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ABSTRACT usually requires simulationists have a good understanding
of the structure of the system being simulated.
We review two types of adaptive Monte Carlo methods for To overcome this difficulty, researchers have developed

rare event simulations. These methods are based on im- adaptive procedures for selecting effective importance sam-
portance sampling. The first approach selects importance pling distributions. This paper’s main purpose is to review
sampling distributions by minimizing the variance of im- these procedures. We reviewed two adaptive importance
portance sampling estimator. The second approach selectssampling methods in this paper. The first method selects
importance sampling distributions by minimizing the cross effective importance sampling distributions by minimizing
entropy to the optimal importance sampling distribution. the variance of importance sampling estimator. The second
We also review the basic concepts of importance sampling method selects effective importance sampling distributions
in the rare event simulation context. To make the basic by minimizing the cross entropy to the optimal importance
concepts concrete, we introduce these ideas via the studysampling distribution (see Section 3.2). For applications of

of rare events of M/M/1 queues. these methods in selecting effective importance sampling
distributions for queueing models and financial derivative
1 INTRODUCTION models, see the citations of Section 4.

The rest of the paper is organized as follows. In Section

Rare events, although are seldom happened as its name2, we describe a simple M/M/1 queue model and the rare
suggests, are important when they do happen in many ap- event of interest. In Section 3, we review the basic con-
plication areas. For example, the buffer overflow event is cepts of importance sampling via the study of rare events of
rare in a high quality telecommunication network, but is sig- M/M/1 queues. Several criteria of evaluating the goodness
nificant when it happens; A system break down event is rare of importance sampling estimators are given. In section
in a fault-tolerant computing system, but has a consequen- 4, we reviewed two types of adaptive importance sampling
tial effect when it happens. Therefore, accurate estimation methods for rare event simulations. The first method se-
of the probabilities of such rare events is important. How- lects importance sampling distributions by minimizing the
ever, if the probabilities of rare events are really small, variance of importance sampling estimator. The second
estimation of these probabilities is often computationally one selects importance sampling distributions by minimiz-
intractable when studied using conventional Monte Carlo ing the cross entropy to the optimal importance sampling
simulation. Therefore, powerful efficiency improvement distribution. Finally, the paper is summarized in Section 5.
techniques (see, e.g. (Glynn (1994)) and (Bratley, Fox, and This section remarks some properties of these two types of
Schrage (1987))) are needed. The most suitable techniquemethods.
for rare event simulations is importance sampling (see, e.g.
Hammersley and Handscomb (1965), and we will review 2 A SIMPLE RARE EVENT
the basic concepts in Section 3.) When applied appropri- SIMULATION PROBLEM
ately, importance sampling can improve the efficiency many
orders of magnitude. Unfortunately, it is not a simple task Letus consider a stable M/M/1 queue with arrival rate 1,
to apply importance sampling appropriately on rare event service rate. > 1, and the buffer limit of the systei&i > 1,
simulations. The main difficulty lies in the selection of an see Figure 1. LeK (r) be the number of customers in the
effective importance sampling distribution. The selection system attime. Then,X = (X(¢) : t > 0) is a continuous

time Markov chain with state space = {0,1,2,... K}.
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Suppose thatX(0) = 1 and we are interested in using
importance sampling to estimate

vk = P(X(T) = K), @)

where
T=inf{r>0:X@ =0o0rX(t) =K}

It is well known thatX is an irreducible, positive recurrent
Markov chain andT is a stopping time, also known as
Markov time (see p. 255 & p. 318 of Karlin and Taylor
(1975)).

@ D) - P ®

Figure 1: Transition Diagram of the M/M/1 Queue Example

If K is large, thenyx is a small number. Thus,
estimatingyx in (1) is a rare event simulation problem.

For this simple problem, the analytical solution fg¢
is known. In particular,

(2)

Of course with a known analytical result there is no need
to simulate. We just use this problem as a vehicle for the
basic ideas to follow. Throughout this paper, the concepts
of importance sampling and adaptive importance sampling
methods will be introduced via this simple problem.

3 THE BASIC CONCEPTS OF
IMPORTANCE SAMPLING

3.1 Importance Sampling

Since X is an irreducible, positive recurrent chain afid

is a stopping time, it is well known thal ({w : T (w) <
oo}) = 1. Thus, without loss of generality, we can choose
Q = {w : T(w) < oo} being the sample space. Lgt-)
denote the (original) density function af given X (0) = 1
and let

A={w: X(T ) =K.

