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ABSTRACT 

This panel discusses goals and educational strategies for 
teaching simulation in academia. Clearly, there is consider-
able material to cover in a single course or a sequence thereof 
in, say, an undergraduate program. The issue is how to moti-
vate and empower students to analyze complex problems cor-
rectly and to prevent the pitfall of misusing the concept. 

1 INTRODUCTION 

Computer simulation modeling has been taught in engineer-
ing schools, business schools and computer science depart-
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ments in academic institutions worldwide for decades.  This 
discipline teaches students how to develop computer models 
of systems, both real-life or on the drawing board, depend-
ing on the area.  It is comprised of theoretical aspects (e.g., 
statistics and time series) as well as practical aspects (pro-
gramming). In view of the complexity of large-scale prob-
lems that engineers, scientists and business managers face 
today, simulation modeling has grown into possibly the only 
practical approach of analyzing them.  Indeed, the simula-
tion methodology is widely accepted and broadly applied in 
many application domains. Consequently, a tremendous 
growth has been achieved over the past two decades in both 
theoretical and technological facets of simulation, both edu-
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cational and commercial.  Simulation systems are increas-
ingly evolving from general-purpose languages to direct-
engagement, visual programming environments supported 
by powerful graphics tools.   
 Nowadays, we are faced in academia with the baffling 
decision of what to cover in a course or a series of courses in 
simulation. The main problem is how to select varied simu-
lation-related topics into a one-semester course in view of 
the knowledge the educator wishes to impart to the students.  
This problem is complicated by the constraints imposed on 
the educator who must factor in the students’ skill set.  
 Fundamentally, there are two basic approaches to 
teaching simulation: one emphasizing theoretical aspects 
and the other emphasizing hands-on aspects. Accordingly, 
a simulation course may include the following basic topics: 

 
• Discrete-event simulation 
• Random number and variate generation 
• Input and output analyses 
• Verification and validation 

 
In the theoretical approach, these topics, which are 

largely based on probability and statistics, can be comforta-
bly taught in some depth either without regard to any simu-
lation tool, or by using an educational software tool for 
demonstration purposes.  This approach teaches students the 
proper simulation methodology (the “right” things to do in a 
simulation project) as well as theoretical underpinnings.  
However, it would not teach them the hands-on skills to 
simulate a complex system with a strict deadline, which is 
what the marketplace mandates.  Furthermore, the students 
may suffer from modeling-skill deficiencies, leading them to 
produce invalid or oversimplified models. 

The hands-on approach would briefly review the fun-
damentals, and spend most of the time in the lab, practicing 
with a (typically commercial) simulation tool, to teach 
programming details.  In this approach, students will defi-
nitely acquire extensive hands-on knowledge of such a tool 
and most likely the capability of modeling complex prob-
lems under strict deadlines.  However, it is fraught with se-
rious dangers, including failure to verify and validate the 
model, misinterpretation of results, too much detail in the 
model and last but not least GIGO. 

An important question facing this panel is how to mix 
and match the two approaches above to the goals of the 
course and the capabilities of the attending students. Fur-
thermore, can such mixtures be spiced with practices such as 
having groups of students modeling real-life systems involv-
ing data collection and validation, and mentored by indi-
viduals working in the corresponding application domains.   

This panel consists of educators with many years of 
experience in preaching, teaching and practicing simula-
tion.  It is expected that the panel discussion will touch 
upon many relevant and controversial issues.  Below are 
the position statements of the member panelists. 
158
2 PANEL MEMBERS’ STATEMENTS 

2.1 Undergraduates Should Not Take a 
Course in Simulation (B. L. Nelson) 

This is my thesis: Undergraduate industrial engineers and 
management scientists should not take a course in com-
puter simulation.  Here is a quick quiz that illustrates why: 
Is the following a “simulation problem?” 
 

• How many parking spaces should there be in the 
parking garage of a large shopping mall? 

 
I claim that the answer depends on a number of factors be-
yond the problem statement itself, including: 
 

• How quickly do we need an answer? 
• Are there any data available? 
• What performance measures will we use to evalu-

ate a solution? 
• How accurate do we need to be (or, stated differ-

ently, how will the answer be used)? 
 

For instance, suppose that the mall has yet to be built, so 
there are no data available on how much customer traffic the 
mall will generate beyond the marketing department’s esti-
mates. However, studies at similar malls have given us some 
idea how long people spend shopping. The mall developers 
tell us they want the chance that there are not enough spaces 
for everyone to be quite small, but the type of structure we 
have in mind comes in floors of 200 spaces, so whatever our 
answer is it will be in multiples of 200. Finally, we need the 
estimate quickly to roll it into our financing proposal.  
 In this situation, a relatively simple M/G/∞ queueing 
model may be adequate for the rough-cut analysis needed 
to size the structure. 
 On the other hand, suppose we are replacing surface 
parking at an existing mall with a parking garage. Since 
our traffic volume is heavy, we are worried about how long 
it will take for drivers to find open spaces in a large park-
ing structure, not just whether there are enough spaces. 
Therefore, we want to consider different designs for the fa-
cility as well as different sizes. Maybe we also want to lo-
cate spaces especially for patrons with disabilities, with 
compact cars, etc. We have lots of data on this mall and 
others we own.  Further, since we have surface parking 
now, we are willing to invest substantial time into getting 
this garage design right.  
 In this case, simulation might be the only tool capable 
of the analysis we desire. 
 Clearly the same problem may require very different so-
lutions, and this is obvious to most of us.  Unfortunately, 
when students take distinct course in stochastic processes 
(analytical or numerical solution of certain well-studied 
classes of models) and simulation, their natural inclination is 
1
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to try to map problems one-to-one with solutions. They end 
up with a thought process something like this: Parking garage 
problems require Markovian queuing models, but evaluating 
the use of cross-trained workers requires simulation, because 
we solved a parking garage problem in the queueing class, 
and a cross-training problem in the simulation class. 
 I am a proponent of generic courses in stochastic 
modeling and analysis, in which mathematical, numerical 
and simulation solution techniques all appear. I have been 
teaching a two-quarter (20-week) sequence in this way for 
over six years, and I am convinced that there are at two 
features that are critical to making it work: 
 

