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ABSTRACT 

EZStrobe is a very simple but powerful general-purpose 
simulation system designed for modeling construction opera-
tions, but domain independent and thus useful for modeling a 
wide variety of systems in any discipline. EZStrobe is based 
on Activity Cycle Diagrams and employs the Three-Phase 
Activity Scanning paradigm. It is therefore naturally adept 
for complex systems where many resources collaborate to 
carry out tasks as is typical in construction. The paper de-
scribes the basic system concepts. The paper also develops an 
earthmoving example in increasing levels of complexity and 
detail to illustrate the range of modeling capabilities. This is a 
revised version of paper with the same title that appeared in 
the 1998 Winter Simulation Conference. 

1 INTRODUCTION 

Several simulation systems have been designed specifically 
for construction (e.g., Halpin and Riggs 1992, Martinez 
1996). These systems use some form of network based on 
Activity Cycle Diagrams to represent the essentials of a 
model, and employ clock advance and event generation 
mechanisms based on Activity Scanning or Three-Phase Ac-
tivity Scanning. These systems are designed for both simple 
(e.g., CYCLONE) and very advanced (e.g., 
STROBOSCOPE) modeling tasks but do not satisfy the need 
for a very easy to learn and simple tool capable of modeling 
moderately complex problems with little effort. EZStrobe is 
designed to fill this void in currently existing simulation tools 
and to facilitate the transition to more advanced tools (e.g. 
STROBOSCOPE) as the system is outgrown. 

2 ACTIVITY CYCLE DIAGRAMS AND 
ACTIVITY SCANNING 

Activity Scanning models are prepared based on the vari-
ous activities that can take place in an operation. The mod-
eler focuses on identifying activities, the conditions under 
which the activities can happen, and the outcomes of the 
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activities when they end. Martinez and Ioannou (1999) de-
scribe in detail the differences between Activity Scanning 
and other paradigms. For an earth-moving operation where 
wheel loaders load trucks from a stockpile, for example, 
the modeler may identify activities as shown in Table 1. 

 
Table 1: Activities, Conditions and Outcomes for 
Earthmoving Operation 
Conditions 
Needed to Start 

Activity Outcome of Ac-
tivity 

Wheel loader idle 
at source. 
Empty truck wait-
ing to load. 
Enough soil in 
stockpile. 

Load Wheel loader idle 
at source. 
Loaded truck 
ready to haul. 

Loaded truck 
ready to haul. 

Haul Loaded truck 
ready to dump. 

Loaded truck 
ready to dump. 

Dump Dumped soil. 
Empty truck 
ready to return. 

Empty truck 
ready to return. 

Return Empty truck 
waiting to load. 

 
These models are typically represented using Activity 

Cycle Diagrams (ACDs), which are networks of circles 
and squares that represent idle resources, activities, and 
their precedence. The ACD of Figure 1 for example, is a 
graphical representation of the information in Table 1. The 
rectangles represent activities (resources collaborating to 
achieve a task), the circles represent queues (idle re-
sources), and the links between them represent the flow of 
resources. ACDs of this type are used to express the main 
concepts of a simulation model -- other details of the 
model such as startup conditions not related to resource 
availability, are not shown. The ACD is used as a guide for 
coding the model using a general-purpose or simulation 
programming language. 
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Figure 1: Conventional ACD for Earthmoving Operation 

3 EZSTROBE ACDS 

EZStrobe ACDs are annotated extensions of the standard 
ACD's described above. The EZStrobe ACD for the same 
earthmoving operation described in Table 1 and Figure 1 is 
shown in Figure 2. 
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Figure 2: EZStrobe ACD for Earthmoving Operation 
 
The network of Figure 2 is more compact than the one 

in Figure 1. Some queues such as RdyToHaul in Figure 1 
are superfluous because they link activities that immedi-
ately and unconditionally follow each other. Such queues 
have been removed to indicate that some activities imme-
diately follow their predecessors because the conditions 
needed for them to start are completely satisfied by the 
predecessor's outcome. Hauling, for example, immediately 
follows loading, making it unnecessary to show trucks in a 
'ready to haul' state. 