Then, we can represepk as
[ 1@e Mfio = £t
where () is the indicator function.

To estimateyg via simulation, the direct approach
would be to generaten independent sample paths,
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w1, ..., w,, from the probability density functiorf (-) and
form the estimator

1}’1
VK = — I c A).
VK n; (0 € A)

By the central limit theorem,

VnPx —yvk) = Vyk(1—yk)N(O, 1),

asn — oo, whereN (0, 1) denotes a normal random variable
with mean 0 and variance 1. Thus, to construct a 95%
confidence interval fopx with relative half-length of 1%,
we need sample size~ 1/(0.01%) x 1.96% x (1—yx) /v« .
Therefore, ifyx = 1079, thenn ~ 3.84 x 10'3. This
demonstrates the main problem of rare event simulations.

Let g(-) be a density function such that € A and
f(w) > 0 implies g(w) > 0. Then we have another
representation fopx:

= [

_ [ I € AL 14(@)g(w)dw
= Eg[I(A)Ly,],

I(we A)Mg(a))da)
g()

®3)

whereL . (w) = f(w)/g(w) is called the likelihood ratio
and E, (-) denotes the expectation undgf).

Identity (3) suggests an alternative estimation scheme:
generaten samplesws, ..., w,, from g(-). By (3),

1 n
=) Lyg@ol (@ € A)
k=1

(4)

YKg

is an unbiased estimate gf . This alternative estimation
scheme is calledmportance sampling To apply impor-
tance sampling to more general stochastic systems including
discrete-time Markov chains (DTMC's), continuous-time
Markov chains (CTMC's), and generalized semi-Markov
processes (a mathematical formalization of discrete-event
simulations), consult Glynn and Iglehart (1989).

Before proceeding to next subsection, let us derive the
explicit formula of the likelihood ratio for our M/M/1 queue
example. A typical sample path of X is

((Xo0, ho), (X1, h1), ..., (Xn-1,hn-1), XN)

whereN is the number of jumps before the stochastic process
X hits 0 or K, Xo, X1, ---, Xy Is the sequence of states
of the embedded discrete time Markov chain, apds the
holding time in stateX, forn =0, 1,..., N—1. Thus, for

the probability density functiorf (w) of the sample path

of the processX for which Py (-, -) denotes the transition
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probabilities of the embedded discrete time Markov chain, Does sucly exist? If we define the following probability
we have density function on the sample path
N-1 f@I(we A)
f)=[]a+we M pr(Xy, Xar1).  (5) gy ="—"—", (®)
n=0

. . then we have
Now, let us consider a generalized M/M/1 queue, whose

arrival rates and service rates vary. In particular, its arrival 2
' E o [(I(A)L ¢ %)l = Ef[I(A)L 7 o*

rate is A, and service rate igy; when it is at statek, g (AL 1)) sHAL 1]
k=12,---,K—1, see Figure 2. For such a generalized _ /I(a) € A) J:(w) Fw)do
M/M/1 queue, the density(w) is equal to g*(w)

N-1

[]x, + ux,)e” @t p (X, Xu11).  (6)  Thus,

n=0
whereP, (., -) is the transition probabilities of the embedded Varg«[I(A)Lfg+] =
DTMC of this generalized M/M/1 queue. Eg-[(I(A)Lyfg)*] — EL[I(A)Lyg+] =0.

A Ak—2 Ak Therefore,g* is the optimal importance sampling distribu-

O =@~ T2 tion-

) N ) . In most practical problems, the optimal importance

Figure 2: Transition Diagram of the Generalized M/M/1  sampling distribution is not achievable, since it contains the
Queue Example quantity yx, which is unknown. However, it is computable

) . in our simple problem. We will demonstrate how to compute

Thus, if we choose such a generalized M/M/1 to do  the gptimal importance sampling distribution in this simple

importance sampling, then the likelihood ratio of M/M/1 queue example.
Example 1[The Optimal Importance Sampling Distribution]
Lyg(w)= From (8), it is easy to see thaty .« (w) = yx (a constant)

1_[5__01(“ We= T P LX) Xpi1) for w € A. Now, consider two sample paths, ws € A

- (M
N-1 — O+,
[T=g x, + ux,)e™WxnThx)n Po (X, Xy 1) w1 = (L1, 21, ....
See Glynn and Iglehart (1989) for explicit formulas of *k,1),(k+11), -, (K-11),K)
likelihood ratios for a variety of more general stochastic
processes. and
3.2 The Optimal Importance Sampling Distribution wr=((1,1),..., k1), (k+1,1),

