activities and resources. Numerous possi-
bilities also exist regarding how to proceed with the simula-
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tion after preemption has occurred. Capturing useful cases of 
preemption in higher-language constructs is feasible. Never-
theless, given the inevitable complexity of those constructs if 
they were to capture any preemption subtlety at all, it is not 
obvious that learning to use them and then using them would 
make it any easier on the programmer than implementing the 
desired preemption mechanism using the already existing 
constructs. Consequently, users of today’s STROBOSCOPE 
version 1.5.3.0 must exert special effort in terms of code 
writing to implement preemptive behavior. 

3 DESCRIPTION OF DESIGN  
PROCESS TO BE MODELED  

3.1 Example Process that Requires Preemption 

The model presented in this paper greatly simplifies the 
complexity of design development processes unfolding in 
unpredictable environments. Unpredictability here means 
that design criteria changeshard to anticipatemay oc-
cur during design. Gil (2001) studied this process in greater 
depth, specifically for design development of a semicon-
ductor fabrication facility (fab).  

Figure 1 presents a schematic process model for design 
development. Design development comprises two distinct 
phases: initial conceptualization followed by concept devel-
opment. During conceptualization, designers primarily use 
empirical rules and historical data to take a first pass at the 
design parameters. During concept development, they use 
sophisticated analytical tools to refine the decisions made 
during conceptualization. Concept development starts im-
mediately after the end of conceptualization. Gil et al. (2001) 
also studied process impacts that result from postponing the 
start of concept development. 

 

Concept
DevelopmentConceptualization

 
 

Figure 1: Design Development Model 
 
Internal and external conditions may force designers to 

repeat these two phases. Designers may reiterate the process 
in their search for a satisfying solution if time allows (Simon 
1969). Iteration may happen for the sake of learning through 
exploration, even if designers possessed all the information 
they needed from the start. For simplicity’s sake, we based 
our model on the assumption that designers would perform 
work only once to find a satisfying solution provided that 
design criteria did not change. That is, there is no repeated 
search for alternatives. Design iterations may also be caused 
by interdependencies with work being executed by other de-
sign specialists. We do not capture design iteration due to 
concurrency of design processes across disciplines in this 
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model. Instead, we focus on the impact external (client-
driven) changes have on the design process and we assume 
that those changes arise irrespectively of the state of the on-
going design process.  

3.2 Uncertainty 

Uncertainty in fab design criteria stems from factors such 
as the concurrency of the fab design effort with the chip 
product development, the unknown characteristics of the 
production tools, the possibility of a change in fab layout, 
and the unpredictability of market demand. In this paper, 
we describe only design criteria changes caused by uncer-
tainty, namely the changes in the dimensions of the clean-
room (the cleanroom is the space inside a fab where the 
chips are produced). Discussing only one type of change 
suffices to show alternative ways for modeling preemption 
in SIGMA and STROBOSCOPE. Gil et al. (2001) study a 
more complex process that also includes changes in tools 
to be housed in the fab.  

Cleanroom dimension changes, although not frequent, 
occur if the manufacturer unexpectedly needs to increase (or 
decrease) the fab capacity. We assume that when the clean-
room width and length change, AEC designers have to re-
work the conceptualization and the concept development 
phases. The probabilistic and temporal relationships between 
consecutive cleanroom changes were developed jointly with 
practitioners and are mathematically stated as 
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where   

 
P(i) :  Probability of change i to occur 
P(i|i-1) :  Probability of change i to occur,

given the prior occurrence of
change i-1 

A, B, C :  Constants  
Ti :  Time when change i occurs [days] 
betai(α1=2,α2=2)  :  Symmetric beta random variable

that is sampled for every value of i 
 
We used rescaled and relocated symmetric beta random 
variables [a+(b-a)*beta(α1=2,α2=2)] to express the vari-
ability around the time when a change can occur. The 
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probability of occurrence of a first change is higher than 
the probability of occurrence of a subsequent change, and 
earlier changes are likely to occur within a more narrow 
range of values than later ones. Accordingly, the model de-
creases the probabilities of the subsequent changes by di-
viding the probabilities of the first change by the terms of 
an increasing numeric sequence. In addition, the model in-
creases the rescaled intervals of the beta distributions (b-a) 
between subsequent changes by multiplying them by those 
same numbers. To clarify, the probability of occurrence of 
a stream of changes is  
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Practitioners estimated, for the specific case of cleanroom 
changes, A and B equal to 0.5, and C equal to 20 days. 
These estimates reflect their perceptions of the frequency 
and time of occurrence of cleanroom dimensions changes, 
for the case of research and development fabs of complex 
process technologies. Figure 2 depicts an excerpt of the 
probabilistic tree that is the basis for the probability density 
curves for changes in cleanroom dimensions. Figure 3 il-
lustrates these probability density curves with data points 
derived from 1,000 simulation runs. 

