
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

COMPARISON OF SIMULATION MODELING TECHNIQUES
THAT USE PREEMPTION TO CAPTURE DESIGN UNCERTAINTY

Nuno Gil
Iris D. Tommelein

University of California

Construction Engineering and Management Program
Department of Civil and Environmental Engineering

215 McLaughlin Hall
Berkeley, CA 94720-1712, U.S.A.

ABSTRACT

This paper describes a process, implemented using two
simulation engines that adopt, respectively, the event sched-
uling paradigm and the activity scanning paradigm. The
process being modeled is design development in an unpre-
dictable environment. Unpredictability means that criteria
are prone to change during design, thereby interrupting on-
going work and causing design iteration. Probability density
curves, input to the simulation, capture uncertainties regard-
ing design criteria during the development of R&D semi-
conductor fabrication facilities. The simulation of process
changes calls for preempting tasks or events, and scheduling
new tasks or events. The implementations in alternative
modeling paradigms illustrates the use of a top-down vs. a
bottom-up approach in process modeling. The two engines
that were used, SIGMA and STROBOSCOPE, both are pro-
grammable so that the model could be implemented without
difficulty in either one.

1 INTRODUCTION

Analytical models have yielded managerial insight into de-
sign development processes unfolding in unpredictable
environments (e.g., Krishnan et al. 1997, Bhattacharya et
al. 1998). Unpredictability has been modeled in diverse
ways, such as by assuming design changes in preliminary
information, or by assuming faults in the information re-
sulting from upstream tasks. The goal of these models is to
provide frameworks that help practitioners determine how
to best exchange information, if changes in preliminary in-
formation are anticipated. By and large, these models claim
that formulating a sharp product definition early on may
not be desirable or even feasible for product development
in unpredictable environments. Instead, they advocate that
firms delay commitments and allow real-time definition
along the development process, according to the level of
1504
uncertainty they expect, their own risk profile, and the
value of customer information. These findings are con-
firmed by empirical studies on new product development
in unpredictable environments (e.g., Iansiti 1995, Eisen-
hardt and Tabrizi 1995, Ward et al. 1995, Thomke and
Reinertsen 1998).

Aside from the issue on how to characterize and model
unpredictability in design, this paper describes the use of
two computer simulation engines to model a design proc-
ess. SIGMA uses event scheduling whereas
STROBOSCOPE uses activity scanning. We compare and
contrast our subjective assessment of the ease with which
these tools enable the modeler to represent the chosen pro-
cess and to capture process characteristics. This paper
complements Gil et al.’s (2001) paper in this 2001 WSC
conference, that uses SIGMA to study the effects of post-
poned commitment strategies to manage design develop-
ment processes in unpredictable environments.

2 SELECTION OF TWO SIMULATION ENGINES

2.1 Event Scheduling vs. Activity Scanning

Event scheduling and activity scanning are two major
modeling paradigms used by discrete-event simulation
packages. A third paradigm is based on the use of block
languages, but this alternative is not discussed here.

Event scheduling systems focus on the concept of an
event graph, comprising vertices and edges. Vertices are as-
sociated with state changes. Edges are associated with con-
ditions and delays. Event scheduling systems model a sys-
tem as it evolves over time by “identifying its characteristic
events and then writing a set of event routines that give a de-
tailed description of the state changes taking place at the
time of each event” (Law and Kelton 2000 p. 205). SIGMA
(Schruben and Schruben 1999), the event scheduling engine
used in this comparison, provides fundamental, low-level

Gil and Tommelein

programming language constructs on which higher-level
constructs can be built. SIGMA can be used to model prob-
lems in any domain. It has been used in diverse applications,
including queuing problems, scheduling problems, as well as
systems dynamics problems such as the growth and decline
of biological populations (e.g., Duenyas et al. 1994, Allore
et al. 1998).

Activity scanning systems provide mathematical and
graphical modeling techniques that focus on the operating
cycles of resident entities (physical or abstract resources).
STROBOSCOPE (Martinez 1996), the activity scanning
engine used in this comparison, provides several higher-
level programming language constructs. STROBOSCOPE
can be also used to model problems in any domain. The
program was created more recently and has since been
used mainly to model queuing problems in architecture-
engineering-construction (AEC) at large, including design
and construction operations (e.g., Ioannou and Martinez
1996) and exchanges of information to support construc-
tion management (e.g., Tommelein 1998).