1. For every stochastic modeling problem, start 
working on it by thinking about how to simulate 
it. Simulation (inputs, events, states, etc.) provides 
the formulation language, much like the decision-
variable, objective-function and constraint con-
cepts do for optimization. Simulation is also intui-
tive. We then we teach students to recognize those 
situations in which a mathematical or numerical 
solution is possible or appropriate. 

2. When a large-scale simulation is required, force 
students to do a rough-cut model prior to simulat-
ing. (I am pretty sure I stole this idea from Lee 
Schruben.) Sometimes the rough-cut model is just 
plugging in mean values for all the stochastic 
stuff, or deriving best-case and worst-case 
bounds.  More often it involves using some sort of 
simplified model, such as an M/M-type queue.  
This allows students to understand that both ap-
proaches apply to the same types of problems. 
They also see that the numbers that come out of 
the simulation typically do not match the rough-
cut model---demonstrating that there is a reason 
for simulation---but they also see that the best so-
lution, as determined by the rough-cut model, is 
often identical to the one indicated by the far more 
detailed simulation.   

 

2.2 Teaching Modeling and 
Analysis Together (W. D. Kelton) 

When teaching a simulation course, there is usually the is-
sue of how to divide the available time between modeling 
topics and analysis topics.  Seldom is there time to do a 
complete job with both in a single course. 

By “modeling topics” I mean how to construct a model 
of a static or dynamic system, issues about level of detail, 
and how strong the simplifying assumptions can be before 
model validity starts to come under question.  Model valida-
tion and verification are also taught under this heading as 
well.  Of course, there is the issue as well of whether to use a 
high-level modeling package or a lower-level programming 
language (but I won’t get into this debate). 
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By “analysis topics” I mean the methodological un-
derpinnings of simulation, which usually pertain to prob-
ability and statistics.  These subjects include specifying in-
put distributions and processes, methods for generating 
random numbers and processes, statistical analysis of out-
put, variance reduction, gradient estimation, experimental 
design, and perhaps optimizing simulation models. 

Now it’s of course impossible to imagine a first course 
in simulation (at either the undergraduate or beginning-
graduate level) not to cover modeling topics.  The issue, 
rather, is how much of the analysis topics should be covered. 

Sometimes the answer is none.  This is, in my opinion, 
unfortunate since students walk away thinking this is all 
about computer programming with some piece of software 
or in some language.  They may be able to build nice mod-
els, but they won’t know what to do with them.  And they 
won’t be able to react to challenging or difficult problems 
if they’ve had no exposure to the underpinnings. 

The “none” answer is not only unfortunate, but also 
unnecessary.  In fact, I feel that it is possible and helpful to 
teach at least the basics of analysis alongside the modeling 
in an integrated fashion, and not treat analysis as a separate 
set of topics included (maybe) at the end of the course.  
This can be done almost from the very beginning, even if 
one chooses, as I do, to start the first course with a simula-
tion done “by hand.”  It can be redone a couple of times to 
illustrate the variance in the results, or at least described 
without taking the class time to do several by hand.  Then 
when we move to computer-based simulations, it is easy to 
replicate across different configurations and start doing 
valid two-sample or paired statistical tests.  As richer mod-
els are developed, the more advanced analysis topics like 
variance reduction, gradient estimation, and optimization 
can be introduced in the context of these richer models. 

I like to call this method of presentation “tutorial style,” 
and my ideal model for it is AMPL: A Modeling Language 
for Mathematical Programming by Fourer, Gay, and Ker-
nighan (1999).  Though not on simulation, this book skill-
fully crafts a sequence of increasingly complex examples 
that simultaneously teach how to model with the AMPL sys-
tem, how to interpret the results, and to a large extent what’s 
available in AMPL.  I feel that we should be able to do very 
much the same kind of thing when teaching simulation.  

2.3 How Not to Teach a  
Simulation Course (L. W. Schruben) 

“I wish I didn’t know now what I didn’t know then” – 
Bob Seger. 

I am going to share some bad ideas I have had for teaching 
simulation courses. These are real bad ideas (also really bad) 
– I have tested them all in my classes, sometimes repeatedly. 
Most of these ideas will take little effort to avoid. Avoiding 
others may require abandoning some conventional teaching 
methods and traditional simulation course content.  
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 I have taught simulation for 26 years at several 
universities, to students with widely different backgrounds 
– from Freshmen to Advanced PhDs. I started teaching 
simulation at the University of Florida where I taught Sim-
script to graduate students (on Television) and GPSS to a 
class of IE juniors - using the original notes from Tom 
Schriber’s now-famous text. The following year, I moved 
to Cornell where, for decades, I taught a very large class 
(up to 170 students) of seniors and Master’s students along 
with an occasional PhD research course. Once, I tried to 
teach SLAM to Freshman (a bad idea). For the past few 
years at Berkeley, I have a taught a Master’s course, a cas-
ual PhD research seminar, and a required junior course. 

I am currently happy with about 90% of the content in 
my courses. I think that is about as well as one can do if 
they care about teaching.  