Unlike the ACD of Figure 1, the annotations of the 
EZStrobe ACD of Figure 2 make it a complete and unam-
biguous representation of the operation. The "1000" writ-
ten in the bottom of SoilInStkPl indicates that at the begin-
ning of the operation the Queue will contain 1000 units of 
resource (cubic meters). The first part of the annotation 
shown on the link that connects TrkWtLd to Load (">0") 
indicates that one of the conditions needed for Load to start 
is that more than zero units of resource exist in TrkWtLd. 
The other two conditions needed for Load to start are that 
at least 15 units of resource exist in SoilInStkPl and that 
more than zero exist in WhlLdrIdle.  The second part of the 
annotations on those links (",1", ",15", and ",1") indicate 
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Queue

 10

10

Combi

Uniform[10,20]

Normal

Uniform[10,20]

that 1, 15, and 1 units will be removed (if possible) from 
TrkWtLd, SoilInStkPl, and WhlLdrIdle every time Load 
starts. The "Uniform[1.3,1.8]" shown inside Load indicates 
that its duration is sampled from a uniform distribution 
with minimum 1.3 and maximum 1.8 (minutes). The "15" 
shown on the link that connects Dump to DumpdSoil indi-
cates that one of the outcomes of Dump is the insertion of 
15 units of resource into DumpdSoil. 

In EZStrobe models, all activity startup conditions and 
outcomes are in terms of resource amounts. Resources that 
reside in the same location are assumed to be indistinguish-
able, interchangeable, and exist in bulk quantities (i.e., their 
amounts can be expressed with real numbers and are not 
limited to integers). EZStrobe does not enforce the type of 
resources and the units with which they are measured — the 
modeler is responsible for maintaining consistency. 

3.1 Basic EZStrobe Modeling Elements 

The basic modeling elements that can be used in EZStrobe, 
the precedence rules that govern them, and their explana-
tion follow. 

A Queue is a named element that holds idle 
resources. The name of the Queue is shown at 
the center. At the beginning of a simulation 
Queues hold a certain number of resources. 

This number is shown below the Queue name. Resources 
are placed in Queues when they are released by terminat-
ing instances of preceding Activities. They are removed 
from Queues by starting instances of succeeding Condi-
tional Activities (Combis). A Queue can follow any other 
node except another Queue. A Queue can only precede a 
Conditional Activity (Combi). 

A Conditional Activity (Combi) is a 
named element that represents tasks that 
can start whenever the resources that are 
available in the Queues that precede it are 

sufficient to support the task. The name of the Conditional 
Activity is shown at the center. The number at the top is 
the priority that the Conditional Activity has over other 
Conditional Activities when competing for resources in 
preceding Queues. A Conditional Activity with a high pri-
ority has a chance to start before a Conditional Activity 
with a lower priority. Priorities can be negative and the de-
fault value is zero (e.g., when the priority is not specified it 
is assumed to be zero). The formula at the bottom of the 
Conditional Activity is used to determine the duration of 
its instances. The duration formula typically samples from 
a probability distribution. Therefore, different instances of 
the same Conditional Activity can have different durations. 
Conditional Activities can only follow Queues, but can 
precede any other node other than a Conditional Activity. 

A Bound Activity (Normal) is a named 
element that represents tasks that start 
whenever an instance of any preceding 
7
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>0 , 1

Activity ends. The name of the Bound Activity is shown at 
the center. The formula at the bottom of the Bound Activ-
ity is used to determine the duration of its instances. The 
duration formula typically samples from a probability dis-
tribution. Consequently, different instances of the same 
Bound Activity can have different durations. A Bound Ac-
tivity can follow any node except a Queue, and can pre-
cede any node except a Conditional Activity. 

A Fork is a probabilistic routing element. It 
typically follows an activity but can also follow 

another Fork. When a preceding activity instance 
finishes, the Fork chooses one of its successors. If the cho-
sen successor is a Bound Activity then the Bound Activity 
starts. If the chosen successor is a Queue then the Queue 
receives any resources routed through the Fork. If the cho-
sen successor is another Fork, then the second Fork will 
choose one of its successors. The relative likelihood that a 
particular successor will be chosen depends on the "P" 
property of the Branch Link that emanates from the Fork 
towards the successor (see Brach Link below). 

A Draw Link connects a Queue to a 
Conditional Activity. A Draw Link shows two 

pieces of information separated by a comma. The first part 
is the condition necessary for the successor Conditional 
Activity to start as a function of the content of the prede-
cessor Queue. The text ">0", for example, indicates that 
the content of the Queue must be greater than zero in order 
for the Conditional Activity to start. EZStrobe supports six 
relational operators to express this condition: less than (<), 
less than or equal (<=), greater than (>), greater than or 
equal (>=), equal (==), and not equal (!=). The second part 
is the amount of resource that the Conditional Activity will 
attempt to remove from the predecessor Queue in the event 
that the Conditional Activity does start. The Conditional 
Activity may not be able to remove the amount attempted 
if that amount is greater than the content of the Queue, in 
which case the entire content is removed. 

