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ABSTRACT 

This paper reviews two commonly used  risk assessment 
tools, namely weighted scores and expected value. The 
limitations of weighted scores have been outlined. One of 
the more difficult aspects of the expected value method is 
to determine the probability of an event. A probabilistic 
modeling environment called belief networks, has been 
proposed as an effective means of modeling the situation. 
An example application has been provided to show how 
the integrated system may work. 

1 INTRODUCTION 

Merriam-Webster defines risk as: 1) the possibility of loss 
or injury; 2) someone or something that creates or suggests 
a hazard; 3) the chance of loss or the perils to the subject 
matter of an insurance contract; 4)  the degree of probabil-
ity of such loss. Risk is, therefore, an issue of uncertainty. 
Risk reduction requires several steps: risk quantification, 
risk assessment, and finally, risk management. Several 
methods for quantifying and assessing risk have been de-
veloped including weighted scores, expected value, prob-
abilistic modeling, and simulation. 

This paper discusses two risk quantification methods 
commonly used in the construction industry, namely 
weighted scores and expected value. A new approach to 
probabilistic modeling is presented. Finally, an example 
application is discussed. 

2 WEIGHTED SCORES 

Weighted scores are used extensively in the construction 
industry to measure risk. They are used in the prequalifica-
tion process (Russell and Skibniewski 1990), in bid evalua-
tion (Alsugair 1999), and in decision making (McIntyre et 
al. 1998). Generally, they require the decision maker to: 

 
1. define the risk elements or criteria 
2. assign weights to each risk element reflective of the 

importance of the risk to the particular situation  
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3. for each option being assessed, score the risk ele-
ment in a predetermined manner 

4. multiply the scores by their weights, and sum for 
each option 

5. compare the weighted scores and make the deci-
sion 

 
In its most general form, weighted scores use Equation 

1. In this equation, w is the weight assigned to each risk 
element i, x is the score assigned by the decision maker to 
risk elements I for each option k. In some cases, criteria or 
elements are categorized into major groups, j, and each 
group is also weighted and summed to product the total 
weighted score. 
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In the case of a contractor prequalification evaluation, 

shown in Table 1, the risk elements may be: 1) years in 
business, 2) experience with a similar type of construction, 
3) bonding capacity, and 4) safety record. The decision 
maker reviews the criteria, and assigns weights. In this 
case, the weights are between 1 and 10, with 10 being the 
most important. These may be assessed independently or 
by using a multi-criterion assessment tool, such as Analytic 
Hierarchy Process. The method for scoring each contractor 
must also be determined. In this case, ranges of values for 
each criteria are outlined in Table 1. For each contractor, 
the scores for the risk elements are multiplied by the 
weight and summed, resulting in a total weighted score for 
the contractor, as shown in Table 2.  
The weighted score method is very easy to understand, 
which explains why it is so popular in the industry. It does 
not restrict the number of criteria to be evaluated. On the 
other hand, although these two contractors acquired rela-
tively similar scores, it cannot be assumed that they would 
perform equally to the well-being of the project. Contractor 
B has much greater experience in similar projects over a 
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shorter period of time. It also has a better safety record than 
Contractor A, although it was not weighted heavily. Based 
on similar observations, Russell and Skibnewski (1990) out-
lined several shortcomings of the weighted score model.  
 

1. The criteria and the associated weights are biased 
by the decision maker’s experiences and prefer-
ences. This can be detrimental to the analysis 
process if the criteria and weights are not repre-
sentative of the situation. 

 
Table 1: Example Weighted Score for Prequalification 
Criteria w 
Years in business 8 

Score if  
0 
1 
2 
3 
4 
5 

0-2  
3-5  
6-8  

 9-12  
13-15  

>15  

 

Experience (number of similar projects) 10 
Score if  

0 
1 
2 
3 
4 
5 

0-2  
3-4  
5-7  

 8-10  
11-13  

>13  

 

Bonding capacity (Letter from Surety) 5 
Score if  

0 
5 

No 
Yes  

 

Safety record (CAD-7) 5 
Score if  

0 
1 
2 
3 
4 
5 

-2.00 to -1.00  
-0.99 to -0.50  
-0.49 to -0.01 

0.00 to 0.33 
0.34 to 0.66  
0.67 to 1.00  

 

 
Table 2: Example Weighted Score for Prequalification 

Criteria Contr A Contr B 
Years in business 16 7 
Experience  5 9 
Bonding capacity Yes Yes 
Safety record  -0.102 0.36 
Score   
Years in business 5 2 
Experience  2 3 
Bonding capacity 5 5 
Safety record  2 4 

Total Weighted Score 95 91 
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2. A low score in one element or criterion can be 
counterbalanced by a high score in another, per-
haps less important criteria. This may mask im-
portant contractor characteristics. 