The objectives of my courses are to teach students how 
to ask worthwhile questions and to recognize legitimate an-
swers. I want them to become more demanding consumers 
of simulation technology - and of knowledge in general. 
Simulation is the means, neither the topic or context. I ex-
pect my students gain a comfortable understanding of uncer-
tainty and how to model it. I want them to learn how to cre-
ate and use dynamic models to make better decisions – and 
how such models might mislead them. I also hope they find 
building and experimenting with discrete event simulations 
easy, fun and useful, but not mysterious! In short, I take a 
“consumer education” approach to teaching simulation. I 
should warn you that this can backfire: several of my former 
students have later become my consulting clients. 

My elements-of-a-simulation-study flow chart also in-
cludes a step called ‘identify prejudices’. I think it is im-
portant for my students to realize that political agendas can 
have a greater influence on decisions than the very best 
simulation studies. (See Figure 1.) 

Some of my particularly bad ideas follow. If you want 
to teach the worst simulation course I can imagine just fol-
low the advice that appears in boldface type.  

Homework: To try and keep my students busy, I used 
to give students extended homework assignments span-
ning several weeks. This doesn’t work: most students put 
off doing homework as long as possible, then try to grind it 
out the night before it is due. I did it; my students do it; so 
did you. I once thought monster homework sets were a 
swell idea. I stopped doing this after seeing an informal 
teaching evaluation gouged into the men’s room wall. This 
was neither constructive or complimentary, but he spelled 
my name correctly (It’s probably still there)2.  

I give students complex problems, but keep them small 
scale. There is no way that I can replicate the magnitude of a 
significant, industrial-strength simulation study like those I 
have seen in my consulting work. I tell students about these 
projects, but give them the simplest exercises that effectively 
illustrate the point. I also tell them why I am asking them to 
do something, this is more for my benefit then theirs. Justi-
fying a homework is sometimes harder than writing it. 
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I require my students to explain clearly, concisely, and 
neatly why they did something, not just what they did and 
how. I also ask them to try and make it interesting reading 
and try to sell their ideas to us.  

Another way I have tried to keep my class busy is to in-
sist that students collect ‘Real World’ data. Lately, rather 
than have students collect real data, I ask them to tell me 
specifically what data they would collect, how they would 
collect it (with data collection forms), what this might cost in 
time and money, and how they would use the data. This is 
not the same as doing it; on the other hand, students can be 
very creative in inventing data. Furthermore, I think data is 
highly rated (more later). As seen in Figure 1, I emphasize 
not collecting data until one has a pretty good idea what data 
is necessary after doing some sensitivity analysis. 
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Figure 1: Concurrent Steps in Simulation Project1 

 
Incidentally, I also do not require my students’ com-

puter codes to be error free – or even running. How they 
design their model is more interesting to me then how they 
code it. I believe that the best a simulation program can 
achieve is ‘no known errors’.  

I have found that no matter how easy the homework 
assignment, the more persuasive students will try to get me 
or my Teaching Assistants to do the work for them – some 
succeed (future managers?). Which leads me to a closely 
related bad idea. Hold extended office hours the day be-
fore a big assignment is due. My posted office hours 
read: ‘2:00pm until the queue is empty’. If an assignment 
is due the next day, my queue might not be empty until the 
next day when they follow me to lecture2. 

Motivating Students: I once received, and followed, 
the following bad advice from a senior colleague: don’t 
waste class time motivating students. My undergraduate 
courses have always been required for graduation. This is 
an automatic strike against motivation for most students 
and the only motivation for some. My courses also take a 
lot of work, some hard analytical thinking, use mathemat-
ics and statistics, and involve some serious computation. 
(As if I needed another strike.) Still, I have managed to get 
consistently high course evaluations and have even won a 
3
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few teaching awards. I think this is largely because I spend 
a great deal of thought on how to motivate each concept 
and place methodology in a problem- solving context.  

I once shamelessly used fancy animations from soft-
ware vendors to motivate my students. Now, I don’t like to 
spend any more than part of a single lecture on animation, 
and that is mostly cautionary. My consulting practice has 
taught me that animation is an analytically worthless activ-
ity that is often a waste of study resources (but it is fun!). 
Maybe animations were more important before Nintendo, 
but today’s better managers want quantitative results.  

My Berkeley undergraduates have had two years of 
calculus, physics, chemistry, thermodynamics, mechanics 
or electronics; they are eager to learn something they can 
‘do’. I discovered the best motivator for simulation stu-
dents is to point out that this is probably their first college 
course about something someone might actually pay them 
to do. The summer after taking my class, a student once 
was offered more money than an average Stanford MBA to 
do simulation studies.2 That gets a Berkeley student’s at-
tention – think of the tuition savings!  

Peer pressure is also a terrific motivator. Last year, my 
students did their simulation projects over the internet3. On 
the web, they can run and evaluate their classmates’ simu-
lations. I am keeping the really strong projects to motivate 
next years’ class – did I say motivate? maybe intimidate is 
a better word. 

While I am on motivation: I use a grading method that 
keeps kids who flunk the midterm exam from giving up. I 
use multiple weighting schemes for exams, projects, and 
homework. One of the schemes assigns effectively no 
weight to the midterm exam. After the course is over, stu-
dents retrospectively get the weighting that gives them 
their highest grade – thank goodness for spreadsheet mac-
ros. Caution: if you try this, make sure that all weightings 
include the final exam; if not, the better students may all 
cut it giving some slackers an easy A in the course2. 

Attendance: Most students and some faculty feel that 
lecture attendance should be optional. I have a twist on 
an old trick that assures nearly perfect class attendance. I 
give random in-class quizzes. Wait! This is key: I no 
longer call these quizzes, I call them “advanced placement 
(AP)” questions. A student’s AP score is added to their 
score on the next exam. This takes pressure off the exams. 
In fact, students usually request more ‘pop quizzes’ as ex-
ams approach. This also tells me if they understand a point 
I tried to make, before the exam. That reminds me: I once 
wrote a “million point exam” to try to get students to stop 
hounding me for partial credit – ten thousand points here, 
ten thousand points there.  