. . . . . k1D, k+11)--- ,(K—-1,1),K
Is importance sampling always better than direct simulation? . 1. € ) ( ). K)

This answer depends on the choice of importance sampling where 2< k < K — 2.
distribution g. An ideal g is a distribution which has the AT
property Vag[I (A)L r,] < Vary[1(A)], where Vag(-) and
Var ¢ () denote the variance under distributigris) and f (-), e~ (K=D(A+)
respectively. And the begtis a distribution which has the Lyg(w1) =
property Vag[I(A)Ls ] =0.

Definition 1 A distribution g is called the optimal im-
portance sampling distributioof distribution 1 if

If we choose a generalized M/M/1
gueue to do importance sampling, then by (7), we have

K-1 _
1_['121 )Lne (An+itn)

and

Varg[I(A)L ] =0, Lyg(w2) =
ue_(K+1)(1+“)

where A is the rare event of interest. Do Cat ) 1 s 1o i) 1_[5:_11 rore—C i)
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We can substantially simplify our expressions 1of ; (w2)
and L 7 ¢ (wp) by setting

Mt+uer=1+p, 1<k<K-1
and this yields
Lyglon) = —p—3—
Hn:l )“”
7
Lyg(w2) =

K1
M1 [ T=1 An

Itis easy to sed s o(w1) = Ly g(wp) if g1 = p/Ak.
Therefore, the recursion
"

Mk = —,
Ak—1

M=l+p—pp, 2<k<K-1

is necessary for a generalized M/M/1 queue being the optimal
importance sampling distribution. With suitably chosen
boundary condition, above recursion does define the optimal
importance sampling distribution:

w1=0, xm=1+pu

we=——, M=1l+pu—w, 2<k<K-1 (9

Y
Note thatyu; = 0 is necessary for the generalized M/M/1
gueue to serve as the optimal importance sampling dis-
tribution. Since, otherwise there exisis ¢ A such that
P(w) > 0.

3.3 Asymptotically Optimal Importance
Sampling Distributions

In the queueing and random walks literature, there is a
notion called asymptotically optimal for measuring the ef-
fectiveness of an importance sampling distribution in the
rare event simulation context. See, e.g. Siegmund (1976),
Lehtonen and Nyrhinen (1992), and Heidelberger (1995).

Definition 2 Let Ax = {w: X(T(w)) = K}. If
log E,[1(Ag)L% ]
e Lt (10)
K—o00 log yx

we call g an asymptotically optimal importance sampling
distribution.
Note that
Eg[I(AK)L?g] = Var[I(Ak)Lyg¢l + (Eg[I(AK)Lf,g])2
= VarlI(Ag)Lyg] + v2

2
= Yk
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In view of the preceding development, we obtain the fol-
lowing inequality,

log E4[1(Ax)LF ] = 2logyk.

for all valid distributiong. Letting K — oo yields

liminf
K—o0

log Eg[1(Ak)LF ] ,
logyx h

Thus, asymptotically optimal importance sampling distri-
butions are optimal on the logarithmic scale.

Example 2 [Asymptotical Optimality]

Let us consider a M/M/1 queue with with arrival rateand
service rate 1, i.e., by switching the service rate and arrival
rate of the original M/M/1 queue. If we use such a M/M/1
gueue to do importance sampling, then

Lyg(w) = ,
f.8 k-1

forallw e A, i.e.,Ly,(w) is constant for alv € A. Now,

u—1
EglI(Ag)L3 1 = —o—5 EglI (Ag)] =
8 f.g MZ(Kfl) 8 MK—l MK -1
YK = WK —1
Thus,
~ log Eg[I(AK)Lng]
lim =2 =
K—o0 |Og YK

Such a change-of-measure is, therefore, an asymptotically
optimal importance sampling distribution. This type of sim-
ple but effective change-of-measures exist in more general
setting, see Heidelberger (1995) for a complete survey.

It is interesting to note that if the boundary condition
of (9) is set tou1 = 1 andi; = u, the resulting M/M/1
queue is this asymptotically optimal one.

3.4 Bounded Relative Error

Definition 3 LetAg ={w: X(T(w)) =K}. If
. JVar,[I(Ag)L
lim sup ALl (12)
K—oo YK

we call importance sampling distributiop has bounded
relative error property.