 
No 1st Cleanroom
Change

1st Cleanroom Change

P=0.5

No 2nd Cleanroom
Change

2nd Cleanroom Change

P=0.5/1.5

No 3rd Cleanroom
Change

P=0.5/2.0 3rd
Cleanroom Change

∆ T1= 20+1.0*20*beta(2,2)

Project Start

∆ T2= 20+1.5*20*beta(2,2)

∆ T2= 20+ 2.0*20*beta(2,2)
(...)

 

Figure 2: Excerpt of Detailed Probabilistic Tree for Clean-
room Dimensions Change 

3.3 Rework  

Hopp and Spearman (1996 p. 362) discuss rework in the 
context of factory physics. They assume that a machine 
produces defective parts and they then study the effects of 
reworking those parts in terms of production line perform-
ance. With the help of computer simulation, they demon-
strate the negative consequences of rework to cycle time, 
throughput, and work in process. They conclude that the 
longer the rework loop, the more pronounced these conse-
quences are.  
6
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Figure 3: Histograms of Changes in Cleanroom Di-
mensions for 1,000 Simulation Runs 

 
In this work, we used a simple rework algorithm that 

posits that whenever a change occurs, the expected dura-
tion for a design phase that needs to be reiterated is equal 
to its initial duration. In other words, the algorithm as-
sumes that designers do not learn or gain any process effi-
ciency from one iteration to the next. This scenario is as-
sumed to hold both for work interrupted when a change 
occurred and for work that was already done when a 
change occurred. It can be written as  

                          i,DDD 1i1i ∀==+                       (8) 
 
where 
 

i :  number of times designers start to perform the 
task (i = 1, 2 , 3, …) 

D1 :  expected duration of a task in the first iteration, 
if no interruptions occur [days] 

Di : expected duration of a task in the last iteration, 
irrespectively of whether or not the task was in-
terrupted in a previous iteration [days]. 

3.4 Additional Assumptions 

To provide clarity and to make it easier to interpret the 
model’s result, we made the following assumptions: 

 
• Each task has a deterministic duration. Computer 

simulation lends itself to express stochastic dura-
tions, but given the sequential nature of this spe-
cific process, stochastic behavior would not influ-
ence the average results of the performance 
variables that were obtained with the deterministic 
model (this is a consequence of the Central Limit 
Theorem).  

• Design criteria changes scheduled to occur after the 
end of concept development are not considered. 
1507
4 MODEL IN SIGMA 

We first implemented the process in SIGMA. Figure 4 il-
lustrates the corresponding event graph model. The geo-
metric figures represent events. Rectangles with a cut-off 
corner represent the beginning or end events of design 
phases. Circles represent the START and END of the de-
sign development process. The diamond represents a 
CLEANROOM CHANGE [dimensions]. Arrows represent 
relationships between the events they connect. Associated 
with each arrow is a set of conditions. A solid arrow de-
notes that the event from which it emanates causes the 
event to which it points to occur after a time delay greater 
than or equal to zero. Similarly, a dashed arrow causes the 
destination event to be cancelled after some time delay. 

 

End Concept
Dev.

- Stage Start /
End

Start
Conceptualizat

ion
Start

Change

Load
Dev.

- Decision Point

End

Start - Project Milestone

Cleanroom
Change

- Canceling Edge

End
Conceptualizat

ion/Start
Concept Dev.

- Scheduling Edge

∆t=25 days ∆t=25 days

∆t=20+20*beta{2,2}days

∆t=20+20* (1.5, 2.0,...)*beta{2,2}days

 
 