Fairness: This is a big deal to me. The worst advice I 
can give here is to base grades, at least in part, on sub-
jective measures like “class participation”.  Of course, to 
treat students fairly is easy, just do it. More important, and 
harder, is to appear to be fair. Occasionally I have had to 
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explain the difference between unfairness and irrationality. 
Students sometimes accused me of the former when they 
meant the latter, of which I have been guilty. I let students 
pick ‘secret course IDs’. They put these and not their 
names on all their work. These IDs are useful for posting 
grades and handing back assignments. But, I primarily use 
them to curve the course without looking at students’ 
names – and I do this with my TAs as witnesses. After 
curving the course, we look at the names below each grade. 
If a student put in an exceptional effort, we sometimes 
lower the line – but preserve the ordering. Once my TA ar-
gued successfully that a student had worked hard enough 
for an A, he later married her2.    Whoa. 

Cheating: you could rely on the honor system. I be-
lieve most people are honest; however, there are always a 
few students who would rather spend 10 hours working a 
scam then 1 hour studying. A single successful cheater can 
drain their classmate’s morale and ruin a course. I have tried 
everything I can think of (shuffled multiple choice exams, a 
bounty, common random numbers…)  I have concluded that 
prevention is the only approach to cheating that can work. 
Once you catch a student cheating, it is too late.  

Teaching Assistants: maybe the worst thing you can 
do here is ignore the opinions of your teaching assis-
tants. At Cornell my TAs almost always won the out-
standing TA award (several have won it twice and one won 
it three years straight)2. Since moving to Berkeley, both my 
TAs have also won TA awards. Some if this is probably a 
manifestation of the “good cop/ bad cop” effect. My TAs 
are important, and not just for their work. I depend on their 
judgment and count on them to tell me when something is 
not working – this is actually how I found out that many of 
the ideas presented here were such losers. I also adjust the 
course content to the background and skills of my TAs. If a 
TA knows a particular simulation language, I invite them 
to present it to the class. I always require and pay TAs to 
attend my lectures. If I have strong TAs, I try something 
new; if not, I back off a bit.  

Relationships to other courses: A bad idea here is to 
present simulation as an alternative to analytical model-
ing. As seen in Figure 1, I feel it is important to anticipate 
system behavior with analytical models before starting cod-
ing. Depending on a student’s background, this might be in 
the form of an analytical queueing model, or maybe only a 
rough-cut qualitative (unscaled) response surface drawing. 
This has the side effect of forcing abstraction to suppress the 
natural tendency to put too much detail in a simulation 
model. I always introduce basic queueing models and con-
cepts and present Little’s law from a variety of different per-
spectives. I am not sure a better name for my course might 
be applied stochastic modeling. Probably the most mislead-
ing thing you can do is tell students that simulation is the 
tool of ‘last resort.’ Your credibility will be gone after they 
graduate and find it is often the tool of choice. 
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Software: I think probably the worst thing one can do is 

focus your course around a commercial software pack-
age. When I am asked: ‘what language do you teach in your 
simulation course?’ I respond: ‘All of them’. It’s true. The 
success of my students in using a wide variety of commer-
cial simulation packages is solid evidence that this works. 

Teaching a so-called, language-based simulation course 
has no place in a University. For better or worse, most simu-
lation software is changed regularly, making such a course 
obsolete. It is like teaching a class in drivers’ education, after 
which students can only drive a ‘94 Oldsmobile Cutlass. 
Simulation education, as opposed to training, should teach 
what goes on “under the hood” where all simulation pack-
ages have fundamentally the same engines.  Commercial 
simulation software training is best left to the short courses 
offered by the software vendors who have developed and 
sell the product – I have helped teach such courses and aca-
demia can’t compete.  

Nevertheless, I try to introduce one or two commercial 
simulation packages to my students. This is primarily to 
make them better consumers. I emphasize language simi-
larities rather than their differences. My students get an 
overview of the language, a demonstration and usually an 
exercise to do. For the homework I ask them to model a 
highly congested system; they are surprised how quickly 
most simulation software packages come to a virtual stand-
still when simulating a simple queue with heavy traffic! 
(See Figure 2.) 

There are several programs that are specifically  de-
signed for teaching the fundamentals of simulation. I use 
one to teach all three classical modeling world-views. The 
software can be learned in a few minutes and can be used 
to model any discrete or continuous dynamic system. What 
I did not like about it, I changed. 

Modeling uncertainty: I used to spend much of the 
course on input distribution estimation and random 
variate generation. This material contributes nearly half the 
weight of several popular simulation textbooks and I once 
thought it was important. Unless changing the system has no 
effect on its environment, then fitting distributions to real-
world data for modeling exogenous simulation input is non-
sense. If a system has no effect on its environment, why 
study it? If one were not thinking about changing a system, 
they probably should not be simulating it in the first place. If 
we include distribution-fitting software in a simulation 
course, we show students how easy it is to remove most of 
the useful information from a data set - such as trends, de-
pendencies, and cycles. I am continually amazed in my con-
sulting work to find people who collect a few weeks’ worth 
of system data, fit it to the wrong scalar iid distributions, and 
then simulated a different system for years of operation to 
get narrow confidence intervals. The likelihood that their 
confidence intervals will actually include the performance 
measures they are studying gets worse the more they run 
their model. I am glad these were not my students.  
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Figure 2: Run Times for a Simple Queue 
Simulation Using Different Methodologies4 

 
How to model uncertainty? I tell my undergraduate stu-

dents to start with a Beta distribution and then show them 
how they might create dependencies in and among the input 
processes and tell them try a fractional factorial design of dis-
tribution shapes. (I also tell them to never use an exponential 
distribution in an actual simulation study – who waits in line 
for three months anyway? – only someone memoryless.) 