Importance sampling distributions with bounded rela-
tive error property are desirable, since they require only a
finite number of samples to construct a confidence interval
with a given precision, no matter how small thg is.
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Example 3 [Bounded Relative Error]
The importance sampling distribution of Example 2 has
bounded relative error property, since

SNVar[I(Ax)Lrgl | uk-1-1 1
= < .
YK pKtu-1  Ju-1

4 ADAPTIVE IMPORTANCE
SAMPLING METHODS

To use importance sampling in rare event simulations, it
is good to have an importance sampling distribution with
asymptotical optimality or bounded relative error property.
However, to have such an importance sampling distribution,
it is usually required to have a good understanding of the
large deviation behavior of the rare event of interest; this is
the major obstacle to wide-spread application of importance
sampling in rare event simulations. (Large deviations is a
body of asymptotic theory which may be used to obtain
the rare event asymptotics that we are interested in; cf.
Bucklew (1990) and Dembo and Zeitouni (1993) for general
background.) Thus, it is nice to have more automatical
ways of finding good importance sampling distributions,
regardless of what rare event problem we are interested. In
this section, we review two types of adaptive importance
sampling methods, which are to serve this need.

The effectiveness of the importance sampling estimator
depends on the choice of importance sampling distribution
g. To make the selection simpler, we usually only consider
a family of importance sampling distributions parameterized
by 6 € ® C %¢; e.g., the family of exponential twisting
distributions.

4.1 Approach via Minimizing Estimator’'s Variance

The most direct measure of effectiveness of an estimator is
its variance. From Section 3, we know the variance of anim-
portance sampling estimator igrk times Vag[7(A)L f,]

if the estimator is computed by independent copies of
I(A)L s, sampling from the importance sampling distribu-
tion g. Let fy denote the family of distributions. Then,
selecting the best importance sampling distribution frm
can be formulated as

mgin Var g, [1(A)Lg], (12)

where Ly () = f(w)/fs(w). But

Var, [1(A)Lg] = Ej,[1(A)L3] — (E;,[1(A)Lg])?
= E4[I(A)L3] - y2.
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Thus, the variance-minimization problem (12) is is easily
seen to be equivalent to
min £ , [1(A)L2). (13)

How does one compute an (approximate) minimizer
of (13)? Since (13) is a stochastic optimization problem,
traditional stochastic approximation algorithms, Robbins-
Monro algorithm (Robbins and Monro (1951)) and Kiefer-
Wofowitz algorithm (Kiefer and Wolfowitz (1952)) comes
naturally for use.

R-M algorithm basically is the following recursion

a o~
Ony1 = e, — n_—i—lv}l(e"))’ (14)

wherellg is the projection operator on, h(-)i/s\the objec-
tive function (E ¢, [1 (A)Lg] in our example) an¥ i (6,) is an
estimate oVh at6,,. There exist several differentapproaches
for obtaining the gradient estimaticﬁ%(en): infinitesimal
perturbation analysis (Glasserman (1991)), likelihood ratio
methods (Glynn (1986), Glynn (1990)), Conditional Monte
Carlo (Fu and Hu (1997)), and the “push-out” approach
(Rubinstein (1992)).

K-W algorithm also uses recursion (14). The difference
between these two algorithms is on the method of estimating
Vh(:). K-W algorithm use finite differences to estimate
Vh(-).

Using importance sampling for accelerating simulation
by finding an approximate minimizer of (13) has been applied
in various applications, especially in queueing and reliabil-
ity models; see, e.g. Al-Qaq, Devetsikiotis, and Townsend
(1995), Devetsikiotis and Townsend (1993a, 1993b), Ru-
binstein (1997, 1999), and Rubinstein and Melamed (1998).
Similar idea has also been applied to speeding up the
simulation for pricing financial derivative, such as (out-
of-the-money) Asian options. See Su and Fu (2000) and
Vazquez-Abad and Dufresne (1998).

It is sometimes advantageous to rewrite (13) as

rryn E¢[I(A)Lg]. (15)

See Su and Fu (2000) for a successful example of using
(15).

4.2 Approach via Minimizing Cross Entropy
4.2.1 Cross Entropy

Given a probability density functiofi, cross entropy defines

a measurement of “distance #J. Let ¢ be a probability
density function defined on the same sample space such that
f(w) > 0 impliesg(w) > 0. Then thecross entropyalso
known asrelative entropyor Kullback Leibler distance
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of the probability density functiory with respect to the
probability density functionf is

/Iog (&> f(w)dw
g(@)

E¢[log(L £)1.

