
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

EZSTROBE - GENERAL-PURPOSE SIMULATION SYSTEM
BASED ON ACTIVITY CYCLE DIAGRAMS

Julio C. Martinez

200 Patton Hall
Virginia Tech

Blacksburg, VA 24061-0105, U.S.A.

ABSTRACT

EZStrobe is a very simple but powerful general-purpose
simulation system designed for modeling construction opera-
tions, but domain independent and thus useful for modeling a
wide variety of systems in any discipline. EZStrobe is based
on Activity Cycle Diagrams and employs the Three-Phase
Activity Scanning paradigm. It is therefore naturally adept
for complex systems where many resources collaborate to
carry out tasks as is typical in construction. The paper de-
scribes the basic system concepts. The paper also develops an
earthmoving example in increasing levels of complexity and
detail to illustrate the range of modeling capabilities. This is a
revised version of paper with the same title that appeared in
the 1998 Winter Simulation Conference.

1 INTRODUCTION

Several simulation systems have been designed specifically
for construction (e.g., Halpin and Riggs 1992, Martinez
1996). These systems use some form of network based on
Activity Cycle Diagrams to represent the essentials of a
model, and employ clock advance and event generation
mechanisms based on Activity Scanning or Three-Phase Ac-
tivity Scanning. These systems are designed for both simple
(e.g., CYCLONE) and very advanced (e.g.,
STROBOSCOPE) modeling tasks but do not satisfy the need
for a very easy to learn and simple tool capable of modeling
moderately complex problems with little effort. EZStrobe is
designed to fill this void in currently existing simulation tools
and to facilitate the transition to more advanced tools (e.g.
STROBOSCOPE) as the system is outgrown.

2 ACTIVITY CYCLE DIAGRAMS AND
ACTIVITY SCANNING

Activity Scanning models are prepared based on the vari-
ous activities that can take place in an operation. The mod-
eler focuses on identifying activities, the conditions under
which the activities can happen, and the outcomes of the
1556
activities when they end. Martinez and Ioannou (1999) de-
scribe in detail the differences between Activity Scanning
and other paradigms. For an earth-moving operation where
wheel loaders load trucks from a stockpile, for example,
the modeler may identify activities as shown in Table 1.

Table 1: Activities, Conditions and Outcomes for
Earthmoving Operation
Conditions
Needed to Start

Activity Outcome of Ac-
tivity

Wheel loader idle
at source.
Empty truck wait-
ing to load.
Enough soil in
stockpile.

Load Wheel loader idle
at source.
Loaded truck
ready to haul.

Loaded truck
ready to haul.

Haul Loaded truck
ready to dump.

Loaded truck
ready to dump.

Dump Dumped soil.
Empty truck
ready to return.

Empty truck
ready to return.

Return Empty truck
waiting to load.

These models are typically represented using Activity

Cycle Diagrams (ACDs), which are networks of circles
and squares that represent idle resources, activities, and
their precedence. The ACD of Figure 1 for example, is a
graphical representation of the information in Table 1. The
rectangles represent activities (resources collaborating to
achieve a task), the circles represent queues (idle re-
sources), and the links between them represent the flow of
resources. ACDs of this type are used to express the main
concepts of a simulation model -- other details of the
model such as startup conditions not related to resource
availability, are not shown. The ACD is used as a guide for
coding the model using a general-purpose or simulation
programming language.

Martinez

Load

Wheel
Ldr
Idle

Trucks
WtTo
Load

RdyTo
Haul Haul RdyTo

Dump Dump

RdyTo
ReturnReturn

Dumped
Soil

SoilIn
Stock
Pile

Link
Link
24

Link
28

Link
32

Link
36

Link40
Link
44

Link
48

Link
74

Link
78Li

nk
82

Link86

Figure 1: Conventional ACD for Earthmoving Operation

3 EZSTROBE ACDS

EZStrobe ACDs are annotated extensions of the standard
ACD's described above. The EZStrobe ACD for the same
earthmoving operation described in Table 1 and Figure 1 is
shown in Figure 2.

Load
Uniform[1.3,1.8]

TrkWtLd
5

>0 , 1

WhlLdrIdle
1

1>0 , 1

Haul
Pert[4,5.5,6]

1

Dump
 0.5

Return
Pert[3,4,5]

1

11

DumpdSoil

15

SoilInStkPl
1000

>=15 , 15

Figure 2: EZStrobe ACD for Earthmoving Operation

The network of Figure 2 is more compact than the one

in Figure 1. Some queues such as RdyToHaul in Figure 1
are superfluous because they link activities that immedi-
ately and unconditionally follow each other. Such queues
have been removed to indicate that some activities imme-
diately follow their predecessors because the conditions
needed for them to start are completely satisfied by the
predecessor's outcome. Hauling, for example, immediately
follows loading, making it unnecessary to show trucks in a
'ready to haul' state.