A Release Link connects an Activity to any 
other node except a Conditional Activity. The 

text shown on a Release Link indicates the amount of re-
source that will be released through the Link each time an 
instance of the predecessor activity ends. 

A Branch Link connects a Fork to any other 
node except a Conditional Activity. The text 

shown on a Branch Link indicates the value of the "P" 
property for that Link. The "P" property establishes the 
relative likelihood that the successor connected by the 
Branch Link will be selected every time the Fork needs to 
choose a successor. 

3.2 Supplementary Input  
and Simulation Output 

Because an annotated EZStrobe ACD is a complete represen-
tation of an operation, in most cases no further basic input is 

1

P:1
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required to run simulations. For simulations that do not natu-
rally stop (i.e., that can potentially run forever), it is necessary 
to specify a simulation termination condition. In EZStrobe this 
condition can be set by specifying a limit on simulation time 
or on the number of times a particular activity starts. 

The purpose of simulating an operation is to obtain 
statistical measures of performance. By default, EZStrobe 
will produce a report containing the simulation time of the 
report and information on the activities and queues of the 
model. A report for the model shown in Figure 2, for ex-
ample, is shown below. 

 
Statistics report at simulation time 161.195 
 
Queue       Res    Cur     Tot AvWait AvCont SDCont MinCont MaxCont 
=================================================================== 
DumpdSoil   ezs 990.00  990.00  80.32 493.29 301.72    0.00  990.00 
SoilInStkPl ezs  10.00 1000.00  74.38 461.45 298.67   10.00 1000.00 
TrkWtLd     ezs   5.00   71.00   0.80   0.35   0.92    0.00    5.00 
WhlLdrIdle  ezs   1.00   67.00   0.88   0.36   0.48    0.00    1.00 
 
Activity Cur Tot 1stSt  LstSt AvDur SDDur MinD MaxD AvInt SDInt MinI MaxI 
========================================================================= 
Dump       0  66  6.94 156.70  0.50  0.00 0.50 0.50  2.30  1.15 0.90 5.13 
Haul       0  66  1.58 150.85  5.32  0.31 4.55 5.88  2.30  1.11 1.30 5.30 
Load       0  66  0.00 149.30  1.55  0.15 1.30 1.80  2.30  1.10 1.30 5.42 
Return     0  66  7.44 157.20  3.98  0.32 3.30 4.76  2.30  1.15 0.90 5.13 

 
For each queue, the report shows the content at the time 

of the report (Cur), the total amount of resource to ever enter 
(Tot), the average waiting time (AvWait), the time-weighted 
average content (AvCont), the time-weighted standard devia-
tion of the content, the minimum content (MinCont), and the 
maximum content (MaxCont). For each activity, the report 
shows the current number of times that the activity is being 
performed at the time of the report (Cur), the total number of 
times it has started (Tot), the time at which the first instance 
started (1stSt), the time at which the last instance started 
(LstSt), the average duration (AvDur), the standard deviation 
of the duration (SDDur), the minimum duration (MinD), the 
maximum duration (MaxD), the average time between suc-
cessive starts (AvInt), the standard deviation of the time be-
tween successive starts (SDInt), the minimum time between 
successive starts (MinI), and the maximum time between 
successive starts (MaxI). Note from the output that Soil-
InStkPl contains 10 units of resource (cubic meters) at the 
time of the report. Those resources remained in SoilInStkPl 
because they were not enough to enable Load to start (which 
requires 15) one more time. 

More detailed statistics regarding the historical content 
of queues are available in the form of cumulative histo-
grams. To obtain a histogram for a queue it is necessary to 
specify the range and number of collection bins. EZStrobe 
will additionally create an underflow and an overflow bin. 
Specifying 3 bins between 1 and 4 for TrkWtLd, for exam-
ple, produces the additional output shown below: 
 

Detailed statistics on content of queue TrkWtLd 
 

Content     TotTime  %Time 
============================= 

< 1.00      132.94  82.47 
< 2.00      147.77  91.67 
< 3.00      151.94  94.26 
< 4.00      155.31  96.35 
>= 4.00        5.89   3.65 
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 The output indicates that TrkWtLd was empty (its con-
tent was < 1, i.e., zero) 82.47% of the time, and contained 
exactly 4 or more trucks 3.65% of the time. 