D(f, g)

= (16)

For more details on this definition, see Kapur and Kesavan
(1992). However, beware that this definition of cross entropy
is not universal. For example, Jelinek (1997) defines cross
entropy as

H(f, g) = —/|Og(g(w))f(w)dw-

There are some important propertiesiof-):

1. D() is non-symmetric; i.e.D(f, g) # D(g, f)
2. D(f,9=0
3. D(f./))=0

SinceD(-) measures the distance between distributions,
it is reasonable to expe@(-) can be used to select impor-
tance sampling distributions. In particular, we want to find
a distributiong such thatg is the minimizer of

e

Of course,g* solves this problem. Howeveg;* is usually
unattainable. So, the candidate distributions is again a
family of importance sampling distributions parameterized
by 6 € ® € %¢. Thus, the problem to be solved becomes

g (w)
g(w)

) g (w)dw.

. (w)\
meln/Iog (%)g (@)dw = Eg-[logLg 1,1, (17)

where L, s, (w) = g*(w)/fa(w) is the likelihood ratio.
But

g ()
D(g*, =1
(g%, fo) / Og(fa(w)

= /g*(w) |09g*(w)dw—fg*(w) log fo(w)dw

) g (w)dw

=/g*(w) log g™ (w)dw + H (g™, fo).

Since the first term is independent &f the minimizer of
H(g*, fp) is also a minimizer of (17).
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We obtain the following alternative formulation of the
function H(g*, fp):

H(g", fo) = —/lOg(fa(a)))g*(w)dw

== / log(fs(@)) f (@) (w € A)/ykdw

1
- / log(fe(@)I(w € A) f(w)dw
YK

1
——Ef[I1(A)log(fa)].
YK

Thus, the maximizer of

meaXEf[I (A) log(fp)] (18)

is also the minimizer of (17).
4.2.2 Algorithm

Based on (18), it is straightforward to derive an iterative
procedure for computing an approximate minimizer of (17).
The key idea is to express (17) as

maxE ,,[1(A) Ly 10g(fp)], (19)

for 8’ € ©®, whereLy (w) = f(w)/fy (w) for w € A.
Combine (18) and (19), the iterative procedure is how
clear:

1. Select an initial gues® of (18); setn =0

2. Compute an approximate minimizer of (19) with
0 =06,

3. 6,41 < approximate minimizer computed in Step
2:n<n+1

4. (convergence test) |6, —6,—1|| < € (¢ is a small

positive number), stop; otherwise, goto Step 2

This adaptive approach for minimizing cross entropy
has been adopted in Lieber, Rubinstein and Elmakis (1997),
Rubinstein (1997, 1999), and de Boer, Nicola and Rubinstein
(2000).

5 CONCLUDING REMARKS

We have reviewed the basic concepts of importance sam-
pling and selection criteria of good importance sampling
distributions in rare event simulation context. Also, we
have reviewed two adaptive importance sampling methods
in the literature. In this section, we will emphasize some
properties of these two methods.

Both methods adaptively look for parameters which let
an importance sampling distribution optimal in their settings.
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But cross entropy method has an advantage on computing anDembo, A. and O. Zeitouni. 1993 arge Deviation Tech-

approximate solution on each iteration for certain stochastic
models. For example, the optimal transition probabilities
of DTMC can be computed analytically because of the
logarithm of likelihood ratio; see Section 3.1 of de Boer,
Nicola and Rubinstein (2000) for details.

The key optimization problem (18) in cross entropy
method is equivalent to

rryn E¢[1(A)log(Le)].

Since

argmaxE r[1(A) log(fs)]
=arg nginE r=1(A)log(fs)]
=arg nginEf[I(A) log(f) — 1(A)log(fo)]
=arg nginEf[I (A) log(Lg)].

In other words, under original density, minimizing es-
timator's variance is equivalent to minimize the expected
likelihood ratio conditioned on the rare event happens; and
minimizing cross entropy is equivalent to minimize the
expectedogarithm of likelihood ratioconditioned on the
rare event happens. Therefore, minimizing cross entropy
in some sense is close to, but definitely is different from
minimizing estimator’s variance.

In terms of estimator’s variance, cross entropy method
does not seek for the optimal solution. Although intuitively,
the optimizers of both methods are close to each other. It
would be beneficial to know how close they are.
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