I do introduce basic algorithms for generating pseudo-
random numbers and the four fundamental techniques for 
generating scalar variates identified by Bruce Schmeiser. I 
regard these as cultural, useful mainly as building blocks 
for modeling dependent processes.  

Lest I give the wrong impression: understanding un-
certainty is a major goal in my course. I use the time I save 
by not going through the litany of variate generation algo-
rithms to emphasize different approaches to sensitivity 
analysis. I want my students to ask how a system would 
behave if the inputs were shifted, skewed, increasing, ac-
celerating, cycling, less variable, more dependent, con-
stant, chaotic… On every exam I give, an answer to a 
question is to perform a sensitivity analysis – and I tell stu-
dents this in advance (Remarkably, some still manage to 
get it wrong – maybe they thought it was a trick?)  

Finally, I think the point about teaching students how to 
ask better questions and recognize valid answers is worth re-
iterating.  Much of Engineering education focuses on teach-
ing students how to answer questions; little on how to ask 
good questions, and rarely to question the questions. (Ironi-
cally, university professors are usually pretty good at this - 
particularly when refereeing each other’s research papers5.)  

 
1  Contrast this with similar figures in most popular 

simulation textbooks.  
2    All anecdotes are unfortunately true. 
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3  Arlen Khodadadi wrote an excellent set of tutorials on 

how to do this. 
4  From Theresa Roeder. 
5  Research support from NSF, SRC, and ISMT has made 

a significant difference in how I teach my simulation 
courses. 

2.4 Some Thoughts on Teaching  
Monte Carlo Simulation (B. W. Schmeiser) 

Rather than focusing upon a single issue, I comment 
briefly on various aspects of teaching Monte Carlo (that is, 
stochastic-model) simulation.  My comments, like the 
other panel members, are supported (and tainted) by being 
old enough to have begun my career in an era in which 
“doing” mathematical modeling (whether discrete-event 
simulation, system dynamics, probability, statistical, or op-
timization) required an understanding of first principles, 
including computer programming (for most of us, on 
punch cards).  I also am similar to the other panel members 
in that my professional life bounces among trying to ex-
tend the research frontier to working with practitioners (as 
a consultant) to teaching students ranging from young col-
lege undergraduates to Ph.D. students.  In addition, our ca-
reers have centered on stochastic models analyzed via digi-
tal-computer simulation.  Our approaches, styles, interests, 
and abilities to teach simulation courses (at various levels) 
might have little relevance to the (common) situation 
where a faculty member is teaching simulation only be-
cause someone has to do it. Nevertheless, here are some 
thoughts, which I have organized into six points. 

Point 1.  University classes should focus on topics that 
are both timeless and difficult to learn in practice.  Learn-
ing new concepts is difficult for a practitioner, who typi-
cally lacks time and guidance.  A practitioner will learn, 
almost automatically, many of the practicalities of the real 
world.  Real-world data collection and extended projects 
are inefficient use of a student’s time.  In an engineering 
curriculum, some exposure to the real world is traditional, 
at least via a senior design course.  Much more efficient 
and useful is a sequence of relevant summer jobs.  The 
other simulation practicality is the need to know a relevant 
simulation language, but this need is best met by the rele-
vant company’s one-week short course.  

Point 2.  Courses (in general) should integrate topics. 
Simulation courses, at many levels, can combine modeling 
constructs such as system dynamics, discrete-event, prob-
ability, statistics, and optimization, as well as mathemati-
cal, numerical, and Monte Carlo analysis methods.  Course 
evaluations from my introductory dual-level “simulation” 
course regularly include comments that the learning of 
computer programming, probability, and statistics was a 
non-negligible course benefit.  Using Microsoft Excel, I 
use simple Monte Carlo sampling in my sophomore-level 
introduction to probability and statistics. Event-probability 
problems are solved both mathematically and with Monte 
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Carlo, foreshadowing the inferential statistical thinking 
that underlies the second probability and statistics course.  
I mention to the students, but don’t emphasize, that the 
same thinking underlies the dynamic-simulation analysis 
that the IE students see later in their course work.  

Point 3.  The particular combination of modeling and 
analysis methods should depend upon the course’s context.  
Course contexts differ dramatically: undergraduate/ gradu-
ate; stand-alone/sequence; management/technical.  Purdue 
IE has the luxury of two parallel dual-level (under-
grad/graduate) introductions to simulation, IE 580 (which 
is language based) and IE 581 (which is concepts based), 
as well as IE 680, a graduate-level research-frontier course.  
In IE 581, which I discuss more below, I tell the students 
that they may stop me at any time to ask me to explain why 
a course concept is relevant to practice; in IE 680 I make 
no such claim.  

Point 4.  To the extent allowed by budgets, courses 
should be segmented by student backgrounds and goals. 
With a homogeneous student background and goal, deter-
mining a good course structure is easy. Heterogeneous 
backgrounds and goals are far more challenging.  This past 
spring, for example, IE 581 contained undergraduate in-
dustrial engineering students, Ph.D. students from mathe-
matics and statistics, as well as M.S. students from depart-
ments such as forestry, construction management, traffic 
systems, management, and industrial engineering. Several 
of the students took the class because it is required for Pur-
due’s Computational Finance certificate.  Few of the stu-
dents had extensive background in computer programming, 
probability, and statistics, but most had a solid background 
in one or two of these three topics.)  Far too often the in-
structor with heterogeneous students faces the uncomfort-
able situation of boring part of the class while “blowing 
away” the rest.  Law and Kelton’s SimLib (see Law and 
Kelton (2000)) can be a challenge for a mathematics Ph.D. 
student while being straightforward for an IE undergradu-
ate student; a few days later a discussion of random vectors 
(with arbitrary marginal distributions and dependency 
structure) lights up an entirely different set of faces.  For-
tunately, some topics work well for most students, for ex-
ample, a discussion of how simulation analysis can fail.   