Unlike the ACD of Figure 1, the annotations of the
EZStrobe ACD of Figure 2 make it a complete and unam-
biguous representation of the operation. The "1000" writ-
ten in the bottom of SoilInStkPl indicates that at the begin-
ning of the operation the Queue will contain 1000 units of
resource (cubic meters). The first part of the annotation
shown on the link that connects TrkWtLd to Load (">0")
indicates that one of the conditions needed for Load to start
is that more than zero units of resource exist in TrkWtLd.
The other two conditions needed for Load to start are that
at least 15 units of resource exist in SoilInStkPl and that
more than zero exist in WhlLdrIdle. The second part of the
annotations on those links (",1", ",15", and ",1") indicate
155

Queue

 10

10

Combi

Uniform[10,20]

Normal

Uniform[10,20]

that 1, 15, and 1 units will be removed (if possible) from
TrkWtLd, SoilInStkPl, and WhlLdrIdle every time Load
starts. The "Uniform[1.3,1.8]" shown inside Load indicates
that its duration is sampled from a uniform distribution
with minimum 1.3 and maximum 1.8 (minutes). The "15"
shown on the link that connects Dump to DumpdSoil indi-
cates that one of the outcomes of Dump is the insertion of
15 units of resource into DumpdSoil.

In EZStrobe models, all activity startup conditions and
outcomes are in terms of resource amounts. Resources that
reside in the same location are assumed to be indistinguish-
able, interchangeable, and exist in bulk quantities (i.e., their
amounts can be expressed with real numbers and are not
limited to integers). EZStrobe does not enforce the type of
resources and the units with which they are measured — the
modeler is responsible for maintaining consistency.

3.1 Basic EZStrobe Modeling Elements

The basic modeling elements that can be used in EZStrobe,
the precedence rules that govern them, and their explana-
tion follow.

A Queue is a named element that holds idle
resources. The name of the Queue is shown at
the center. At the beginning of a simulation
Queues hold a certain number of resources.

This number is shown below the Queue name. Resources
are placed in Queues when they are released by terminat-
ing instances of preceding Activities. They are removed
from Queues by starting instances of succeeding Condi-
tional Activities (Combis). A Queue can follow any other
node except another Queue. A Queue can only precede a
Conditional Activity (Combi).

A Conditional Activity (Combi) is a
named element that represents tasks that
can start whenever the resources that are
available in the Queues that precede it are

sufficient to support the task. The name of the Conditional
Activity is shown at the center. The number at the top is
the priority that the Conditional Activity has over other
Conditional Activities when competing for resources in
preceding Queues. A Conditional Activity with a high pri-
ority has a chance to start before a Conditional Activity
with a lower priority. Priorities can be negative and the de-
fault value is zero (e.g., when the priority is not specified it
is assumed to be zero). The formula at the bottom of the
Conditional Activity is used to determine the duration of
its instances. The duration formula typically samples from
a probability distribution. Therefore, different instances of
the same Conditional Activity can have different durations.
Conditional Activities can only follow Queues, but can
precede any other node other than a Conditional Activity.

A Bound Activity (Normal) is a named
element that represents tasks that start
whenever an instance of any preceding
7

Martinez

>0 , 1

Activity ends. The name of the Bound Activity is shown at
the center. The formula at the bottom of the Bound Activ-
ity is used to determine the duration of its instances. The
duration formula typically samples from a probability dis-
tribution. Consequently, different instances of the same
Bound Activity can have different durations. A Bound Ac-
tivity can follow any node except a Queue, and can pre-
cede any node except a Conditional Activity.

A Fork is a probabilistic routing element. It
typically follows an activity but can also follow

another Fork. When a preceding activity instance
finishes, the Fork chooses one of its successors. If the cho-
sen successor is a Bound Activity then the Bound Activity
starts. If the chosen successor is a Queue then the Queue
receives any resources routed through the Fork. If the cho-
sen successor is another Fork, then the second Fork will
choose one of its successors. The relative likelihood that a
particular successor will be chosen depends on the "P"
property of the Branch Link that emanates from the Fork
towards the successor (see Brach Link below).

A Draw Link connects a Queue to a
Conditional Activity. A Draw Link shows two

pieces of information separated by a comma. The first part
is the condition necessary for the successor Conditional
Activity to start as a function of the content of the prede-
cessor Queue. The text ">0", for example, indicates that
the content of the Queue must be greater than zero in order
for the Conditional Activity to start. EZStrobe supports six
relational operators to express this condition: less than (<),
less than or equal (<=), greater than (>), greater than or
equal (>=), equal (==), and not equal (!=). The second part
is the amount of resource that the Conditional Activity will
attempt to remove from the predecessor Queue in the event
that the Conditional Activity does start. The Conditional
Activity may not be able to remove the amount attempted
if that amount is greater than the content of the Queue, in
which case the entire content is removed.