Preemption is an action taken to check another action
beforehand. Preemption is required to model either the
cancellation of a scheduled activity before it has started
because of an event that occurs beforehand, or the interrup-
tion of an activity because of an event that occurs during
its execution. Preemption is useful, for instance, to simu-
late disruptions caused by machine breakdowns, to re-
schedule tasks because of (un)anticipated events (e.g., the
expected mean time to failure is less than the planned ac-
tivity completion time), or to release or draw resources into
an activity during the activity’s execution (e.g., when it is
discovered that some resources are lacking).

Event scheduling systems such as SIGMA have the
ability to model both the process flows of transient entities
as well as the operating cycles of resident entities. SIGMA’s
graphical interface also includes scheduling edges and can-
celing edges, which makes it easy for users to build a model
that can interrupt and cancel tasks in the course of a simula-
tion run. Thus, preemption is easily modeled. Ingalls et al.
(1996) present alternative ways to model preemption using
event graphs in SIGMA without using canceling arcs. Nev-
ertheless, they acknowledge the convenience and functional-
ity of the ‘canceling edge’ construct.

STROBOSCOPE does not contain explicit language
constructs to model preemption. This was the result of care-
ful deliberation by its developers. Preemption occurs in
many systems beyond the most simple ones. Expressing the
specifics of a case of preemption in a simulation language
requires much more than merely interrupting an activity. It
may require selecting one or a few instance(s) to interrupt
among multiple instances of the same activity, or drawing
one or a few resource(s) out of selected instances of multiple
activities. Preemption may manifest itself differently for dif-
ferent instances of activities and resources. Numerous possi-
bilities also exist regarding how to proceed with the simula-
1505
tion after preemption has occurred. Capturing useful cases of
preemption in higher-language constructs is feasible. Never-
theless, given the inevitable complexity of those constructs if
they were to capture any preemption subtlety at all, it is not
obvious that learning to use them and then using them would
make it any easier on the programmer than implementing the
desired preemption mechanism using the already existing
constructs. Consequently, users of today’s STROBOSCOPE
version 1.5.3.0 must exert special effort in terms of code
writing to implement preemptive behavior.

3 DESCRIPTION OF DESIGN
PROCESS TO BE MODELED

3.1 Example Process that Requires Preemption

The model presented in this paper greatly simplifies the
complexity of design development processes unfolding in
unpredictable environments. Unpredictability here means
that design criteria changeshard to anticipatemay oc-
cur during design. Gil (2001) studied this process in greater
depth, specifically for design development of a semicon-
ductor fabrication facility (fab).

Figure 1 presents a schematic process model for design
development. Design development comprises two distinct
phases: initial conceptualization followed by concept devel-
opment. During conceptualization, designers primarily use
empirical rules and historical data to take a first pass at the
design parameters. During concept development, they use
sophisticated analytical tools to refine the decisions made
during conceptualization. Concept development starts im-
mediately after the end of conceptualization. Gil et al. (2001)
also studied process impacts that result from postponing the
start of concept development.

Concept
DevelopmentConceptualization

Figure 1: Design Development Model

Internal and external conditions may force designers to

repeat these two phases. Designers may reiterate the process
in their search for a satisfying solution if time allows (Simon
1969). Iteration may happen for the sake of learning through
exploration, even if designers possessed all the information
they needed from the start. For simplicity’s sake, we based
our model on the assumption that designers would perform
work only once to find a satisfying solution provided that
design criteria did not change. That is, there is no repeated
search for alternatives. Design iterations may also be caused
by interdependencies with work being executed by other de-
sign specialists. We do not capture design iteration due to
concurrency of design processes across disciplines in this

Gil and Tommelein

model. Instead, we focus on the impact external (client-
driven) changes have on the design process and we assume
that those changes arise irrespectively of the state of the on-
going design process.

3.2 Uncertainty

Uncertainty in fab design criteria stems from factors such
as the concurrency of the fab design effort with the chip
product development, the unknown characteristics of the
production tools, the possibility of a change in fab layout,
and the unpredictability of market demand. In this paper,
we describe only design criteria changes caused by uncer-
tainty, namely the changes in the dimensions of the clean-
room (the cleanroom is the space inside a fab where the
chips are produced). Discussing only one type of change
suffices to show alternative ways for modeling preemption
in SIGMA and STROBOSCOPE. Gil et al. (2001) study a
more complex process that also includes changes in tools
to be housed in the fab.