Point 5.  Integrate simulation topics within a course. 
The structure of IE 581 is based on increasing model com-
plexity rather than on a sequence of topics.  Topics such as 
U(0,1) random numbers, random-variate generation, input 
modeling, output analysis, and variance reduction arise 
multiple times.  Dynamic models (those with a state that 
evolves over time), arise only during the last few weeks of 
the fifteen-week course.  Only three models are used 
throughout the semester, although with some variations.  
The first model, which can serve for three or four weeks of 
the course, has no time component, is analytically solvable, 
and has only indicator variables as output.  Typical would 
be a four-component reliability network, at first with inde-
6
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pendent components and later with dependent components.  
This simple model motivates the need for random numbers 
(with a discussion of what that means on a deterministic 
computer), the need to convert those random numbers into 
coin flips, the need for standard-error calculations, the ef-
fect of statistical dependencies within a model, a simple 
intuitive variance reduction idea or two, the ease of doing 
some Monte Carlo simulations in a spreadsheet, the con-
ceptual point that simulation’s natural talent is high-
dimensional integration, and a sense that analysis can be 
based on a combination of methods.  The second model is 
more complex, requiring continuous random variables, 
logic complicated enough that a spreadsheet is unwieldy, 
and non-binary output data. Typical would be a muffler-
warranty simulation, in which distributions must be speci-
fied for car lifetime, muffler lifetimes, and muffler costs.  
Such a model motivates the need to move beyond a spread-
sheet, the need for some random-variate-generation ideas, 
the need for standard-error estimation for non-binary data, 
and the effect of another one or two variance reduction 
ideas.  The course’s third model requires discrete-event 
modeling.  Typical would be a cleaning-and-patching sta-
tion, two servers in tandem. New issues include the need 
for maintaining system state, the concept of event, time-
based statistics, transient versus steady-state behavior, a 
sense of the problem of autocorrelation, the effect of non-
stationary behavior (via a non-homogeneous arrival proc-
ess), and the general modeling power of the simple next-
event framework (as in GASP II and SimLib).  

Point 6.  Use an appropriate textbook as background 
reference.  Such a reference includes far more information 
than can be included in the class.  I spend little time on top-
ics such as the structure of simulation projects or model 
validation; students can easily read the textbook author’s 
ideas, which will differ from other people’s ideas and for 
which simulation practitioners (and modelers in general) 
need to create their own philosophies.  A good reference 
also helps the student later when he or she comes across a 
particular need, such as properties of various statistical dis-
tributions or ideas for model validation. 

2.5 A Key Topic:  How Simulation 
Software Works (T. J. Schriber) 

Some other members of this panel have addressed the trade-
offs involved and balance needed in teaching the elements of 
both modeling and analysis in a first course (which unfortu-
nately is often also the only course) in discrete-event simula-
tion. It’s not possible to provide a “master’s degree in simu-
lation” in a first course, and so the many important topics 
falling under the umbrella of simulation have to compete 
with each other for some degree of inclusion in the first 
course. Each of us (who teaches simulation) has his or her 
own take on how the candidate topics rank in relative impor-
tance. For example, some might think that random number 
generators are not of enough relative importance in a first 
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course to give more than maybe 20 or 30 minutes of airtime. 
Others might think that the logical foundations of discrete-
event simulation software are not of enough relative impor-
tance to be included in a meaningful way (or even at all) in a 
first course. I myself am a believer in giving students the 
substantial intellectual satisfaction and practical benefits 
that result from bringing them to the point of truly 
understanding how discrete-event simulation software works 
(both in generic terms, and also in terms of the specific 
software they are using). I would like to argue here for 
meaningful inclusion of that topic in a first course. 
 In practice, a “black box” approach often seems to be 
taken in teaching and learning a discrete-event simulation 
software package. The external characteristics of the soft-
ware are studied (“arrange the blocks or statements in this 
sequence and, voila, you have a model for three serial sta-
tions in a production line”; or “to model line switching in a 
multiple-line, multiple-server situation, arrange the blocks 
or statements this way”), but the logic on which the soft-
ware is based is ignored or is touched on only briefly. 
Choices made on the part of the language designer (not the 
model designer) in implementation of the foundation might 
not be studied at all and related to step-by-step model exe-
cution. The modeler therefore might not be able to think 
things through when faced with needs like these:  
 

• developing good (or even correct) approaches for 
modeling complex situations;  

• using interactive tools (provided as part of the 
software) to come to a rapid understanding of er-
ror conditions arising during model development; 

• using interactive tools to verify that complex sys-
tem logic has been captured correctly in a model. 