A Release Link connects an Activity to any
other node except a Conditional Activity. The

text shown on a Release Link indicates the amount of re-
source that will be released through the Link each time an
instance of the predecessor activity ends.

A Branch Link connects a Fork to any other
node except a Conditional Activity. The text

shown on a Branch Link indicates the value of the "P"
property for that Link. The "P" property establishes the
relative likelihood that the successor connected by the
Branch Link will be selected every time the Fork needs to
choose a successor.

3.2 Supplementary Input
and Simulation Output

Because an annotated EZStrobe ACD is a complete represen-
tation of an operation, in most cases no further basic input is

1

P:1
1558
required to run simulations. For simulations that do not natu-
rally stop (i.e., that can potentially run forever), it is necessary
to specify a simulation termination condition. In EZStrobe this
condition can be set by specifying a limit on simulation time
or on the number of times a particular activity starts.

The purpose of simulating an operation is to obtain
statistical measures of performance. By default, EZStrobe
will produce a report containing the simulation time of the
report and information on the activities and queues of the
model. A report for the model shown in Figure 2, for ex-
ample, is shown below.

Statistics report at simulation time 161.195

Queue Res Cur Tot AvWait AvCont SDCont MinCont MaxCont
===
DumpdSoil ezs 990.00 990.00 80.32 493.29 301.72 0.00 990.00
SoilInStkPl ezs 10.00 1000.00 74.38 461.45 298.67 10.00 1000.00
TrkWtLd ezs 5.00 71.00 0.80 0.35 0.92 0.00 5.00
WhlLdrIdle ezs 1.00 67.00 0.88 0.36 0.48 0.00 1.00

Activity Cur Tot 1stSt LstSt AvDur SDDur MinD MaxD AvInt SDInt MinI MaxI
===
Dump 0 66 6.94 156.70 0.50 0.00 0.50 0.50 2.30 1.15 0.90 5.13
Haul 0 66 1.58 150.85 5.32 0.31 4.55 5.88 2.30 1.11 1.30 5.30
Load 0 66 0.00 149.30 1.55 0.15 1.30 1.80 2.30 1.10 1.30 5.42
Return 0 66 7.44 157.20 3.98 0.32 3.30 4.76 2.30 1.15 0.90 5.13

For each queue, the report shows the content at the time

of the report (Cur), the total amount of resource to ever enter
(Tot), the average waiting time (AvWait), the time-weighted
average content (AvCont), the time-weighted standard devia-
tion of the content, the minimum content (MinCont), and the
maximum content (MaxCont). For each activity, the report
shows the current number of times that the activity is being
performed at the time of the report (Cur), the total number of
times it has started (Tot), the time at which the first instance
started (1stSt), the time at which the last instance started
(LstSt), the average duration (AvDur), the standard deviation
of the duration (SDDur), the minimum duration (MinD), the
maximum duration (MaxD), the average time between suc-
cessive starts (AvInt), the standard deviation of the time be-
tween successive starts (SDInt), the minimum time between
successive starts (MinI), and the maximum time between
successive starts (MaxI). Note from the output that Soil-
InStkPl contains 10 units of resource (cubic meters) at the
time of the report. Those resources remained in SoilInStkPl
because they were not enough to enable Load to start (which
requires 15) one more time.

More detailed statistics regarding the historical content
of queues are available in the form of cumulative histo-
grams. To obtain a histogram for a queue it is necessary to
specify the range and number of collection bins. EZStrobe
will additionally create an underflow and an overflow bin.
Specifying 3 bins between 1 and 4 for TrkWtLd, for exam-
ple, produces the additional output shown below:

Detailed statistics on content of queue TrkWtLd

Content TotTime %Time
=============================

< 1.00 132.94 82.47
< 2.00 147.77 91.67
< 3.00 151.94 94.26
< 4.00 155.31 96.35
>= 4.00 5.89 3.65

Martinez

 The output indicates that TrkWtLd was empty (its con-
tent was < 1, i.e., zero) 82.47% of the time, and contained
exactly 4 or more trucks 3.65% of the time.

3.3 Probabilistic Branching

EZStrobe can probabilistically select one among several
successors to an activity for resource routing and activa-
tion. This is achieved with a Fork and the Branch Links
that emanate from it. The EZStrobe ACD of Figure 3 illus-
trates this by expanding the model of Figure 2 to include
the possibility of a truck breakdown.