Cleanroom dimension changes, although not frequent,
occur if the manufacturer unexpectedly needs to increase (or
decrease) the fab capacity. We assume that when the clean-
room width and length change, AEC designers have to re-
work the conceptualization and the concept development
phases. The probabilistic and temporal relationships between
consecutive cleanroom changes were developed jointly with
practitioners and are mathematically stated as

A) P(change 1 = (1)

B1

A) change| P(change 12
+

= (2)

B2.01

A) change| P(change 23
∗+

= ,…, (3)

2i ,
B*1)-(i1

A) change| P(change 1-ii ≥
+

= (4)

2i ,0) change| P(change 1-ii ≥= (5)

() 1 i , (2,2)beta*B*1)(s1i*CT
i

1s
ii ≥



 −++= ∑

=

 (6)

where

P(i) : Probability of change i to occur
P(i|i-1) : Probability of change i to occur,

given the prior occurrence of
change i-1

A, B, C : Constants
Ti : Time when change i occurs [days]
betai(α1=2,α2=2) : Symmetric beta random variable

that is sampled for every value of i

We used rescaled and relocated symmetric beta random
variables [a+(b-a)*beta(α1=2,α2=2)] to express the vari-
ability around the time when a change can occur. The
150
probability of occurrence of a first change is higher than
the probability of occurrence of a subsequent change, and
earlier changes are likely to occur within a more narrow
range of values than later ones. Accordingly, the model de-
creases the probabilities of the subsequent changes by di-
viding the probabilities of the first change by the terms of
an increasing numeric sequence. In addition, the model in-
creases the rescaled intervals of the beta distributions (b-a)
between subsequent changes by multiplying them by those
same numbers. To clarify, the probability of occurrence of
a stream of changes is

1i ,
B*1)(s1

A
) change... change P(change

1

11-ii

≥
−+

=∩∩∩

∏
=

i

s

 (7)

Practitioners estimated, for the specific case of cleanroom
changes, A and B equal to 0.5, and C equal to 20 days.
These estimates reflect their perceptions of the frequency
and time of occurrence of cleanroom dimensions changes,
for the case of research and development fabs of complex
process technologies. Figure 2 depicts an excerpt of the
probabilistic tree that is the basis for the probability density
curves for changes in cleanroom dimensions. Figure 3 il-
lustrates these probability density curves with data points
derived from 1,000 simulation runs.

No 1st Cleanroom
Change

1st Cleanroom Change

P=0.5

No 2nd Cleanroom
Change

2nd Cleanroom Change

P=0.5/1.5

No 3rd Cleanroom
Change

P=0.5/2.0 3rd
Cleanroom Change

∆ T1= 20+1.0*20*beta(2,2)

Project Start

∆ T2= 20+1.5*20*beta(2,2)

∆ T2= 20+ 2.0*20*beta(2,2)
(...)

Figure 2: Excerpt of Detailed Probabilistic Tree for Clean-
room Dimensions Change

3.3 Rework

Hopp and Spearman (1996 p. 362) discuss rework in the
context of factory physics. They assume that a machine
produces defective parts and they then study the effects of
reworking those parts in terms of production line perform-
ance. With the help of computer simulation, they demon-
strate the negative consequences of rework to cycle time,
throughput, and work in process. They conclude that the
longer the rework loop, the more pronounced these conse-
quences are.
6

Gil and Tommelein

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100 110 120
Simulation Time (days)

N
um

be
r o

f C
ha

ng
es

(in
 1

00
0

Ite
ra

tio
ns

)

First Change in Cleanroom Dimensions
Second Change in Cleanroom Dimensions
Third Change in Cleanroom Dimensions

Figure 3: Histograms of Changes in Cleanroom Di-
mensions for 1,000 Simulation Runs

In this work, we used a simple rework algorithm that

posits that whenever a change occurs, the expected dura-
tion for a design phase that needs to be reiterated is equal
to its initial duration. In other words, the algorithm as-
sumes that designers do not learn or gain any process effi-
ciency from one iteration to the next. This scenario is as-
sumed to hold both for work interrupted when a change
occurred and for work that was already done when a
change occurred. It can be written as

 i,DDD 1i1i ∀==+ (8)

where

i : number of times designers start to perform the
task (i = 1, 2 , 3, …)

D1 : expected duration of a task in the first iteration,
if no interruptions occur [days]

Di : expected duration of a task in the last iteration,
irrespectively of whether or not the task was in-
terrupted in a previous iteration [days].