Figure 4: Event Graph Model for Design Process Devel-
opment 

 
The design process simulation START[s] (labels of 

symbols in figures are capitalized in the text) by schedul-
ing the START [of the] CONCEPTUALIZATION phase. 
The START event also schedules, with probability A, that 
a first CLEANROOM CHANGE will occur after a 
stochastic time delay. When a CHANGE event occurs, it 
may schedule a subsequent CHANGE. The END [of the] 
CONCEPTUALIZATION phase coincides with the 
START [of the] CONCEPT DEVELOPMENT phase. The 
END [of] CONCEPT DEVELOPMENT schedules an 
END event for the simulation run. This END event then 
collects the values of the performance variables (e.g., total 
project duration; number of days spent on conceptualiza-
tion or on concept development, including rework; number 
of iterations of each task) and it cancels any changes that 
are still scheduled to occur. This END event can be pro-
grammed to schedule a START event for a new, stochasti-
cally independent simulation run should multiple iterations 
of the model be needed to generate statistics about those 
performance variables.  
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At the heart of the simulation model in SIGMA is the 
use of canceling relationships between events. When the 
simulation executes a canceling relationship, it cancels the 
destination events that were previously scheduled. Accord-
ingly, a CLEANROOM CHANGE will immediately can-
cel all the scheduled design events and schedule a new 
START [of] CONCEPTUALIZATION. CONCEPTUAL-
IZATION lasts 25 days. Should any change interrupt it, 
designers would have to repeat that effort. Designers start 
CONCEPT DEVELOPMENT on day 25 if no cleanroom 
changes had yet occurred, or later, after CONCEPTUALI-
ZATION ends if changes occurred in the mean time.  

5 MODEL IN STROBOSCOPE 

We then implemented the process in STROBOSCOPE. 
Since this could require some programming through the 
graphical interface, we thoughtfully developed two alterna-
tives. The first alternative exploits a characteristic of the 
process as it had been formulated. Specifically, since all 
change events are assumed to occur independently of the 
state of the design (only external changes are being consid-
ered), the simulator can generate that stream of changes 
first, then use the resulting stream of event times as input 
to the simulation of the design process. This implementa-
tion is further detailed in sections 5.1 Change Events and 
5.2 Design Process. The second alternative implements a 
more general form of preemption, including cases where 
changes—causes for preemption—become known during 
the execution of design activities. This is detailed in sec-
tion 5.3 More General Model for Preemption in 
STROBOSCOPE. 

5.1 Change Events 

The occurrence of change events as depicted in the event 
tree (Figure 2) is captured by the STROBOSCOPE model 
shown in Figure 5. Geometric figures represent holding 
places for resources or time delays. Rectangles represent 
activities that take some duration to be executed. Rectan-
gles with a cut-off corner are a special kind of activity 
(combination activity or combi) in that they require re-
sources drawn from one or several queues as input. Circles 
with a tail represent queues where resources wait until be-
ing drawn into a combi. Arrows express precedence logic 
and resource flow. The circle with a triangle is a fork, from 
which resources will flow along one of multiple arrows 
emanating from it, as decided by probabilistic sampling or 
by a decision rule. 

START is a dummy activity with zero duration. 
Branching of the tree is achieved using a probabilistic fork 
OTHER CHANGE. If p is the probability for not having a 
subsequent change and thus following arrow c6, then 1-p 
must be the probability for having a subsequent change and 
thus following arrow c3. This probability p varies with  
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Concept
Change

One
Change

c4

c5

Other
Change

c3 No More
Change

c6

StartStart Run c1

c2

p1-p

 
Design
Start

Update

Concept
Change - Activity

  Combi-
-    (nation)
  Activity

- Resource queue

Interrupt
- Probabilistic Fork
   or Decision Node

d1 - Arrow  
 

Figure 5: STROBOSCOPE Process Model 
to Generate Change Events 

 
each iteration and a new value is computed after each 
CONCEPT CHANGE has taken place. During each in-
stance of CONCEPT CHANGE the simulation engine 
samples the time that will elapse until the next change 
event occurs. This model uses an array to store the event 
times of changes. This array is then input to the model of 
the design process.  

5.2 Design Process 

The one-way dependence between the change-event stream 
and the design process makes preemption of design tasks 
simple to mimic. When STROBOSCOPE starts an activity 
and samples its duration from the user-specified probabil-
ity distribution (in this simple process, the duration of 
CONCEPTUALIZATION and of CONCEPT DEVELOP-
MENT is assumed to be constant at 25 days), it can 
compare that duration against the time until the next 
change occurs. The smaller of the two determines the 
simulated task’s duration.  

CPTDUMMY and DVTDUMMY perform this sam-
pling but they are dummy combis with zero duration. The 
comparison is done in the folk that follows each of them 
(Figure 6) and according to the outcome, the process is 
routed along one or the other arrow (mutually exclusively 
d3 XOR d5) emanating from it.  

Taking advantage of the process characteristics, the 
implemented model is very simple and also efficient in 
runtime. 