Load
Uniform[1.3,1.8]

TrkWtLd
5

>0 , 1

WhlLdrIdle
1

1

Haul
Pert[4,5.5,6]

1 Dump
 0.5

Return
Pert[3,4,5]

1

1

1

DumpdSoil

15

SoilInStkPl
1000

>=15 , 15

P:95

Repair
Uniform[10,60]

P:5

1

>0 , 1

Figure 3: ACD for Earthmoving Operation with Truck
Breakdown and Repair

In the model of Figure 3 there is a 5% chance that a

truck will break down after dumping and that repairs will
take between 10 and 60 minutes. The probability of a par-
ticular branch being selected is calculated by dividing its P
value by the sum of the P values of all the branches that
leave the link. Thus, the probability of the activity Repair
starting when Dump ends is 5/(95+5)=0.05. Regardless of
whether a truck breaks down or not, the DumpdSoil Queue
will receive 15 units of resource (cubic meters of soil) be-
cause it is connected directly to Dump.

4 MODELING COMPLEX LOGIC

EZStrobe's essential modeling concepts have already been
presented in the previous sections of this paper. EZStrobe's
capability to model systems of moderate complexity, how-
ever, may not be obvious without an illustrative example.
Consider a more detailed and complex version of an
earthmoving operation where 1) an excavator is used in-
stead of a wheel loader and its cycle is modeled explicitly
and 2) the haul road has a narrow portion that allows travel
in only one direction (i.e., either loaded traffic or empty
traffic, but never both simultaneously). An EZStrobe ACD
1559
that incorporates these details and complexities is shown in
Figure 4 and explained in the following two subsections.

4.1 Modeling The Excavator Cycle

Wheel loaders load trucks with material that has already been
excavated and stockpiled. Excavators, on the other hand, dig
material from their undisturbed natural state. This is done in a
cycle where the excavator swings empty from the truck load-
ing position to the digging position, excavates, swings loaded
from the digging position to the truck loading position, waits
for a truck if one is not already there, and dumps the exca-
vated material unto the truck.

The components of the excavator cycle are represented
by the SwingEmpty, Excavate, SwingLoaded, ExcWtDmp,
and DumpBucket nodes located in the top left part of the
ACD. In this cycle, DumpBucket is the only Conditional
Activity. According to the ACD, the conditions needed for
DumpBucket to start are that a truck be under the excavator
(TrkUndrExc contains a truck) and that the excavator be
waiting to unload its bucket unto a truck (ExcWtDmp con-
tains the excavator). The link that connects TrkUndrExc to
DumpBucket indicates, however, that zero trucks are re-
moved from TrkUndrExc when DumpBucket starts. This is
consistent with reality because the truck needs to be under
the excavator to receive a bucket load, but remains under
the excavator after receiving the load. In this model, the
truck that is under the excavator and the soil that it con-
tains are represented by two separate queues, TrkUndrExc
and SoilInTrk. Every time the DumpBucket activity con-
cludes, 2.5 m3 of soil are placed in SoilInTrk.

The Haul1 conditional activity takes place whenever
there is a full truck under the excavator (TrkUndrExc con-
tains a truck and SoilInTrk contains 15 m3 of soil). It is
when this activity starts that the truck leaves the spot under
the excavator and that the TrkUndrExc and SoilInTrk
queues are cleared. Haul1 represents the truck traveling
loaded from the load area towards the entrance to the nar-
row portion of the road.

In this detailed modeling of the truck loading, the next
truck to be loaded needs to enter the loading area and posi-
tion itself under the excavator. This is represented by the
EnterArea conditional activity. According to the ACD, En-
terArea takes place when there is at least one truck waiting
to be loaded (the content of TrkWtLd is >0), maneuvering
space is available (the content of ManeuvSpc is >0), and
there is no truck under the excavator (TrkUndrExc is
empty). The link that connects TrkUndrExc to EnterArea
indicates that no truck is removed from TrkUnderExc when
EnterArea starts. This is specified for clarity. Regardless of
the number specified, no truck will be removed because the
activity can only start when none are there. The maneuver-
ing space needs to be modeled explicitly because otherwise
several trucks could simultaneously enter the loading area.
When EnterArea concludes, a truck is placed under the ex-
cavator and the maneuvering space is made available.

Martinez

DumpBucket

Uniform[0.06,0.1]

Dump

Pert[1,1.05,1.1]

Return1

Pert[1.25,1.45,1.7]

TrkWtLd

5

SlInTrk

ExcWtDmp

1

>=15 , 15>0 , 0
1

1

1

>0 , 1

>0 , 1
1

DmpdSoil

1

1

WtEnterLd

WtEnterEt

>0 , 1 1

EnterEt

0.3

>0 , 1

1

EnterLd

0.3

FinishLd

 1.45

1

FinishEt

 1.45

1 >0 , 1

LdSpots

100

>0 , 1

1

1

>0 , 1

EntryPass

1

>0 , 1

1

1

EtSpots

100

==100 , 0

==100 , 0

Haul2

Pert[5.25,7,8.25]

Return2

Pert[3.75,4.5,5.25]

EnterArea

0.15

ManeuvSpc

1
1

>0 , 1

TrkUndrExc

1==0 , 0

Haul1

Pert[2.2,2.85,3.3]