3.3 Probabilistic Branching 

EZStrobe can probabilistically select one among several 
successors to an activity for resource routing and activa-
tion. This is achieved with a Fork and the Branch Links 
that emanate from it. The EZStrobe ACD of Figure 3 illus-
trates this by expanding the model of Figure 2 to include 
the possibility of a truck breakdown. 

 

Load
Uniform[1.3,1.8]
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Figure 3: ACD for Earthmoving Operation with Truck 
Breakdown and Repair 

 
In the model of Figure 3 there is a 5% chance that a 

truck will break down after dumping and that repairs will 
take between 10 and 60 minutes. The probability of a par-
ticular branch being selected is calculated by dividing its P 
value by the sum of the P values of all the branches that 
leave the link. Thus, the probability of the activity Repair 
starting when Dump ends is 5/(95+5)=0.05. Regardless of 
whether a truck breaks down or not, the DumpdSoil Queue 
will receive 15 units of resource (cubic meters of soil) be-
cause it is connected directly to Dump. 

4 MODELING COMPLEX LOGIC 

EZStrobe's essential modeling concepts have already been 
presented in the previous sections of this paper. EZStrobe's 
capability to model systems of moderate complexity, how-
ever, may not be obvious without an illustrative example. 
Consider a more detailed and complex version of an 
earthmoving operation where 1) an excavator is used in-
stead of a wheel loader and its cycle is modeled explicitly 
and 2) the haul road has a narrow portion that allows travel 
in only one direction (i.e., either loaded traffic or empty 
traffic, but never both simultaneously). An EZStrobe ACD 
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that incorporates these details and complexities is shown in 
Figure 4 and explained in the following two subsections. 

4.1 Modeling The Excavator Cycle 

Wheel loaders load trucks with material that has already been 
excavated and stockpiled. Excavators, on the other hand, dig 
material from their undisturbed natural state. This is done in a 
cycle where the excavator swings empty from the truck load-
ing position to the digging position, excavates, swings loaded 
from the digging position to the truck loading position, waits 
for a truck if one is not already there,  and dumps the exca-
vated material unto the truck. 

The components of the excavator cycle are represented 
by the SwingEmpty, Excavate, SwingLoaded, ExcWtDmp, 
and DumpBucket nodes located in the top left part of the 
ACD. In this cycle, DumpBucket is the only Conditional 
Activity. According to the ACD, the conditions needed for 
DumpBucket to start are that a truck be under the excavator 
(TrkUndrExc contains a truck) and that the excavator be 
waiting to unload its bucket unto a truck (ExcWtDmp con-
tains the excavator). The link that connects TrkUndrExc to 
DumpBucket indicates, however, that zero trucks are re-
moved from TrkUndrExc when DumpBucket starts. This is 
consistent with reality because the truck needs to be under 
the excavator to receive a bucket load, but remains under 
the excavator after receiving the load. In this model, the 
truck that is under the excavator and the soil that it con-
tains are represented by two separate queues, TrkUndrExc 
and SoilInTrk. Every time the DumpBucket activity con-
cludes, 2.5 m3 of soil are placed in SoilInTrk. 

The Haul1 conditional activity takes place whenever 
there is a full truck under the excavator (TrkUndrExc con-
tains a truck and SoilInTrk contains 15 m3 of soil). It is 
when this activity starts that the truck leaves the spot under 
the excavator and that the TrkUndrExc and SoilInTrk 
queues are cleared. Haul1 represents the truck traveling 
loaded from the load area towards the entrance to the nar-
row portion of the road. 