3.4 Additional Assumptions

To provide clarity and to make it easier to interpret the
model’s result, we made the following assumptions:

• Each task has a deterministic duration. Computer

simulation lends itself to express stochastic dura-
tions, but given the sequential nature of this spe-
cific process, stochastic behavior would not influ-
ence the average results of the performance
variables that were obtained with the deterministic
model (this is a consequence of the Central Limit
Theorem).

• Design criteria changes scheduled to occur after the
end of concept development are not considered.
1507
4 MODEL IN SIGMA

We first implemented the process in SIGMA. Figure 4 il-
lustrates the corresponding event graph model. The geo-
metric figures represent events. Rectangles with a cut-off
corner represent the beginning or end events of design
phases. Circles represent the START and END of the de-
sign development process. The diamond represents a
CLEANROOM CHANGE [dimensions]. Arrows represent
relationships between the events they connect. Associated
with each arrow is a set of conditions. A solid arrow de-
notes that the event from which it emanates causes the
event to which it points to occur after a time delay greater
than or equal to zero. Similarly, a dashed arrow causes the
destination event to be cancelled after some time delay.

End Concept
Dev.

- Stage Start /
End

Start
Conceptualizat

ion
Start

Change

Load
Dev.

- Decision Point

End

Start - Project Milestone

Cleanroom
Change

- Canceling Edge

End
Conceptualizat

ion/Start
Concept Dev.

- Scheduling Edge

∆t=25 days ∆t=25 days

∆t=20+20*beta{2,2}days

∆t=20+20* (1.5, 2.0,...)*beta{2,2}days

Figure 4: Event Graph Model for Design Process Devel-
opment

The design process simulation START[s] (labels of

symbols in figures are capitalized in the text) by schedul-
ing the START [of the] CONCEPTUALIZATION phase.
The START event also schedules, with probability A, that
a first CLEANROOM CHANGE will occur after a
stochastic time delay. When a CHANGE event occurs, it
may schedule a subsequent CHANGE. The END [of the]
CONCEPTUALIZATION phase coincides with the
START [of the] CONCEPT DEVELOPMENT phase. The
END [of] CONCEPT DEVELOPMENT schedules an
END event for the simulation run. This END event then
collects the values of the performance variables (e.g., total
project duration; number of days spent on conceptualiza-
tion or on concept development, including rework; number
of iterations of each task) and it cancels any changes that
are still scheduled to occur. This END event can be pro-
grammed to schedule a START event for a new, stochasti-
cally independent simulation run should multiple iterations
of the model be needed to generate statistics about those
performance variables.

Gil and Tommelein

At the heart of the simulation model in SIGMA is the
use of canceling relationships between events. When the
simulation executes a canceling relationship, it cancels the
destination events that were previously scheduled. Accord-
ingly, a CLEANROOM CHANGE will immediately can-
cel all the scheduled design events and schedule a new
START [of] CONCEPTUALIZATION. CONCEPTUAL-
IZATION lasts 25 days. Should any change interrupt it,
designers would have to repeat that effort. Designers start
CONCEPT DEVELOPMENT on day 25 if no cleanroom
changes had yet occurred, or later, after CONCEPTUALI-
ZATION ends if changes occurred in the mean time.

5 MODEL IN STROBOSCOPE

We then implemented the process in STROBOSCOPE.
Since this could require some programming through the
graphical interface, we thoughtfully developed two alterna-
tives. The first alternative exploits a characteristic of the
process as it had been formulated. Specifically, since all
change events are assumed to occur independently of the
state of the design (only external changes are being consid-
ered), the simulator can generate that stream of changes
first, then use the resulting stream of event times as input
to the simulation of the design process. This implementa-
tion is further detailed in sections 5.1 Change Events and
5.2 Design Process. The second alternative implements a
more general form of preemption, including cases where
changes—causes for preemption—become known during
the execution of design activities. This is detailed in sec-
tion 5.3 More General Model for Preemption in
STROBOSCOPE.