 

CptDummyCptStart d1 DvtNormal DvtDoned10

Interrupt
Cpt

CptNormal

CptChange

d3

d5

d6

Interrupt
Dvt

d4 d8 d9

DvtChange

d11

CptDone d7 DvtDummyd2

d12  
 

Figure 6: STROBOSCOPE Process Model for Design, 
including Conceptualization and Concept Development 
8
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5.3 More General Method for 

Preemption in STROBOSCOPE 

A more general method for modeling preemption is shown 
in Figure 7. This method does not exploit the specific char-
acteristics of the process at hand, which allowed for de-
coupling (Figures 5 and 6) and consecutive execution of 
the change process model and the design process model.  

The underlying idea for the more general method is 
simple. Preemption means canceling an event that was 
scheduled to occur at some time in the future, and that, ac-
cordingly, is posted on the simulation engine’s future event 
list (FEL). In STROBOSCOPE, as in many other simula-
tion engines, the FEL is internal to the program and the 
user cannot manipulate its data directly. To fake access, the 
user can mimic the FEL by creating their own. A FEL is 
essentially a queue of events, so the STROBOSCOPE 
queue construct suits this purpose. In contrast, SIGMA us-
ers can access the FEL directly (though this feature is 
turned off in the ‘student’ version of the program), so that 
no faking would be necessary. 
 

Concept
Change

Update

u1

Update
Time

u2

Design
Start CptStart

CptDuration

CptEndd1

d2b

FELd2a

d3

d4

d5

CptDoned6 DvtStart

DvtDuration

DvtEnd

d9

d8a

d8b

d7 DvtDoned10

CONCEPTUALIZATION CONCEPT DEVELOPMENT

PROCESS MODEL TO
GENERATE CHANGE EVENTS

...

 
 

Figure 7: More General STROBOSCOPE Process to 
Model Design with Preemption 

 
 Tasks are broken down in three parts: (1) their start, 
(2) their execution with the normal duration, and (3) their 
end. (1) and (3) are modeled as combis with a zero dura-
tion, so they are like events. CPTSTART (DVTSTART) 
releases an entity to the shown FEL queue, which is like 
posting an event on the future event list. This entity has an 
attribute ‘endtime’ with as value the simulation time at 
which it is created plus the normal duration of (2). That is, 
the value of ‘endtime’ is the design task’s end time should 
that task complete without being interrupted by changes.  

CPTSTART (DVTSTART) initiates CPTDURATION 
(DVTDURATION). The end of the latter activity will post 
an event at the time of normal completion on the simula-
150
tor’s internal FEL. In turn, CPTEND (DVTEND) is pro-
grammed to start when an entity is available on the shown 
FEL queue whose attribute ‘endtime’ matches the end of 
CPTDURATION (DVTDURATION). When advancing 
the internal simulation clock, the simulator will evaluate 
this condition and find it to be true when CPTDURATION 
(DVTDURATION) completes normally, that is, no 
changes occurred in the mean time.  

The stream of changes is modeled in the same way as 
was explained previously (the dashed box at the top of 
Figure 7 represents the process shown in Figure 5). How-
ever, the change process here is an integral part of the 
process model. Changes are generated as the simulation of 
the design process progresses. Every time a change arises, 
the UPDATE activity will draw all entities from the FEL 
(arrow d4) and restart the simulation (arrow d5).  

This model clearly is more complex because the 
STROBOSCOPE user must program their own FEL and 
the desired interruption of activities and routing of re-
sources. Modeling the FEL (or at least some of its features) 
penalizes the simulation at runtime.  

6 DISCUSSION  

Modeling necessarily is subjective. There is no unique 
‘right’ way to model a system. Different programmers us-
ing SIGMA or STROBOSCOPE are likely to create differ-
ent implementations for the preemption of design proc-
esses as described in this paper. The observations that 
follow reflect the authors’ conceptualization of the process, 
their prior knowledge of the simulation engines, individual 
experience and skill in taking advantage of various simula-
tion capabilities, and personal preference. 

6.1 Ease of Implementation  

Event scheduling nicely matches some people’s mental 
models of processes evolving over time as a dynamic 
succession of events. Other people may think more intui-
tively in terms of processes comprising activities that re-
quire resources and then take time to execute. The authors 
do not argue in favor of using one or the other modeling 
paradigm.  

SIGMA implements the event scheduling paradigm by 
characterizing edges as being of one of three types: (1) can-
celing, (2) pending, and (3) scheduling, which Schruben and 
Schruben (1999) provide more detailed information on. This 
expressiveness of SIGMA to cancel and reschedule tasks 
makes the implementation of preemption straightforward, 
whether or not mutual interdependence exists between de-
sign tasks and the stochastic stream of changes.  