In this detailed modeling of the truck loading, the next 
truck to be loaded needs to enter the loading area and posi-
tion itself under the excavator. This is represented by the 
EnterArea conditional activity. According to the ACD, En-
terArea takes place when there is at least one truck waiting 
to be loaded (the content of TrkWtLd is >0), maneuvering 
space is available (the content of ManeuvSpc is >0), and 
there is no truck under the excavator (TrkUndrExc is 
empty). The link that connects TrkUndrExc to EnterArea 
indicates that no truck is removed from TrkUnderExc when 
EnterArea starts. This is specified for clarity. Regardless of 
the number specified, no truck will be removed because the 
activity can only start when none are there. The maneuver-
ing space needs to be modeled explicitly because otherwise 
several trucks could simultaneously enter the loading area. 
When EnterArea concludes, a truck is placed under the ex-
cavator and the maneuvering space is made available. 
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Figure 4: ACD for Earthmoving Operation with Unidirectional Narrow Segment 
In cases where the earthmoving operation is clearly 
undertrucked, trucks will receive their first bucket load 
immediately upon entering the area because the excavator 
will be waiting with its load ready to be dumped unto a 
truck. In cases where the operation is clearly overtrucked, 
the truck will be positioned to receive a load before the ex-
cavator has completed its cycle. Thus, the more detailed 
modeling of the loading captures aspects of the operation 
that cannot be represented by simply repeating the excava-
tor cycle 6 times for each truck, as illustrated in the previ-
ous version of this paper (Martinez 1998) using EZStrobe, 
and as traditionally done when modeling with CYCLONE. 

4.2 Modeling The Narrow Segment 

The haul road has a narrow portion that allows travel in 
only one direction (i.e., either loaded traffic or empty traf-
fic, but never both simultaneously). The direction of travel 
is established by the first truck to arrive at the segment 
when it is empty. That direction is maintained as long as 
trucks keep arriving at the segment in that same direction 
or until the segment is again empty. If trucks are waiting at 
the other end when the segment becomes empty, then the 
direction of travel is reversed to allow those trucks to 
travel. The portion of the  EZStrobe ACD in Figure 4 that 
models this narrow segment consists of the following 
nodes: WtEnterLd, EnterLd, FinishLd, EtSpots, EntryPass, 
LdSpots, FinishEt, EnterEt and WtEnterEt. 
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In order to understand the model it is necessary to 
have a clear picture of how this operation is implemented 
in practice. In this model, the haul road is divided into 
three segments, with the narrow segment in the middle. A 
truck arriving to the narrow segment is allowed to enter if 
no trucks are traversing the segment in the opposite direc-
tion. In addition, for reasons of physical space, a vehicle 
must wait until the vehicle ahead of it has traveled enough 
into the segment to allow it to enter (i.e., the entrance to 
the segment must be cleared). In the model discussed here 
it is assumed that this takes 0.3 minutes, and is represented 
by the EnterLd (entering loaded headed towards the dump 
site) and EnterEt (entering empty returning to the load 
area) Conditional Activities. The resource initially placed 
in the EntryPass queue ensures that only one truck enters 
the narrow segment at a time from either end. This single 
resource is required for both EnterLd and EnterEt to start 
and is removed from EntryPass at the startup of either ac-
tivity. While EntryPass is empty neither EnterLd nor En-
terEt can take place. 

The remainder of the narrow segment requires 1.45 
minutes of travel time. This is represented by the FinishLd 
and FinishEt activies which are bound to EnterLd and En-
terEt, respectively (i.e., an instance of FinishLd or FinishEt 
starts every time an instance of EnterLd or EnterEt finishes). 
Because the time to traverse the remainder of the narrow 
segment is larger (1.45 min) than the time to enter it (0.30 
min), it is possible for several instances of FinishLd or Fin-
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ishEt to take place simultaneously (i.e., several trucks with 
0.3 min separation may be traversing the narrow segment). 

Every time EnterLd starts it removes a resource from 
LdSpots. Every time FinishLd ends it deposits a resource in 
LdSpots. Because LdSpots is initialized with a large number 
(100), its content will never drop to zero. In effect, the num-
ber of resources below 100 in LdSpots is a count of the num-
ber of loaded trucks currently traversing the segment. When 
the content of LdSpots is 100, it is because no loaded trucks 
are currently traversing the narrow segment. This information 
is very valuable, and is used as one of the conditions needed 
to allow empty trucks to enter the narrow segment (the 
==100 in the link that connects LdSpots to EnterEt). 

Likewise, EtSpots and the links that connect it to En-
terEt and from FinishEt maintain and provide information 
about the number of empty trucks traversing the narrow 
segment. The condition that no empty trucks be traversing 
the segment (i.e., that the content of EtSpots is 100) is 
similarly used as one of the conditions necessary for a 
loaded truck to enter the segment. 