5.1 Change Events

The occurrence of change events as depicted in the event
tree (Figure 2) is captured by the STROBOSCOPE model
shown in Figure 5. Geometric figures represent holding
places for resources or time delays. Rectangles represent
activities that take some duration to be executed. Rectan-
gles with a cut-off corner are a special kind of activity
(combination activity or combi) in that they require re-
sources drawn from one or several queues as input. Circles
with a tail represent queues where resources wait until be-
ing drawn into a combi. Arrows express precedence logic
and resource flow. The circle with a triangle is a fork, from
which resources will flow along one of multiple arrows
emanating from it, as decided by probabilistic sampling or
by a decision rule.

START is a dummy activity with zero duration.
Branching of the tree is achieved using a probabilistic fork
OTHER CHANGE. If p is the probability for not having a
subsequent change and thus following arrow c6, then 1-p
must be the probability for having a subsequent change and
thus following arrow c3. This probability p varies with

150
Concept
Change

One
Change

c4

c5

Other
Change

c3 No More
Change

c6

StartStart Run c1

c2

p1-p

Design
Start

Update

Concept
Change - Activity

 Combi-
- (nation)
 Activity

- Resource queue

Interrupt
- Probabilistic Fork
 or Decision Node

d1 - Arrow

Figure 5: STROBOSCOPE Process Model
to Generate Change Events

each iteration and a new value is computed after each
CONCEPT CHANGE has taken place. During each in-
stance of CONCEPT CHANGE the simulation engine
samples the time that will elapse until the next change
event occurs. This model uses an array to store the event
times of changes. This array is then input to the model of
the design process.

5.2 Design Process

The one-way dependence between the change-event stream
and the design process makes preemption of design tasks
simple to mimic. When STROBOSCOPE starts an activity
and samples its duration from the user-specified probabil-
ity distribution (in this simple process, the duration of
CONCEPTUALIZATION and of CONCEPT DEVELOP-
MENT is assumed to be constant at 25 days), it can
compare that duration against the time until the next
change occurs. The smaller of the two determines the
simulated task’s duration.

CPTDUMMY and DVTDUMMY perform this sam-
pling but they are dummy combis with zero duration. The
comparison is done in the folk that follows each of them
(Figure 6) and according to the outcome, the process is
routed along one or the other arrow (mutually exclusively
d3 XOR d5) emanating from it.

Taking advantage of the process characteristics, the
implemented model is very simple and also efficient in
runtime.

CptDummyCptStart d1 DvtNormal DvtDoned10

Interrupt
Cpt

CptNormal

CptChange

d3

d5

d6

Interrupt
Dvt

d4 d8 d9

DvtChange

d11

CptDone d7 DvtDummyd2

d12

Figure 6: STROBOSCOPE Process Model for Design,
including Conceptualization and Concept Development
8

Gil and Tommelein

5.3 More General Method for

Preemption in STROBOSCOPE

A more general method for modeling preemption is shown
in Figure 7. This method does not exploit the specific char-
acteristics of the process at hand, which allowed for de-
coupling (Figures 5 and 6) and consecutive execution of
the change process model and the design process model.

The underlying idea for the more general method is
simple. Preemption means canceling an event that was
scheduled to occur at some time in the future, and that, ac-
cordingly, is posted on the simulation engine’s future event
list (FEL). In STROBOSCOPE, as in many other simula-
tion engines, the FEL is internal to the program and the
user cannot manipulate its data directly. To fake access, the
user can mimic the FEL by creating their own. A FEL is
essentially a queue of events, so the STROBOSCOPE
queue construct suits this purpose. In contrast, SIGMA us-
ers can access the FEL directly (though this feature is
turned off in the ‘student’ version of the program), so that
no faking would be necessary.

Concept
Change

Update

u1

Update
Time

u2

Design
Start CptStart

CptDuration

CptEndd1

d2b

FELd2a

d3

d4

d5

CptDoned6 DvtStart

DvtDuration

DvtEnd

d9

d8a

d8b

d7 DvtDoned10

CONCEPTUALIZATION CONCEPT DEVELOPMENT

PROCESS MODEL TO
GENERATE CHANGE EVENTS

...