3. When a large number of criteria are used in the 
analysis, it is difficult for the decision maker to as-
sign weights in a balanced and equitable manner. 

 
In addition, the following shortcomings have been 

identified by the authors. 
 
4. It is assumed that the criteria are independent, and 

that their effect is additive. This may not always 
be the case. For example, the number of years in 
business may be correlated to the experience with 
a particular construction type. Adding these scores 
may not be appropriate. 

5. Cause and effect cannot be incorporated with con-
fidence. The cost of a certain event cannot be 
taken into account other than to have the costs re-
flected in the weights. For example, an accident 
on site resulting from poor safety practices may 
cause work stoppage, criminal charges, and loss 
of project schedule. 

6. Nested weights may cause the total effect of an 
important criterion to be diluted. Nested weights 
are those that are associated with larger categories 
of criteria, shown as wj in Equation 1. 

7. Relative assessment of decision options is not pos-
sible. It cannot be said that an option with a score 
of 100 is twice as good as an option with a score of  
50. The scores themselves do not have meaning.  

8. In the case of prequalification, it is not apparent 
where the limiting score should be, where those 
contractors with a higher score are prequalified, 
and those below are not. 

 
For many risk situations, weighted scores are very use-

ful; however, other methods are available to the decision 
maker for evaluating risk. This leads to the expected value 
method of measuring risk. 

3 EXPECTED VALUE 

Risk may be part of the uncertainty of the event, or uncer-
tainty of the impact of that event. Where the impact of an 
event is of concern, the expected value (EV) is often used 
to quantify the impact. EV is defined as the product of the 
probability of an event occurring and the impact (cost) of 
that event.  

 
EV(a) = P(a) * I(a)     (2) 

 
Classical risk theory calls this the Expected Value of 

risk. The advantage of measuring impact in $ is that vari-
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ous types of risk, such as schedule extension measured in 
liquidated damages and weather measured in lost produc-
tivity, can be compared.  

The EV can be evaluated by determining the probabil-
ity and impact of each option. Impact costs are not overly 
difficult to determine, as most construction practitioners 
are experienced at estimating costs. Determining the likeli-
hood of the event can cause more problems. In general, the 
probability can be extracted from historical records, or be 
based on expert opinion. 

EV can be used in different ways. First, it can help a 
contractor determine the risk associated with an event so 
that an appropriate contingency maybe incorporated into 
the bid. For example, the probability of a snowstorm dur-
ing the construction period is 35%. Should the event occur, 
the contractor has estimated the cost of snow removal and 
lost productivity at $25,000. Therefore, the risk is 35% * 
$25,000 = $8750. This amount can be included in the bid 
contingency, with the contractor knowing that over time, 
they will break even with their contingency budget. 

Second, EV can be used to help the decision maker as-
sess risk. The following example is based on McKim 
(1992). Consider a project where the contractor is respon-
sible for the effects of weather delays, and the project has 
fallen 10 days behind schedule due to weather. The con-
tract specifies liquidated damages of $10,000/day for every 
2 weeks or part thereof the project is late. The project man-
ager must decide whether to A) introduce a second shift, 
thereby accepting a sure loss due to additional wages but 
avoiding liquidated damages, or B) try to meet the contract 
deadline with existing labor forces, thereby avoiding the 
cost of extra labor, but risking the liquidated damages.  
 
A)  hire a second shift but avoid liquidated damages. 
 EV(a) = P(a)*I(a) where 

P(a) = probability of the cost increase for the second 
shift = 100% 

 I(a) = the increased cost of the second shift = $5,000 
 EV(a) = $5,000 

 
B)  accept the liquidated damages 
 EV(b) = P(b)*I(b) 
 I(B) = liquidated damages = $10,000 

P(b) = probability of being liable for liquidated dam-
ages = 60% (40% chance of completing the project on 
time with existing labor) 

 EV(b) = $6,000. 
 

Option A has the lower cost, and therefore, hiring the 
second shift is the best action. 

As the problem becomes more involved, perhaps in-
corporating several impact factors into each option, care 
must be taken to ensure the factors are independent to al-
low them to be added with confidence. A more sophisti-
cated means of determining the likelihood that does not re-
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quire the independence assumption may be required, 
depending on the complexity of the situation. A belief net-
work may be integrated in an EV model to fulfill this need. 

4 BELIEF NETWORKS -  
PROBABILISTIC MODELS 

Belief networks are an artificial intelligence based on the 
conditional probability concepts of Thomas Bayes ex-
pressed in Bayes Theorem. Belief networks are graphical 
representations, and they consist of nodes and connecting 
directional arcs (arrows). The nodes represent the domain 
variables contained in the model, and the arcs represent 
conditional dependence between the variables. They are 
directed, acyclic graphs. The term 'directed' means the arcs 
have an explicit direction represented by arrows. Acyclic 
means that the arrows may not form a directional cycle or 
loop in the network.  