Thus, according to the ACD of Figure 4, for a loaded 
truck to enter the narrow segment, the following 4 condi-
tions are required: 1) The content of WtEnterLd must be 
greater than 0 (i.e., a loaded truck must be waiting to enter), 
2) The content of EtSpots must be 100 (i.e., no empty trucks 
can be traversing the narrow segment), 3) The content of En-
tryPass must be greater than zero (i.e., the entrance to the 
segment must be cleared), and 4) The content of LdSpots 
must be greater than zero (which will always happen). 

When EnterLd does start (e.g., a loaded truck enters 
the narrow segment), it 1) Acquires one resource from 
WtEnterLd, 2) Leaves the content of EtSpots intact, 3) Ac-
quires the resource in EntryPass and 4) Acquires a re-
source from LdSpots (this resource will not be returned to 
LdSpots until the instance of FinishLd that is bound to the 
starting instance of EnterLd finishes). 

By modeling the empty direction of the narrow seg-
ment the same way, the desired operation is achieved. 

There are many ways in which a given operation can 
be modeled. Too see a slightly different approach to mod-
eling the narrow segment with EZStrobe, see the previous 
version of this paper (Martinez 1998). 

The conditions and resource removals that can be ex-
pressed in the link that connects a queue to a Conditional Ac-
tivity are quite powerful. This example illustrates how it is 
possible to model moderately complex logic by using condi-
tions and resource removal options of only a few forms. 

5 MODELING AND PARAMETERIZING 
LARGE OPERATIONS 

EZStrobe has some advanced features that allow parame-
terizing input, customizing output, defining model behav-
ior dependent on the dynamic model state, building multi-
page models, publishing models to be run over the web, 
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and animation of running models for model verification 
(debugging). The diagram of Figure 5 is a multi-page 
model of the same operation represented in Figure 4, and 
briefly illustrates some of these advanced features. Each of 
the boxed portions of Figure 5 is independent and discon-
nected from other boxed portions. They can each be placed 
in separate pages, they can all be disconnected parts of a 
very large page, or some of the smaller boxed items can be 
grouped in one page. For the purposes of this discussion, 
each boxed portion of Figure 5 is assumed to be placed in a 
separate page named as indicated in the top of the box. 
Thus, the model now contains 6 separate pages. 

5.1 Fusion Queues and Multi-Page Models 

Fusion Queues are nodes that look like ordinary Queues but 
are drawn with dashed line type (e.g., WtEnterLd in the top 
left part of the “Narrow Segment” page in Figure 5). Fusion 
Queues must bear the name of an ordinary Queue that exists 
elsewhere in the model (e.g., the WtEnterLd ordinary Queue 
is on the right edge of the “Excavator Cycle and Truck 
Loading” page in Figure 5). A model can contain several 
Fusion Queues with the same name of an ordinary Queue. 
All such Fusion Queues are assumed to be one and the same 
as the ordinary Queue they are named after. WtEnterLd, for 
example, receives resources from Haul1 in page “Excavator 
Cycle and Truck Loading” and provides resources to En-
terLd in page “Narrow Segment”. This capability can be 
used to break up a model into separate pages or to reduce the 
number of links that cross each other in complex pages. In 
order to do this, it may be necessary to replace a Bound Ac-
tivity (Normal) with a Queue followed by a Conditional Ac-
tivity (Combi). The Haul2 Bound Activity in Figure 4, for 
example, was replaced by the WtHl2 Queue and the Haul2 
Conditional Activity in Figure 5. Fusion Queues were in-
spired by the Fusion Places used in some extended Petri 
Nets and described by Sawhney et al. (1999) in the modeling 
of steel erection operations. 

5.2 Parameterizing Models 

The performance of a given system (e.g., expected  cost 
per cubic meter for moving earth) depends on the values of 
the key decision variables (e.g., the number of trucks to 
use) and other variable data (e.g., the hourly cost of the 
equipment used). These values are often used in different 
parts of the model and their definition should be located in 
a single place to facilitate experimentation and avoid the 
mistakes that result from inconsistent changes. EZStrobe 
“Parameters” allow the model designer to assign a sym-
bolic name and description to these values. The name of 
the parameter can then be used throughout the model. The 
“Model Parameters” page in the model of Figure 5 shows 
how the amount of soil to be moved; the number of trucks 
to be used; and the hourly cost of trucks, excavator and in-
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directs; have been defined as  parameters. The initial num-
ber of trucks in the TrkWtLd Queue, for example, has been 
specified by using the name of the parameter (nTrucks) 
rather than its value. 