Figure 7: More General STROBOSCOPE Process to
Model Design with Preemption

 Tasks are broken down in three parts: (1) their start,
(2) their execution with the normal duration, and (3) their
end. (1) and (3) are modeled as combis with a zero dura-
tion, so they are like events. CPTSTART (DVTSTART)
releases an entity to the shown FEL queue, which is like
posting an event on the future event list. This entity has an
attribute ‘endtime’ with as value the simulation time at
which it is created plus the normal duration of (2). That is,
the value of ‘endtime’ is the design task’s end time should
that task complete without being interrupted by changes.

CPTSTART (DVTSTART) initiates CPTDURATION
(DVTDURATION). The end of the latter activity will post
an event at the time of normal completion on the simula-
150
tor’s internal FEL. In turn, CPTEND (DVTEND) is pro-
grammed to start when an entity is available on the shown
FEL queue whose attribute ‘endtime’ matches the end of
CPTDURATION (DVTDURATION). When advancing
the internal simulation clock, the simulator will evaluate
this condition and find it to be true when CPTDURATION
(DVTDURATION) completes normally, that is, no
changes occurred in the mean time.

The stream of changes is modeled in the same way as
was explained previously (the dashed box at the top of
Figure 7 represents the process shown in Figure 5). How-
ever, the change process here is an integral part of the
process model. Changes are generated as the simulation of
the design process progresses. Every time a change arises,
the UPDATE activity will draw all entities from the FEL
(arrow d4) and restart the simulation (arrow d5).

This model clearly is more complex because the
STROBOSCOPE user must program their own FEL and
the desired interruption of activities and routing of re-
sources. Modeling the FEL (or at least some of its features)
penalizes the simulation at runtime.

6 DISCUSSION

Modeling necessarily is subjective. There is no unique
‘right’ way to model a system. Different programmers us-
ing SIGMA or STROBOSCOPE are likely to create differ-
ent implementations for the preemption of design proc-
esses as described in this paper. The observations that
follow reflect the authors’ conceptualization of the process,
their prior knowledge of the simulation engines, individual
experience and skill in taking advantage of various simula-
tion capabilities, and personal preference.

6.1 Ease of Implementation

Event scheduling nicely matches some people’s mental
models of processes evolving over time as a dynamic
succession of events. Other people may think more intui-
tively in terms of processes comprising activities that re-
quire resources and then take time to execute. The authors
do not argue in favor of using one or the other modeling
paradigm.

SIGMA implements the event scheduling paradigm by
characterizing edges as being of one of three types: (1) can-
celing, (2) pending, and (3) scheduling, which Schruben and
Schruben (1999) provide more detailed information on. This
expressiveness of SIGMA to cancel and reschedule tasks
makes the implementation of preemption straightforward,
whether or not mutual interdependence exists between de-
sign tasks and the stochastic stream of changes.

STROBOSCOPE does not have explicit constructs to
model preemption but the user can model systems so as to
mimic event scheduling as needed (e.g., Figure 7).
9

Gil and Tommelein

6.2 Graphical Interface

SIGMA provides a graphical interface for the user to de-
velop the model (Figure 4). Underlying the nodes (verti-
ces) and arcs (edges) shown graphically, are interface win-
dows where the programmer has to enter code.

The SIGMA programmer has to explicitly spell out all
state changes when an edge gets cancelled. In addition, at
each state change, the programmer has to collect perform-
ance data depending on the variables being tracked. Using
SIGMA’s educational version, this coding may be rather
cryptic.

STROBOSCOPE comes with graphical templates to
be uploaded in Visio (Microsoft 2001). As is the case with
SIGMA, this interface enables the user to develop the
model (Figures 5, 6, and 7). STROBOSCOPE’s interface
windows provide more fields than SIGMA’s, so this may
expedite model development. Nevertheless, the sophisti-
cated STROBOSCOPE user may also (have to) program
rather complex constructs in order to obtain the desired be-
havior of a model.

Either program’s interface simply constitutes of fields
for the user to enter data and code. Closing the interface
box formats that input so that it can be read by the simula-
tion engine. These graphical interfaces are often used for
preliminary prototyping of a system and to generate code.
Rather than continuing to use the graphical interface
throughout all experimentation with the model, program
users are likely to resort to editing that code directly. This
enables them to see, in lexical order, the input data, vari-
able definitions, formulas, and so on, that are not shown all
simultaneously in the graphical interface.