If no arcs exist in the network, it is assumed that the 
variables are independent of the other variables. At the 
other extreme is the completely connected network where 
each variable is connected to all of the others. Completely 
connected networks are not permitted in belief networks 
because the requirement of acyclic graph structure would 
not be met. Networks that have practical application are 
neither unconnected nor completely connected but are re-
ferred to as partially connected. Figure 1 shows a singly 
connected network in which there is only one path between 
any two nodes. In this model, A and B are said to be par-
ents of C, and C is a parent of E and D. Similarly, E and D 
are children of C. A and B are referred to as orphans be-
cause they have no parents. 

 

Figure 1: Singly Connected Belief Network 

The arrow between A and C represents a conditional 
relationship between A and C, where A affects the state of 
C. It is often convenient to interpret the arrow as meaning 
that A causes C, but the issue of causation is very volatile, 
and the concepts of correlation should be used. For exam-
ple, people once observed the correlation each morning 
that the rooster would crow and that the sun would rise. 
They concluded that the rooster caused the sun to rise! 
While this may seem humorous now, it was seen as very 
logical then. 

A 

C 

D 

B 

E 
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The addition of one more arrow to Figure 1 would cre-
ate a multiply connected network, as shown in Figure 2. 
Here, there are 2 paths between nodes B and E: straight 
from B to E, and from B to C and then to E. 

 

 

Figure 2: Multiply-Connected Belief Network 
 
The distinction between singly- and multiply-

connected networks is their ease of solving. Singly-
connected networks may be solved through manipulations 
of Bayes’ Theorem and other probability calculus tech-
niques. Multiply connected networks are NP-Hard. To ad-
dress this problem, several techniques, such as clustering 
and simulation, have been developed to solve them and 
these have been incorporated into software systems avail-
able academically or commercially. These developments 
have resulted in great interest in this modeling environment 
over the past 10 years. 

Belief network applications allow the user to instanti-
ate or enter evidence of known conditions from the exist-
ing situation into the network. This information is evalu-
ated in the network and the probabilities of the nodes with 
unknown states are recalculated. The user may then extract 
the updated probability of any node. This symmetry is an 
important characteristic of belief networks that permits 
flexibility in the development and application of networks. 
The variables associated with a risk may be modeled in a 
comprehensive manner, resulting in greater confidence in 
probabilistic assessment. 

Belief networks are well suited to applications of risk 
because they are capable of capturing uncertainty. In addi-
tion, the information required to develop a network can be 
extracted from data as well as from experts in the field. 
Development of a belief network requires 5 main steps.  

First, define the relevant variables. This requires un-
derstanding of the problem and the scope of the model.  

Second, define the states of the variables. While vari-
ables can have any number of states, binary states are most 
common, such as true/false, yes/no, male/female. The states 
can also be numeric or descriptive, but they must be discrete. 

Third, define the relationship between the variables. Ar-
rows are drawn between the variables to represent condi-
tional dependence relationships. It is important to keep the 
number of arrow to a reasonable number to reduce the num-
ber of probabilities required in the next step.  There are no 

A 

C 

D 

B 

E 
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constraints about the way in which the variables interconnect 
or where they join in the network. The only constraint is that 
cyclic relationships must be avoided.  

Fourth, define the conditional probabilities of the rela-
tionships. This requires a probability to be determined for 
each node for each combination of states of its parent. In the 
case of orphan nodes, only the priori (unconditioned) prob-
ability is needed. Probabilities may come from data or from 
experts. There are entropy calculations that provide a meas-
ure of the information gained by joining two variables. 

Finally, verify and validate the network. The identifi-
cation of weak relationships in the model and understand-
ing whether they should exist is an important part of the 
validation of the network. This can be achieved by testing 
it through several scenarios to ensure the results are appro-
priate and acceptable. 

Another way of looking at it is to say that there are 
two parts to a belief network: the qualitative part and the 
quantitative part. The qualitative part is primarily devel-
oped in the first stages of the network. This is the stage 
where the variables and their states are defined. The quali-
tative part of the network is needed for the next two stages 
of development: relationship identification and quantifica-
tion. In reality, deciding where the arrow should be is both 
qualitative and quantitative. Quantification of the relation-
ships means assigning conditional probabilities. 

The advantages of using belief networks to model risk 
are as follows. 
 

• Belief networks are excellent modeling environ-
ments for situations where there are conditional or 
influential relationships. 

• Belief networks can integrate data and expert 
opinion seamlessly. 

• The structure of a network is very intuitive, and 
domain experts do not need to understand the 
background technology to be able to participate in 
knowledge elicitation. 