 
 How feasible is it to include such material in a first 
course? In my experience, it is eminently feasible. A ge-
neric (language independent) model for the logical founda-
tions of discrete-event simulation can be introduced and 
discussed in one (50-minute) class. In another single class, 
a fundamental subset of the corresponding step-by-step 
particulars (for the software being used in the course) can 
be introduced, and use of the software’s interactive tools to 
support step-by-step tracing of execution of several fun-
damental models can be demonstrated (via use of an in-
class computer and projection of the computer screen). Ex-
ercises stimulating additional learning on the part of the 
students can then be assigned. The fundamental under-
standing of what the software is doing can then be incre-
mentally refined and exercised as additional features of the 
software are introduced. 
 The benefit of this is that students come to understand 
what happens at a step-by-step level when a discrete-event 
simulation is performed. This puts them in a powerful posi-
tion to be intelligent and aggressive users of the software. 
Having learned only a subset of the software, this also brings 
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them to the point where they can predict what additional ca-
pabilities the software probably offers and how those capa-
bilities might be supported at an underlying level (e.g., how 
does the language likely support features like these: model-
ing resource unavailability to reflect breakdowns, scheduled 
maintenance, or shift workers; modeling pre-emptive use of 
resources; and modeling inter-entity communication?) 
 Of course, the inclusion of any topic (even at only an 
introductory level) in a course does take time, with the 
possible (and maybe inevitable) effect of crowding out 
other topics. In terms of the discussion of software, the ex-
tent of coverage of a simulation package can be scaled 
back to free up time to include the “how simulation soft-
ware works” topic. It is arguably better for a student to be 
familiar with, say, only 40% of a language and understand 
how it works than to be familiar with 75% of a language 
but not understand how it works.  
 Those who might want to delve further into “how 
simulation software works” are referred to Schriber and 
Brunner (1998) and Schriber and Brunner (2000). The phi-
losophy and particulars of teaching “how it works” is given 
in Schriber (1991) for the case of GPSS/H. 

2.6 Modeling, Programming, 
and Analysis (P. L’Ecuyer) 

2.6.1 Modeling vs. Programming 

I will use the same definitions as David Kelton for model-
ing and analysis, except that I put the specification of input 
distributions and processes in modeling instead of in analy-
sis. Stochastic modeling thus involves probability and sta-
tistics. I also want to emphasize the distinction between 
modeling and programming. People often refer to their 
simulation program as “the model”‘, which I believe is un-
fortunate and sometimes misleading. 
 A model of a system is a purely mathematical abstrac-
tion, usually with many simplifying assumptions about the 
system. Building an appropriate model, realistic enough for 
answering the questions of interest but otherwise as simple 
as possible, is the most important and difficult part of a 
simulation project. Once the model is clearly specified, pro-
gramming it is usually routine. Too often, however, assign-
ments in simulation courses and exercises in standard simu-
lation textbooks concentrate only (or mostly) on the 
programming aspects: The model is fully specified and the 
students are just asked to program it.  This is a bit like enter-
ing a 10 km race at the 9 km mark. And I must admit that I 
have often been one of the culprits as a teacher. Why?  
Maybe because it is easier to assign an exercise taken di-
rectly from the book than to come up with data from which a 
model is to be built.  Perhaps another reason is that appro-
priate tools for stochastic modeling are not always easily 
available to the students. Such tools involve the use of statis-
tics, which students often find rebarbative, but which I be-
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lieve is necessary especially in computer science depart-
ments such as mine. In my opinion, unless they are for 
computer science students, simulation courses should put 
more emphasis on how to build models than how to program 
them. This does not mean spending time collecting data on a 
real system, but rather starting from a small incompletely 
specified model, together with some data, perhaps with an 
open possibility of collecting more data, and learn about 
what to do from there. Students should come out of a simu-
lation course realizing that modeling is really the difficult 
and important part, and get at least a bit of intuition about 
appropriate ways of modeling uncertainty. For this, teaching 
material (both textbooks and software) that better supports 
the stochastic modeling activity would be welcome. 

2.6.2 What kind of Simulation Software to Use? 

Most of the attendance of the undergraduate simulation 
course in my department are computer science students, so it 
is natural that simulation programming remains an important 
topic (more than if I was in industrial engineering, say) and 
that some emphasis be put on the design and implementation 
of simulation software. Our graduate course in simulation, 
on the other hand, targets mostly students from operations 
research and computational finance, and is more oriented 
towards analysis and advanced topics, with very little em-
phasis on programming. For both courses, I find it important 
that the students have access to the internals (computer code) 
of the simulation software. Giving assignments that ask to 
add or modify facilities in the software (e.g., adding non-
uniform variate generators, adding statistical tools or even 
changing the event-list implementation, etc.) is a great way 
to teach how simulation software is built. This is one of the 
reasons why simulation courses in my department are taught 
with homemade simulation libraries, written in general pur-
pose simulation languages (currently Java and C). I never 
use commercial simulation languages or environments in my 
teaching and research. The use of graphical simulation envi-
ronments is low on my list of teaching priorities. It is not 
hard to write libraries or frameworks for discrete-event 
simulation, in widely used high-level languages such as Java 
or C++ for example, with the same powerful simulation 
tools that are offered in specialized simulation languages.  In 
my opinion, there is no need for distinct simulation pro-
gramming languages, not only for teaching, but in the indus-
try as well. Using a standard language has important advan-
tages: it removes the need to learn another programming 
language with its own syntax (this saves time), and it facili-
tates the use of the standard compilers, the software engi-
neering tools, and the rich software libraries that are avail-
able for this language (e.g., for optimization, statistics, 
computer graphics, etc.). By “standard”, I mean languages 
that are well supported over all kinds of operating systems. 
This excludes Visual Basic, for instance. High-level simula-
tion environments with graphical interfaces, such as those 
8
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currently on the market, could be adapted to fit on top of 
such frameworks.   