>0 , 1

2.5

SwingEmpty

0.14

Excavate

Uniform[0.08,0.12]

SwingLoaded

0.15

111

15

Figure 4: ACD for Earthmoving Operation with Unidirectional Narrow Segment
In cases where the earthmoving operation is clearly
undertrucked, trucks will receive their first bucket load
immediately upon entering the area because the excavator
will be waiting with its load ready to be dumped unto a
truck. In cases where the operation is clearly overtrucked,
the truck will be positioned to receive a load before the ex-
cavator has completed its cycle. Thus, the more detailed
modeling of the loading captures aspects of the operation
that cannot be represented by simply repeating the excava-
tor cycle 6 times for each truck, as illustrated in the previ-
ous version of this paper (Martinez 1998) using EZStrobe,
and as traditionally done when modeling with CYCLONE.

4.2 Modeling The Narrow Segment

The haul road has a narrow portion that allows travel in
only one direction (i.e., either loaded traffic or empty traf-
fic, but never both simultaneously). The direction of travel
is established by the first truck to arrive at the segment
when it is empty. That direction is maintained as long as
trucks keep arriving at the segment in that same direction
or until the segment is again empty. If trucks are waiting at
the other end when the segment becomes empty, then the
direction of travel is reversed to allow those trucks to
travel. The portion of the EZStrobe ACD in Figure 4 that
models this narrow segment consists of the following
nodes: WtEnterLd, EnterLd, FinishLd, EtSpots, EntryPass,
LdSpots, FinishEt, EnterEt and WtEnterEt.

1560
In order to understand the model it is necessary to
have a clear picture of how this operation is implemented
in practice. In this model, the haul road is divided into
three segments, with the narrow segment in the middle. A
truck arriving to the narrow segment is allowed to enter if
no trucks are traversing the segment in the opposite direc-
tion. In addition, for reasons of physical space, a vehicle
must wait until the vehicle ahead of it has traveled enough
into the segment to allow it to enter (i.e., the entrance to
the segment must be cleared). In the model discussed here
it is assumed that this takes 0.3 minutes, and is represented
by the EnterLd (entering loaded headed towards the dump
site) and EnterEt (entering empty returning to the load
area) Conditional Activities. The resource initially placed
in the EntryPass queue ensures that only one truck enters
the narrow segment at a time from either end. This single
resource is required for both EnterLd and EnterEt to start
and is removed from EntryPass at the startup of either ac-
tivity. While EntryPass is empty neither EnterLd nor En-
terEt can take place.

The remainder of the narrow segment requires 1.45
minutes of travel time. This is represented by the FinishLd
and FinishEt activies which are bound to EnterLd and En-
terEt, respectively (i.e., an instance of FinishLd or FinishEt
starts every time an instance of EnterLd or EnterEt finishes).
Because the time to traverse the remainder of the narrow
segment is larger (1.45 min) than the time to enter it (0.30
min), it is possible for several instances of FinishLd or Fin-

Martinez

ishEt to take place simultaneously (i.e., several trucks with
0.3 min separation may be traversing the narrow segment).

Every time EnterLd starts it removes a resource from
LdSpots. Every time FinishLd ends it deposits a resource in
LdSpots. Because LdSpots is initialized with a large number
(100), its content will never drop to zero. In effect, the num-
ber of resources below 100 in LdSpots is a count of the num-
ber of loaded trucks currently traversing the segment. When
the content of LdSpots is 100, it is because no loaded trucks
are currently traversing the narrow segment. This information
is very valuable, and is used as one of the conditions needed
to allow empty trucks to enter the narrow segment (the
==100 in the link that connects LdSpots to EnterEt).

Likewise, EtSpots and the links that connect it to En-
terEt and from FinishEt maintain and provide information
about the number of empty trucks traversing the narrow
segment. The condition that no empty trucks be traversing
the segment (i.e., that the content of EtSpots is 100) is
similarly used as one of the conditions necessary for a
loaded truck to enter the segment.

Thus, according to the ACD of Figure 4, for a loaded
truck to enter the narrow segment, the following 4 condi-
tions are required: 1) The content of WtEnterLd must be
greater than 0 (i.e., a loaded truck must be waiting to enter),
2) The content of EtSpots must be 100 (i.e., no empty trucks
can be traversing the narrow segment), 3) The content of En-
tryPass must be greater than zero (i.e., the entrance to the
segment must be cleared), and 4) The content of LdSpots
must be greater than zero (which will always happen).

When EnterLd does start (e.g., a loaded truck enters
the narrow segment), it 1) Acquires one resource from
WtEnterLd, 2) Leaves the content of EtSpots intact, 3) Ac-
quires the resource in EntryPass and 4) Acquires a re-
source from LdSpots (this resource will not be returned to
LdSpots until the instance of FinishLd that is bound to the
starting instance of EnterLd finishes).