6.3 Top-Down vs. Bottom-Up
Language Constructs

SIGMA and STROBOSCOPE are both general purpose
simulation engines. They can be applied to model a diverse
range of processes in various domains. They differ how-
ever in the degree of programming complexity of the con-
structs they provide from the start. SIGMA provides lower-
level generic constructsessentially the vertex and the
edgethat require little time to learn to use. These con-
structs make SIGMA flexible for modeling complex proc-
esses, provided that the user masters the underlying logic
of programming the state changes at the vertices and the
Boolean conditions at the edges.

A powerful feature is that SIGMA users can group and
save SIGMA models as independent user tools. Each event
graph has clear inputs and outputs so that linking them at a
higher level does not create ambiguity. The resulting tools
can be made available on SIGMA’s graphical template list
for later integration in more complex models. In doing so,
users leverage SIGMA’s lower-level constructs as custom-
ized higher-level constructs, making the program’s func-
1510
tionality resemble that provided by higher-level program-
ming languages.

STROBOSCOPE provides higher-level program-
ming language constructs from the start. STROBO-
SCOPE therefore takes more time to learn but doing so is
worthwhile when those constructs suit the domain of ap-
plication and the user gets to apply their knowledge
when modeling processes that intuitively match those
constructs. However, higher-level constructs are tedious
to use when lower-level functionality is to be achieved,
as was the case in modeling the chosen process with pre-
emption.

7 CONCLUSIONS

This paper has presented the implementation of a design
process with tasks that were preempted. This process was
implemented several times by the authors, once using the
SIGMA simulation engine that follows the event-scheduling
paradigm, and twice using the STROBOSCOPE simulation
engine that follows the activity-scanning paradigm. This ef-
fort illustrates that both paradigms can support the modeling
needs of this specific process. It confirms that alternative
ways exist to model the process within each paradigm. The
authors have found it very useful, from a model validation
perspective, to re-implement the model that was first devel-
oped in SIGMA using another simulation language, in this
case STROBOSCOPE. For instance, this effort highlighted
several modeling assumptions that otherwise would have
been taken for granted.

Not all event scheduling or activity scanning simula-
tion languages provide explicit constructs to describe the
preemption of tasks. In real-life systems, including physi-
cal as well as social systems, tasks often get interrupted or
cancelled altogether. Simulations that model preemption
therefore get one step closer to the actual behavior of real-
world systems.

The requirements for preemption as modeled here are
rather simple. The stream of changes is stochastically in-
dependent of the execution of the design process. In addi-
tion, preempted activities simply cause the design process
to restart and there is no need to reroute resources such as
people or equipment, as the model does not include any
such resources. In practice, preemption mechanisms may
be more complex and require significant managerial deci-
sion making.

ACKNOWLEDGMENTS

This research was funded by grant SBR-9811052 from the
National Science Foundation, whose support is gratefully
acknowledged. Any opinions, findings, conclusions, or
recommendations expressed in this report are those of the
authors and do not necessarily reflect the views of the Na-
tional Science Foundation. Financial support from the Por-

Gil and Tommelein

tuguese Foundation of Science and Technology, through a
scholarship awarded to Nuno Gil, is also gratefully ac-
knowledged.

Last, but not least, we thank Lee Schruben, as well as
Photios Ioannou and Julio Martinez for sharing their enthu-
siasm for SIGMA and STROBOSCOPE, respectively, and
explaining programming features we would otherwise not
have appreciated.

REFERENCES

Allore, H. G., Erb, H. N., Schruben, W. L., and Oltenacu,
P. A. (1998). “Design and Validation of a Dynamic
Discrete Event Stochastic Simulation Model of Masti-
tis Control in Dairy Herds.” Journal of Dairy Science,
81(3), 694-702.

Bhattacharya, S., Krishnan, V., and Mahajan, V. (1998).
“Managing New Product Definition in High Velocity
Environments.” Management Science, 44 (11).

Duenyas, I., Fowler, J., and Schruben, L. (1994). “Planning
and Scheduling in Japanese Semiconductor
Manufacturing.” Journal of Manufacturing Systems,
13, 323-332

Eisenhardt, M. K. and Tabrizi, B. N. (1995). “Accelerating
Adaptive Processes: Product Innovation in the Global
Computer Industry.” Admin. Sci. Qtrly., 40, 84-110.