STROBOSCOPE does not have explicit constructs to 
model preemption but the user can model systems so as to 
mimic event scheduling as needed (e.g., Figure 7). 
9
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6.2 Graphical Interface 

SIGMA provides a graphical interface for the user to de-
velop the model (Figure 4). Underlying the nodes (verti-
ces) and arcs (edges) shown graphically, are interface win-
dows where the programmer has to enter code.  

The SIGMA programmer has to explicitly spell out all 
state changes when an edge gets cancelled. In addition, at 
each state change, the programmer has to collect perform-
ance data depending on the variables being tracked. Using 
SIGMA’s educational version, this coding may be rather 
cryptic.  

STROBOSCOPE comes with graphical templates to 
be uploaded in Visio (Microsoft 2001). As is the case with 
SIGMA, this interface enables the user to develop the 
model (Figures 5, 6, and 7). STROBOSCOPE’s interface 
windows provide more fields than SIGMA’s, so this may 
expedite model development. Nevertheless, the sophisti-
cated STROBOSCOPE user may also (have to) program 
rather complex constructs in order to obtain the desired be-
havior of a model.  

Either program’s interface simply constitutes of fields 
for the user to enter data and code. Closing the interface 
box formats that input so that it can be read by the simula-
tion engine. These graphical interfaces are often used for 
preliminary prototyping of a system and to generate code. 
Rather than continuing to use the graphical interface 
throughout all experimentation with the model, program 
users are likely to resort to editing that code directly. This 
enables them to see, in lexical order, the input data, vari-
able definitions, formulas, and so on, that are not shown all 
simultaneously in the graphical interface. 

6.3 Top-Down vs. Bottom-Up  
Language Constructs 

SIGMA and STROBOSCOPE are both general purpose 
simulation engines. They can be applied to model a diverse 
range of processes in various domains. They differ how-
ever in the degree of programming complexity of the con-
structs they provide from the start. SIGMA provides lower-
level generic constructsessentially the vertex and the 
edgethat require little time to learn to use. These con-
structs make SIGMA flexible for modeling complex proc-
esses, provided that the user masters the underlying logic 
of programming the state changes at the vertices and the 
Boolean conditions at the edges.  

A powerful feature is that SIGMA users can group and 
save SIGMA models as independent user tools. Each event 
graph has clear inputs and outputs so that linking them at a 
higher level does not create ambiguity. The resulting tools 
can be made available on SIGMA’s graphical template list 
for later integration in more complex models. In doing so, 
users leverage SIGMA’s lower-level constructs as custom-
ized higher-level constructs, making the program’s func-
1510
tionality resemble that provided by higher-level program-
ming languages. 

STROBOSCOPE provides higher-level program-
ming language constructs from the start. STROBO-
SCOPE therefore takes more time to learn but doing so is 
worthwhile when those constructs suit the domain of ap-
plication and the user gets to apply their knowledge 
when modeling processes that intuitively match those 
constructs. However, higher-level constructs are tedious 
to use when lower-level functionality is to be achieved, 
as was the case in modeling the chosen process with pre-
emption. 

7 CONCLUSIONS 

This paper has presented the implementation of a design 
process with tasks that were preempted. This process was 
implemented several times by the authors, once using the 
SIGMA simulation engine that follows the event-scheduling 
paradigm, and twice using the STROBOSCOPE simulation 
engine that follows the activity-scanning paradigm. This ef-
fort illustrates that both paradigms can support the modeling 
needs of this specific process. It confirms that alternative 
ways exist to model the process within each paradigm. The 
authors have found it very useful, from a model validation 
perspective, to re-implement the model that was first devel-
oped in SIGMA using another simulation language, in this 
case STROBOSCOPE. For instance, this effort highlighted 
several modeling assumptions that otherwise would have 
been taken for granted. 

Not all event scheduling or activity scanning simula-
tion languages provide explicit constructs to describe the 
preemption of tasks. In real-life systems, including physi-
cal as well as social systems, tasks often get interrupted or 
cancelled altogether. Simulations that model preemption 
therefore get one step closer to the actual behavior of real-
world systems.  

The requirements for preemption as modeled here are 
rather simple. The stream of changes is stochastically in-
dependent of the execution of the design process. In addi-
tion, preempted activities simply cause the design process 
to restart and there is no need to reroute resources such as 
people or equipment, as the model does not include any 
such resources. In practice, preemption mechanisms may 
be more complex and require significant managerial deci-
sion making. 
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