By modeling the empty direction of the narrow seg-
ment the same way, the desired operation is achieved.

There are many ways in which a given operation can
be modeled. Too see a slightly different approach to mod-
eling the narrow segment with EZStrobe, see the previous
version of this paper (Martinez 1998).

The conditions and resource removals that can be ex-
pressed in the link that connects a queue to a Conditional Ac-
tivity are quite powerful. This example illustrates how it is
possible to model moderately complex logic by using condi-
tions and resource removal options of only a few forms.

5 MODELING AND PARAMETERIZING
LARGE OPERATIONS

EZStrobe has some advanced features that allow parame-
terizing input, customizing output, defining model behav-
ior dependent on the dynamic model state, building multi-
page models, publishing models to be run over the web,
1561
and animation of running models for model verification
(debugging). The diagram of Figure 5 is a multi-page
model of the same operation represented in Figure 4, and
briefly illustrates some of these advanced features. Each of
the boxed portions of Figure 5 is independent and discon-
nected from other boxed portions. They can each be placed
in separate pages, they can all be disconnected parts of a
very large page, or some of the smaller boxed items can be
grouped in one page. For the purposes of this discussion,
each boxed portion of Figure 5 is assumed to be placed in a
separate page named as indicated in the top of the box.
Thus, the model now contains 6 separate pages.

5.1 Fusion Queues and Multi-Page Models

Fusion Queues are nodes that look like ordinary Queues but
are drawn with dashed line type (e.g., WtEnterLd in the top
left part of the “Narrow Segment” page in Figure 5). Fusion
Queues must bear the name of an ordinary Queue that exists
elsewhere in the model (e.g., the WtEnterLd ordinary Queue
is on the right edge of the “Excavator Cycle and Truck
Loading” page in Figure 5). A model can contain several
Fusion Queues with the same name of an ordinary Queue.
All such Fusion Queues are assumed to be one and the same
as the ordinary Queue they are named after. WtEnterLd, for
example, receives resources from Haul1 in page “Excavator
Cycle and Truck Loading” and provides resources to En-
terLd in page “Narrow Segment”. This capability can be
used to break up a model into separate pages or to reduce the
number of links that cross each other in complex pages. In
order to do this, it may be necessary to replace a Bound Ac-
tivity (Normal) with a Queue followed by a Conditional Ac-
tivity (Combi). The Haul2 Bound Activity in Figure 4, for
example, was replaced by the WtHl2 Queue and the Haul2
Conditional Activity in Figure 5. Fusion Queues were in-
spired by the Fusion Places used in some extended Petri
Nets and described by Sawhney et al. (1999) in the modeling
of steel erection operations.

5.2 Parameterizing Models

The performance of a given system (e.g., expected cost
per cubic meter for moving earth) depends on the values of
the key decision variables (e.g., the number of trucks to
use) and other variable data (e.g., the hourly cost of the
equipment used). These values are often used in different
parts of the model and their definition should be located in
a single place to facilitate experimentation and avoid the
mistakes that result from inconsistent changes. EZStrobe
“Parameters” allow the model designer to assign a sym-
bolic name and description to these values. The name of
the parameter can then be used throughout the model. The
“Model Parameters” page in the model of Figure 5 shows
how the amount of soil to be moved; the number of trucks
to be used; and the hourly cost of trucks, excavator and in-

Martinez

directs; have been defined as parameters. The initial num-
ber of trucks in the TrkWtLd Queue, for example, has been
specified by using the name of the parameter (nTrucks)
rather than its value.

By using parameters it is possible to create generic
models that adapt to a wide range of similar operations.
Such models can be reused by specifying appropriate pa-
rameter values.
1562
5.3 Customizing Output

Typical decisions about a system often depend on meas-
ures of performance that must be calculated from statistical
output. In the case of the earthmoving operation described
in this paper, the most important measure of performance
is probably the cost per cubic meter. Other important
measures of performance may include the time required to
move the material and the production rate. EZStrobe “Re-
sults” allow the definition of performance measures with
formulas that depend on parameters, statistics from model
nTrucks Number of trucks 5
TrckCst Truck cost ($/hr) 48
ExcCst Excavator cost ($/hr) 65
OHCst Overhead cost ($/hr) 75

HourlyCst Hourly cost OHCst+ExcCst+nTrucks*TrckCst
Hrs Hrs needed to move

material
SimTime/60

ProdRate Production rate (m3/hr) DmpdSoil.CurCount/Hrs
UnitCst Unit cost ($/m3) HourlyCst/ProdRate

DumpBucket

Uniform[0.06,0.10]

ExcWtDmp

1
>0 , 1

1

1

WtEnterLd

TrkWtLd
nTrucks

Haul1

Pert[2.2,2.85,3.3]