Gil, N. (2001). Product-Process Simulation to Support
Contractor Involvement in Early Design. Ph.D. Diss.,
Civil & Envir. Engrg. Dept., Univ. of Calif., Berkeley.

Gil, N., Tommelein, I. D., and Kirkendall, R. (2001).
“Modeling Design Development Processes in Unpre-
dictable Environments”. Proc. 2001 Winter Simulation
Conference. Invited Paper in the Session “Extreme
Simulation: Modeling Highly-Complex and Large-
Scale Systems.”

Hopp, W. J. and Spearman, M. L. (1996). Factory Physics.
Foundations of Manufacturing Management. The
McGraw-Hill Companies, Inc., 668 pp.

Iansiti, M. (1995). “Shooting the Rapids: Managing Prod-
uct Development in Turbulent Environments.” Cali-
fornia Management Review, 38 (1), Fall, 37-58.

Ioannou, P. and Martinez, J. (1996). “Comparison of Con-
struction Alternatives Using Matched Simulation Ex-
periments.” J. Constr. Eng. & Mgmt., ASCE, 122 (3),
231-241.

Ingalls, R. G., Morrice, D. J., and Whinston, A. B. (1996).
“Eliminating Canceling Edges from the Simulation
Graph Model Methodology.” Proc. 1996 Winter Simu-
lation Conference, 825-832.

Krishnan, V., Eppinger, S. D., and Whitney, D. E. (1997).
“A Model-Based Framework to Overlap Product De-
velopment Activities.” Mgmt. Sci., 43 (4), 437-451.

Martinez, J. C. (1996). STROBOSCOPE State and Re-
source Based Simulation of Construction Processes.
Ph. D. Diss., Civil & Envir. Engrg., Univ. of Michi-
1511
gan, Ann Arbor, MI, 518 pp. The STROBOSCOPE
software is available for download from <http://
www.strobos.ce.vt.edu/>.

Law, A. M. and Kelton, W. D. (2000). Simulation Model-
ing and Analysis. McGraw-Hill, Inc., 760 pp.

Microsoft (2001). Visio 2000. <http://www.micro

soft.com/office/visio/> visited 7/1/01.
Schruben, D. A. and Schruben, L. W. (1999). Event Graph

Modeling using SIGMA, Custom Simulations,
<http://www.customsimulations.com> visited
7/1/01.

Simon, H. A. (1969). The Sciences of the Artificial. MIT
Press (3rd edition 1996).

Thomke, S. and Reinertsen, D. (1998). “Agile Product De-
velopment: Managing Development Flexibility in Un-
certain Environments.” Calif. Mgmt. Rev., 41 (1), 8-
30.

Tommelein, I. D. (1998). “Pull-Driven Scheduling for
Pipe-Spool Installation: Simulation of a Lean Con-
struction Technique.” J. Const. Eng. & Mgmt., 124
(4), 279-288.

Ward, A., Liker, J. K., Cristiano, J. J., and Sobek II, D. K.
(1995). “The Second Toyota Paradox: How Delaying
Decisions can Make Better Cars Faster.” Sloan Mgmt.
Review, Spring, 43-61.

AUTHOR BIOGRAPHIES

NUNO GIL is a Doctoral Candidate of Construction Engi-
neering and Management in the Civil and Environmental
Engineering Department at the University of California,
Berkeley. His research interests are in project-based opera-
tions management, systems engineering, lean management,
and concurrent engineering. His work involves planning,
scheduling, and simulation. His email and web addresses
are <ngil@uclink4.berkeley.edu> and
<http:// www.ce.berkeley.edu/~nunogil>.

IRIS D. TOMMELEIN is Professor of Construction Engi-
neering and Management in the Civil and Environmental
Engineering Department at the University of California,
Berkeley. Her research interest is in developing principles of
production management for projects in the architecture-
engineering-construction industry, what is termed ‘lean con-
struction.’ Iris has strong analytical, computational, and
writing skills. She has a proven research track record that
includes developing and documenting industry case studies
for educational purposes. Her work involves computer-aided
design, planning, scheduling, simulation, and visualization
of construction processes. Her email and web addresses are
<tommelein@ce.berkeley.edu> and <http://
www.ce.berkeley.edu/~tommelein>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