By using parameters it is possible to create generic 
models that adapt to a wide range of similar operations. 
Such models can be reused by specifying appropriate pa-
rameter values. 
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5.3 Customizing Output 

Typical decisions about a system often depend on meas-
ures of performance that must be calculated from statistical 
output. In the case of the earthmoving operation described 
in this paper, the most important measure of performance 
is probably the cost per cubic meter. Other important 
measures of performance may include the time required to 
move the material and the production rate. EZStrobe “Re-
sults” allow the definition of performance measures with 
formulas that depend on parameters, statistics from model 
nTrucks Number of trucks 5
TrckCst Truck cost ($/hr) 48
ExcCst Excavator cost ($/hr) 65
OHCst Overhead cost ($/hr) 75

HourlyCst Hourly cost OHCst+ExcCst+nTrucks*TrckCst
Hrs Hrs needed to move

material
SimTime/60

ProdRate Production rate (m3/hr) DmpdSoil.CurCount/Hrs
UnitCst Unit cost ($/m3) HourlyCst/ProdRate

       

DumpBucket

Uniform[0.06,0.10]

 
ExcWtDmp

1
>0 , 1

1

1
 

WtEnterLd

 
TrkWtLd
nTrucks

       

Haul1

Pert[2.2,2.85,3.3]

       

EnterArea

0.15

 
ManeuvSpc

1

>0 , 1

1

 
TrkUndrExc

1
==0 , 0

>0 , 1

>0 , 1

 
SoilInTrk

>=15 , 15

2.5

>0 , 0

       

SwingEmpty

0.14

       

Excavate

Uniform[0.08,0.12]

1

       

SwingLoaded

0.15

1

1

1

       

EnterLd

0.3

       

FinishLd

1.45

>0 , 1 1

1

       

EnterEt

0.3

       

FinishEt

1.45

>0 , 11

 
EntryPass

1
>0 , 1

1

>0 , 1

1

 
LdSpots

100
>0 , 1

1

 
EtSpots

100
>0 , 1

1

==100 , 0

==100 , 0

WtEnterLd WtHl2

WtRet2 WtEnterEt

       

Dump

0.5

1       

Return1

Pert[1.25,1.45,1.7]

 
DmpdSoil

15

1

1

1

 
WtEnterEt

       

Haul2

Pert[5.25,7,8.25]

 
WtHl2

>0 , 1

       

Return2

Pert[3.75,4.5,5.25]

 
WtRet2

>0 , 1

TrkWtLd
nTrucks

Model Parameters

Model Outputs

Excavator Cycle and Truck Loading

Narrow Segment

Dumping

To Loading

SoilAmt Soil to move (m3) 10000

 
 

Figure 5: Multipage, Parameterized Model with Custom Outputs 
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execution, and other Results. The “Model Outputs” page in 
Figure 5 shows how some Results have been defined. 

When models contain “Parameters” and/or “Results”, 
the output includes both as shown below: 

 
** Model input parameters ** 
 
Amount of soil in m3 : 10000 
Number of trucks     : 5 
Truck cost ($/hr)    : 48 
Excavator cost ($/hr): 65 
Overhead cost ($/hr) : 75 
 
** Calculated results after simulation ** 
 
Hrs needed to move material: 51.7635 
Production rate (m3/hr)    : 193.283 
Unit cost ($/m3)           : 1.96603 

 
When running multiple replications, EZStrobe collects 

statistics about each “Result” automatically and presents 
them in a table such as the one below: 

 
** Calculated results after simulation ** 
 
    Run             Hrs        ProdRate         UnitCst 
======= =============== =============== =============== 
      1      51.7634796      193.282988      1.96602921 
      2      52.0920414      192.063888      1.97850832 
      3      51.7088068       193.48735      1.96395268 
      4       51.841363      192.992611       1.9689873 
      5      52.1091735      192.000742      1.97915902 
======= =============== =============== =============== 
Average      51.9029729      192.765516      1.97132731 
Std Dev      0.18656115     0.692378978    0.0070857808 
Minimum      51.7088068      192.000742      1.96395268 
Maximum      52.1091735       193.48735      1.97915902 

 
In addition, a model with Parameters and Results can 

be converted to an equivalent web-ready STROBOSCOPE 
model. When such a model is invoked over the web and 
the server runs the STROBOSCOPE Server Extensions, a 
form prompting for the values of the parameters is pre-
sented and the results are sent back after the simulation has 
run on the server. 