2.6.3 Analysis, etc. 

Analysis issues should be addressed at least to a certain ex-
tent in a first simulation course, with emphasis on principles 
and ideas rather than recipes. What are the important issues 
to address early? The students must certainly understand the 
philosophy behind the design of (pseudo)random number 
generators (RNGs). They should be given concrete examples 
of why not to trust the RNGs available in commercial soft-
ware, in general, and be provided with concrete alternatives. 
(See my tutorial paper on RNGs in these proceedings.) 
There is no need to cover theorems about the period lengths 
of LCGs, the spectral test, bad ideas such as the mid-square 
method, etc. Regarding non-uniform variate generation, one 
should explain the main ideas such as inversion, accep-
tance/rejection, etc., and give some examples. 
 For output analysis, concentrate on giving intuition 
about the noise in the simulation results due to all sources 
(including the model building). Show how to estimate it 
and to compute confidence intervals, while insisting that 
the normal approximation is not always appropriate for 
this. One can forget about steady-state analysis in a first 
course. Stochastic optimization via simulation is a very 
important topic in practice, but also very difficult to real-
ize. The students should be made aware of this. Finally, 
they should get some intuitive idea of efficiency improve-
ment, (e.g., using common random numbers, control vari-
ates, etc.) via concrete examples. 

2.7 The Interplay of Practice and Theory 
in Teaching Simulation (J. R. Wilson) 

The title of my contribution is a shorthand for general con-
siderations of balance in (a) the topics to be presented in a 
university course on system simulation; and (b) the relation-
ship of those topics to the broader curriculum in which they 
are found.  In my experience, especially at the undergraduate 
level, it is essential to maintain an effective balance between 
the hands-on, practice-oriented aspects of a simulation course 
and the theoretical principles of engineering, computer sci-
ence, and probability and statistics that underlie simulation.   
 In recent years, I have found that in all courses I teach 
(not just the simulation-related courses), it is critically im-
portant to motivate students strongly at the outset by show-
ing them the direct practical applications of the material that 
will be covered in the course.  For students in my under-
graduate simulation course, this involves a brief discussion 
of recent high-visibility senior design projects that involved 
simulation (and nearly all do) as well as recent consulting 
applications that involved the research of my master’s and 
doctoral students.  Showing the associated  animations is 
particularly effective in stimulating the students’ interest.  
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For graduate students, the corresponding motivation is to 
discuss my recent work with other professors’ graduate stu-
dents that involved the effective use of simulation modeling 
and analysis techniques in their research. 
 As a follow-up to the motivational pep talk, in my un-
dergraduate course I begin the hands-on portion of the course 
with a lab exercise that involves a manual simulation of a 
simple queueing system to introduce the students to the enti-
ties, attributes, events, lists, and resources that comprise a 
discrete-event stochastic simulation.  This is rapidly followed 
by construction of a simulation model of the same system us-
ing a commercial simulation package.  I try to weave all of 
the point-and-click bells and whistles into the discussion as 
unobtrusively as possible while emphasizing the correspon-
dence to the elements of the manual simulation. 
 In the presentations and labs that follow, I introduce an 
increasingly complex series of examples that (I hope) illus-
trate good modeling practice as well as the specific fea-
tures of the simulation package that enable the students to 
implement the simulation model, animate it, debug it, plan 
an experiment exercising it, and then finally to analyze the 
results that it generates.  Interspersed with the hands-on 
labs are presentations on input modeling and transient and 
steady-state output analysis that are much more “theoreti-
cal,” linking directly to previous courses on probability and 
statistics and applied stochastic models.  I have found that 
is it necessary to “remind” the students about a number of 
basic results from these courses that they have had little 
opportunity to use until they take the simulation course.  
To maintain the students’ motivation, I use the previous 
homeworks and labs as the vehicles for illustrating various 
issues that arise in input modeling and output analysis.  Al-
though I doubt that many students would say this is their 
favorite part of the course, on the whole the students find 
the alternation between practice and theory to be (tolera-
bly) interesting.  For many of the students, this is their first 
real opportunity to see the direct application of the various 
probability distributions, statistical methods, and queueing 
models that they learned earlier.  Thus the simulation 
course provides many students with an opportunity to inte-
grate and internalize many topics that are essential for 
practicing engineers, scientists, and managers. 
 In both my undergraduate and graduate courses, I as-
sign a term project that is designed to tie together much of 
the material covered in the course.  In the undergraduate 
course, the students are organized into teams, and they are 
responsible for arranging a project in a local industry.  If 
this activity is carefully monitored, it can give the students 
invaluable experience in conducting a successful simula-
tion study with an industrial client; and in some cases this 
project has formed the basis for a larger senior design pro-
ject or even a master’s project. 
 Although I find that in short order the students are able 
to point-and-click rings around me, they often seem to need 
an inordinate amount of help in (a) conceptualizing (model-
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ing) some aspects of the systems they encounter in their term 
projects; and (b) debugging the resulting simulation models.  
For this reason, I have made a concerted effort to provide in-
class examples and homework problems that require the stu-
dents to think more creatively about how to model systems 
that do not appear in the familiar form of a queueing net-
work model in which work pieces enter the network, move 
among the various work centers (nodes) in the network, then 
exit the system.  Moreover, I have augmented the in-class 
discussion and labs on model verification (debugging) in an 
effort to make the students more self-sufficient. 
 Turning to the issue of graduate courses in simulation, I 
want to make two main points.  The first is that I believe an 
introductory graduate course in simulation should include a 
detailed, comprehensive treatment of the basic principles of 
discrete-event stochastic simulation so that the students are 
well grounded in current techniques for random-number 
generation, (nonuniform) random-variate generation, and 
discrete-event programming as well as the usual material on 
input modeling and output analysis at the level of Law and 
Kelton (2000).  Depending on the mix of students in the 
course, their interests, and the available time, it is also highly 
desirable  to provide a comparable treatment of the basic 
principles of combined discrete-continuous simulation. 
 In moving beyond the topics in an introductory gradu-
ate-level simulation course, my second point is that there 
seems to be a significant gap in textbooks of an appropriate 
level and scope of coverage.  This gap should be closed.  
All these points will be elaborated in the oral presentation. 
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