EnterArea

0.15

ManeuvSpc

1

>0 , 1

1

TrkUndrExc

1
==0 , 0

>0 , 1

>0 , 1

SoilInTrk

>=15 , 15

2.5

>0 , 0

SwingEmpty

0.14

Excavate

Uniform[0.08,0.12]

1

SwingLoaded

0.15

1

1

1

EnterLd

0.3

FinishLd

1.45

>0 , 1 1

1

EnterEt

0.3

FinishEt

1.45

>0 , 11

EntryPass

1
>0 , 1

1

>0 , 1

1

LdSpots

100
>0 , 1

1

EtSpots

100
>0 , 1

1

==100 , 0

==100 , 0

WtEnterLd WtHl2

WtRet2 WtEnterEt

Dump

0.5

1

Return1

Pert[1.25,1.45,1.7]

DmpdSoil

15

1

1

1

WtEnterEt

Haul2

Pert[5.25,7,8.25]

WtHl2

>0 , 1

Return2

Pert[3.75,4.5,5.25]

WtRet2

>0 , 1

TrkWtLd
nTrucks

Model Parameters

Model Outputs

Excavator Cycle and Truck Loading

Narrow Segment

Dumping

To Loading

SoilAmt Soil to move (m3) 10000

Figure 5: Multipage, Parameterized Model with Custom Outputs

Martinez

execution, and other Results. The “Model Outputs” page in
Figure 5 shows how some Results have been defined.

When models contain “Parameters” and/or “Results”,
the output includes both as shown below:

** Model input parameters **

Amount of soil in m3 : 10000
Number of trucks : 5
Truck cost ($/hr) : 48
Excavator cost ($/hr): 65
Overhead cost ($/hr) : 75

** Calculated results after simulation **

Hrs needed to move material: 51.7635
Production rate (m3/hr) : 193.283
Unit cost ($/m3) : 1.96603

When running multiple replications, EZStrobe collects

statistics about each “Result” automatically and presents
them in a table such as the one below:

** Calculated results after simulation **

 Run Hrs ProdRate UnitCst
======= =============== =============== ===============
 1 51.7634796 193.282988 1.96602921
 2 52.0920414 192.063888 1.97850832
 3 51.7088068 193.48735 1.96395268
 4 51.841363 192.992611 1.9689873
 5 52.1091735 192.000742 1.97915902
======= =============== =============== ===============
Average 51.9029729 192.765516 1.97132731
Std Dev 0.18656115 0.692378978 0.0070857808
Minimum 51.7088068 192.000742 1.96395268
Maximum 52.1091735 193.48735 1.97915902

In addition, a model with Parameters and Results can

be converted to an equivalent web-ready STROBOSCOPE
model. When such a model is invoked over the web and
the server runs the STROBOSCOPE Server Extensions, a
form prompting for the values of the parameters is pre-
sented and the results are sent back after the simulation has
run on the server.

5.4 Dynamic Model Behavior

Each of the numerical data that appears on an EZStrobe
ACD, such as those used to define activity durations or the
amount of resource to be released by a link, can be speci-
fied with a dynamic formula. These formulas can contain
function calls (e.g., Sin, Log), arithmetic operators, vari-
ables that represent the dynamic model state (e.g., the cur-
rent content of a Queue or the number of times an activity
has taken place), model parameters, and model results.

 This capability enables modeling quite complex situa-
tions such as dynamic logic and non-stationary activity dura-
tion distributions. The duration of the Excavate activity in
Figure 5, for example, could be set to: Uni-
form[0.08,0.12]*Excavate.TotInst^-0.12 to represent a sto-
chastic learning effect in which the excavation times tend to
decrease as experience is gained. “Experience” in this exam-
ple is represented by Excavate.TotInst, which dynamically
returns the number of times that the Excavate activity has
started. Refer to (Martinez and Ioannou 1999) for more ex-
amples of this. Although those examples are modeled with
STROBOSCOPE, they are equally applicable to EZStrobe.
1563
5.5 Model Animation for Verification

The first model of a complex system is rarely a correct repre-
sentation of the modelers’ understanding of the real system.
By running the model and analyzing its results it is often pos-
sible to detect some errors, other errors may not be readily
apparent and may go undetected. Trace files of the simulation
run can help, but it is an extremely cumbersome process that
becomes unmanageable for most non-trivial models.

EZStrobe offers graphical and interactive model veri-
fication (debugging) by means of model animation. Similar
ideas have been used by (Huang and Halpin 1994) and (Shi
2000) for other objectives (e.g., study of transients and
communication to people without modeling knowledge).
EZStrobe’s animation capabilities are designed specifically
for the model developer to understand and gain confidence
in the model’s correctness. The animator graphically illus-
trates the dynamic state of the simulation (e.g., current con-
tent of queues and number of ongoing activity instances)
and the events that take place during simulation (e.g., when
an instance of an activity starts or ends, when a queue re-
ceives resources, or when resources flow through links).