5.4 Dynamic Model Behavior 

Each of the numerical data that appears on an EZStrobe 
ACD, such as those used to define activity durations or the 
amount of resource to be released by a link, can be speci-
fied with a dynamic formula. These formulas can contain 
function calls (e.g., Sin, Log), arithmetic operators, vari-
ables that represent the dynamic model state (e.g., the cur-
rent content of a Queue or the number of times an activity 
has taken place), model parameters, and model results. 

 This capability enables modeling quite complex situa-
tions such as dynamic logic and non-stationary activity dura-
tion distributions. The duration of the Excavate activity in 
Figure 5, for example, could be set to: Uni-
form[0.08,0.12]*Excavate.TotInst^-0.12 to represent a sto-
chastic learning effect in which the excavation times tend to 
decrease as experience is gained. “Experience” in this exam-
ple is represented by Excavate.TotInst, which dynamically 
returns the number of times that the Excavate activity has 
started. Refer to (Martinez and Ioannou 1999) for more ex-
amples of this. Although those examples are modeled with 
STROBOSCOPE, they are equally applicable to EZStrobe. 
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5.5 Model Animation for Verification 

The first model of a complex system is rarely a correct repre-
sentation of the modelers’ understanding of the real system. 
By running the model and analyzing its results it is often pos-
sible to detect some errors, other errors may not be readily 
apparent and may go undetected. Trace files of the simulation 
run can help, but it is an extremely cumbersome process that 
becomes  unmanageable for most non-trivial models. 

EZStrobe offers graphical and interactive model veri-
fication (debugging) by means of model animation. Similar 
ideas have been used by (Huang and Halpin 1994) and (Shi 
2000) for other objectives (e.g., study of transients and 
communication to people without modeling knowledge). 
EZStrobe’s animation capabilities are designed specifically 
for the model developer to understand and gain confidence 
in the model’s correctness. The animator graphically illus-
trates the dynamic state of the simulation (e.g., current con-
tent of queues and number of ongoing activity instances) 
and the events that take place during simulation (e.g., when 
an instance of an activity starts or ends, when a queue re-
ceives resources, or when resources flow through links). 

Figure 6 shows a snapshot of the EZStrobe animation 
controller and a portion of a model being animated. The 
animator is set to stop after every event, and is currently at 
simulation time 9.7. The thick red border on DumpBucket 
indicates that it is terminating an instance. Specifically, the 
“20” on the top right indicates the specific instance that is 
finishing (zero based count). The “1/21” in the top middle 
indicates that one instance is currently taking place (the 
one terminating) and that 21 have started since model exe-
cution began. The blue thick border on SwingEmpty indi-
cates that it is starting an instance (this happens while 
DumpBucket is finishing). The “20” on the top left of the 
activity indicates the specific instance that will start. The 
“0/20” in the top middle indicates that no instances are tak-
ing place (the one currently starting does not count until 
after its duration has been sampled), and that a total of 20 
have begun. The thick line used for the link that connects 
DumpBucket to SlInTrk indicates that 2.5 resource units are 
being sent to the Queue. The “5” in the top of SlInTrk indi-
cates its current content. If the “Continue” button is 
pressed on the controller, the link’s line will return to nor-
mal thickness,  SlInTrk’s border will turn thick, and the 
number on top will be updated to “7.5.” 

While model animation is halted, it is possible to up-
date and subsequently inspect the entire state of the simula-
tion (by pressing the “Update Node Statistics”  button). 

The model animation capabilities prove to be very 
useful for individuals who are learning the system to grasp 
precisely how the EZStrobe modeling methodology works, 
and to learn by “experimenting and seeing.” 
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Figure 6: EZStrobe Animation Snapshot 

6 CONCLUSION 

This paper presented the basic elements of the EZStrobe 
modeling system and illustrated them with an increasingly 
complex earthmoving example. EZStrobe is a simple sys-
tem that is ideal as a first simulation tool and that can 
prove useful for modeling many operations that do not in-
corporate extremely complex logic or require uniquely 
identifiable resources with distinct characteristics. In addi-
tion, the EZStrobe concepts prove very useful in transition-
ing to STROBOSCOPE, the advanced and programmable 
simulation system in which EZStrobe is implemented and 
which can be used to model any operation regardless of its 
complexity. EZStrobe can be obtained from the web at: 
<http://strobos.ce.vt.edu>. 
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