• The models are symmetric in that evidence can be 
entered at any node, and all remaining nodes are 
recalculated. There is no direction constraint on 
the logic once it has been developed.  

 
The limitations of belief networks in practical terms 

are as follows. 
 

• It is often difficult to collect data and/or expert 
knowledge in a consistent and unbiased manner, 
and translate it to nodes, arrows, and probabilities. 

• The current software for the development of net-
works cannot handle continuous variables, but 
that is slowly changing. 
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5 EXAMPLE APPLICATION 

The risk scenario was based on the failure of large equip-
ment that could result in the release of pollutants and 
contamination of adjacent lands. The owner had tra-
ditionally used a weighted score system with nested 
weights for three main risk categories. It was found that 
the system had several serious shortcomings. The most 
important was that the model did not consider risk as a 
series of events. For an environmental contamination to 
occur, an equipment had to fail. That failure also had to 
result in the loss of fluid. Finally, that fluid had to escape 
the site and get into the adjacent lands.  
 It was decided to develop a probabilistic model of the 
scenario, and to use the model to feed into an expected 
value assessment model.  The model shown in Figure 3 is 
an extraction of the entire model. The mechanisms of fail-
ure have not been included due to space considerations. 
 The model may be reviewed in the following manner. 
Note that variables that relate directly to a node in the net-
work are indicated by italic. Starting at the upper right cor-
ner, the Equipment Failure can result in the loss of fluid. It 
is assumed that the fluid at this point will only affect the 
owner’s property. The event of an Environmental Spill, 
which implies that the fluid has entered adjacent lands, is 
dependent on the Response Time of the company person-
nel, the Containment system at that site, the Distance to the 
Property Line, and, of course, the event that there has been 
a Loss of Fluid.  

Figure 3: Belief Network for Equipment Failure 

It is important to note that the parents of Environmental 
Spill do not contribute linearly to the spill event. For exam-
ple, if Lose Fluid or Equipment Failure is false, then the 
states of the other parents are irrelevant i.e. Environmental 
Spill is also false. The conditional dependence of the events 
are logically and effectively incorporated in the model. 

Equipment 
Failure

Environmental 
Spill 

Lose Fluid 
Response Time 

Property Line Distance 

Containment 
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The information required to develop the network, in-
cluding variables, relationships, and probabilities, was  
provided by experts, as these failures do not occur often 
enough to have reliable data from which to base the net-
work. Once the specific equipment characteristics were en-
tered into the network, the probability of Environmental 
Spill was calculated and entered into the EV model. Based 
on the characteristics of the adjacent site, the cost of reme-
diation was estimated, and the expected value of the event 
was calculated using Equation 3. 

 
EV = P(Lose Fluid) * I(Site Remediation) + 
P(Environ’l Spill) * I(Environ’l Remediation) (3) 

 
The company found the information very useful. First, 

the resulting EV for each site allowed them to understand 
the risk they were taking, or not taking, buy improving site 
conditions. Second, if the EV for one site was double that of 
another, it truly meant that the risk was double. Finally, the 
probabilities of each event could be analyzed to determine 
the best strategy to take to reduce their total risk. Equipment 
sites could be ranked with confidence based on their EV. 

The belief network model permitted the decision mak-
ers to model the real world in a logical and realistic manner. 
Mechanisms of failure, not shown here, allowed the experts 
to share their knowledge and understand how others per-
ceived these events. On the other hand, the weighted scores 
modeled the expert’s willingness to accept risk and how that 
risk was associated with certain equipment characteristics. 

6 CONCLUSIONS AND RECOMMENDATIONS 

Risk management is becoming a very important part of 
business management. Many methods are used to assist the 
decision maker, with varying degrees of success. It is im-
portant to use a method that provides the most effective in-
formation to the decision makers, and that they understand 
the biases and limitations of the system they are using. 

Glenn Shafer, a researcher in probabilistic reasoning, 
has said that ‘Probability is not about numbers. It is about 
the structure of reasoning.’ This application has shown that 
the structure of reasoning is extremely important when 
events are conditionally dependent 
 The following recommendations are for improvements 
of the model. On the most part, these recommendations re-
late to the availability of data with which to assess the 
transformers and their stations. 
 First, the probabilities in the belief network model can 
be improved with time. Although there is confidence in the 
values provided by the experts, up to date data may help to 
refine the analysis.  

Second, quantitative site data are more valuable than 
qualitative or categorical data. Categorical data identify a 
group of values rather than a value itself. While this was 
convenient for the weighted scores method, it limits future 
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model improvements. Therefore, it is recommended that 
quantitative data be collected whenever possible.  

It is believed that the proposed risk assessment model 
is a significant improvement over the previous weighted 
scores method. It addresses many of the concerns and pro-
vides a defensible system. 
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