Figure 6 shows a snapshot of the EZStrobe animation
controller and a portion of a model being animated. The
animator is set to stop after every event, and is currently at
simulation time 9.7. The thick red border on DumpBucket
indicates that it is terminating an instance. Specifically, the
“20” on the top right indicates the specific instance that is
finishing (zero based count). The “1/21” in the top middle
indicates that one instance is currently taking place (the
one terminating) and that 21 have started since model exe-
cution began. The blue thick border on SwingEmpty indi-
cates that it is starting an instance (this happens while
DumpBucket is finishing). The “20” on the top left of the
activity indicates the specific instance that will start. The
“0/20” in the top middle indicates that no instances are tak-
ing place (the one currently starting does not count until
after its duration has been sampled), and that a total of 20
have begun. The thick line used for the link that connects
DumpBucket to SlInTrk indicates that 2.5 resource units are
being sent to the Queue. The “5” in the top of SlInTrk indi-
cates its current content. If the “Continue” button is
pressed on the controller, the link’s line will return to nor-
mal thickness, SlInTrk’s border will turn thick, and the
number on top will be updated to “7.5.”

While model animation is halted, it is possible to up-
date and subsequently inspect the entire state of the simula-
tion (by pressing the “Update Node Statistics” button).

The model animation capabilities prove to be very
useful for individuals who are learning the system to grasp
precisely how the EZStrobe modeling methodology works,
and to learn by “experimenting and seeing.”

Martinez

 1 / 21 20

DumpBucket

Uniform[0.06,0.1]

5
SlInTrk

1

2.5

20 0 / 20

SwingEmpty

0.14

Figure 6: EZStrobe Animation Snapshot

6 CONCLUSION

This paper presented the basic elements of the EZStrobe
modeling system and illustrated them with an increasingly
complex earthmoving example. EZStrobe is a simple sys-
tem that is ideal as a first simulation tool and that can
prove useful for modeling many operations that do not in-
corporate extremely complex logic or require uniquely
identifiable resources with distinct characteristics. In addi-
tion, the EZStrobe concepts prove very useful in transition-
ing to STROBOSCOPE, the advanced and programmable
simulation system in which EZStrobe is implemented and
which can be used to model any operation regardless of its
complexity. EZStrobe can be obtained from the web at:
<http://strobos.ce.vt.edu>.

ACKNOWLEDGMENTS

The support of the National Science Foundation (Grant
CMS-9733267) for portions of the work presented here is
gratefully acknowledged. Any opinions, findings, and con-
clusions or recommendations expressed in this paper are
those of the author and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES

Halpin, D.W., and L.S. Riggs. 1992. Planning and analysis
of construction operations, John Wiley & Sons, New
York, NY.

Huang, R.Y. and Halpin, D.W. 1994. “Visual Construction
Operations Simulation - The DISCO Approach”,
Journal of Microcomputers in Civil Engineering, (9)
175-184.

Martinez, J.C. 1998. “EZStrobe -- general-purpose simula-
tion system based on activity cycle diagrams”. Proceed-
ings of 1998 Winter Simulation Conference, 341 – 348.
156
Martinez, J.C. 1996. STROBOSCOPE - State and Resource
Based Simulation of Construction Processes. Doctoral
Dissertation. Department of Civil and Environmental
Engineering, University of Michigan, Ann Arbor, MI.

Martinez, J.C. and Ioannou, P.G. 1999. “General Purpose
Systems for Effective Construction Simulation”, Jour-
nal of Construction Engineering and Management.
ASCE. 125 (4), 265-276.

Sawhney, A.; Mund, A. and Marble, J. 1999. “Simulation of
the structural steel erection process”. Proceedings of the
1999 Winter Simulation Conference. 942-947.

Shi, J.J. 2000. “Object-Oriented Technology for Enhancing
Activity-Based Modeling Functionality”. Proceedings
of the 2000 Winter Simulation Conference.

AUTHOR BIOGRAPHY

JULIO C. MARTINEZ is Assist. Prof. in the Via Dept. of
Civil and Env. Eng. at Virginia Tech. He received his Ph.D.
in Civil Eng. at the Univ. of Michigan in 1996; an MSE in
Construction Eng. and Mngmt. from the Univ. of Michigan
in 1993; an MS in Civil Eng. from the Univ. of Nebraska in
1987; and a Civil Eng. degree from Universidad Catolica
Madre y Maestra (Santiago, Dominican Republic) in 1986.
He designed and implemented the STROBOSCOPE simula-
tion language and a host of other tools based on it. In addi-
tion to discrete event simulation, his research interests in-
clude advanced visualization and animation, construction
process modeling, decision support systems for construction,
scheduling of complex and risky projects, and construction
management information systems.
4

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

