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ABSTRACT 

We discuss the application of the Bayesian statistical para-
digm in conjunction with Monte Carlo methods to practical 
problems. We begin by describing the basic constructs of 
the Bayesian paradigm.  We then discuss two applications.  
The first entails the simulation of a two-stage model of a 
property-casualty insurance operation.  The second appli-
cation simulates the operation of an insurance regime for 
home equity conversion mortgages (also known as reverse 
mortgages).  In this simulation, we built separate models to 
(1) predict the appreciation of individual home values and 
(2) predict the annual mortality experience of individual 
insureds.  A feature of this work was the simulation of the 
parameters of these models in order to explicitly incorpo-
rate their variability into the model.We conclude the work 
by considering (1) model validation issues and (2) alternate 
forms of scenario testing – i.e., those  employing pseudo-
random numbers, quasi-random numbers, or even more 
subjective schemes. 

1 STATISTICAL PARADIGMS 

There are two major statistical paradigms of current inter-
est: (i) the frequentist or classical paradigm and (ii) the 
Bayesian paradigm.  

In the frequentist paradigm, the probability of an event 
is its relative frequency.  All prior and/or collateral infor-
mation is ignored.  Proponents of the frequentist paradigm 
view it as being objective, because all attention is devoted 
to the observations (data).  Some of the key constructs of 
the frequentist paradigm are the Neyman-Pearson Lemma, 
tests of statistical hypotheses, confidence intervals, and 
unbiased estimates. 

In the Bayesian paradigm, probability is treated as a 
rational measure of belief.  Thus, the Bayesian paradigm is 
based on personal or subjective probabilities and involves 

 

the use of Bayes’ theorem which states that if A  and B are 
events and 0Pr[B] > , then  

 

Pr[B]

A]|Pr[BPr[A]
B]|Pr[A

⋅= . 

 
Prior and/or collateral information is incorporated explic-
itly into the model via the prior distribution and the likeli-
hood.  Some of the key constructs of the Bayesian para-
digm, in addition to Bayes’ theorem itself, are conditional 
probabilities, prior distributions, predictive distributions, 
and (posterior) odds ratios. 

2 FREQUENCY-SEVERITY  
INSURANCE MODEL 

2.1 Formulating the Problem 

In property and casualty insurance, as well as in health in-
surance, the actuary is often asked to predict the amount of 
insured losses during the next period of observation, such 
as a calendar year.  In doing so, the actuary frequently has 
the results observed for a number of prior periods. Then if 

iS  is a random variable representing the amount of aggre-
gate claims during the ith policy year (or, equivalently, the 
ith period of observation), the problem may be considered 
to be the estimation of the quantity 
 

]S,,S,S|sPr[S m211m1m …++ ≤  

 
where 0s 1m ≥+ .  This is the conditional probability of the 

incurred losses during period 1m + , given the results of 
the first m periods.  Such a probability distribution is usu-
ally called a predictive distribution.  
 One way of approaching this problem is to first deter-
mine the distribution of the frequency of loss (i.e., the 
number of insurance claims) and then to determine the se-
verity or amount of each individual claim. 
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 We assume that given a parameter θ , the random 
variables 1mS,,2S,1S +…  are independent and identically 

distributed with conditional probability density function p.  
We use f to denote the density function of θ .  Thus, using 
Bayes’ Theorem, we can write the conditional density 
function of 1mS + , given m21 S,,S,S … as   
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is the posterior density function of  θ , given 

ms=== m2211 S,,sS,sS … .   

2.2 Frequency Component 

For ,1,2,i …=  let iN  be the random variable representing 

the number of claims during the i-th period of observation, 
and let iN  have a Poisson distribution with parameter 

(mean) .Λ  Given m observations m21 n,,n,n … , the pos-

terior distribution of Λ  is m),nmG( ++ βα as shown in 

Section 8.2.2 of Herzog (1999).   The parameters α  and  
β determine the prior gamma distribution.  The data are 

summarized by the parameters m  and ∑
=

=
m

1i
innm  .  We 

let )g(λ  denote the density function of m),nmG( ++ βα .  

Then, we are able to write the conditional probability of 

1m1m nN ++ =  given mm2211 nN,,nN,nN === … , as 

 

∫

∫

∫

∫
∞

++−

∞
++−

−

∞

∞ −
⋅

=

⋅

0

1-nmm)(

0

1-nmm)(

0

0

n

de

de
n!

e

)dg(

)dg(
n!

e

λλ

λλλ

λλ

λλλ

αλβ

αλβ
λλ n

 

 

   
)nm(

0

n1-nm1)m(

m)()nm(

de
n!

1

+−

∞
++++−

+⋅+Γ

⋅

=
∫

α

αλβ

βα

λλ

 

 

)nm(

n)nm(

m)()nm(n!

1)m(n)nm(
+−

++−

+⋅+Γ⋅
++⋅++Γ

=
α

α

βα
βα

 

 
nmn

1m

m

1m

1

n           

1nnm
+







++

+






++




 −++
=

α

β
β

β
α

, 

 
for ,1,2,n …= which is in the form of a negative binomial 
density function.  

2.3 Severity Component 

We assume that the amount of each individual claim, X , 
has an exponential distribution with mean, ∆ , and prob-
ability density function given by 

 

∆
=∆

∆−x/e
)|p(x  

 
 for 0x >  and 0>∆ .  The moments of X  are 

[ ] ∆=∆|XE X  and ( ) 2
X |XVar ∆=∆ .  The mean claim 

amount, ∆ , has a conjugate prior distribution whose prob-
ability density function, ( )y,m|f ′′δ , is proportional to 

m

/ye
′

′−

δ

δ
for 3,m0,y >′>′ and 0>δ .  Such a density func-

tion is called an inverse gamma density function.  The in-
surance process is observed for m  periods of observation 
with in claims occurring during period i .  The total ag-

gregate claim amount over the m periods of observation is 
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Then, using Bayes’ Theorem, we have that density func-
tion of ∆ , ( )y,nm,y,m|f ′′δ , is proportional to 
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which is also an inverse gamma density function. 
 The predictive density function of X , which reflects the 
uncertainty in the estimation of the parameter values as well 
as in the random nature of the claim amounts, is given by  
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where 
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Equation (1) can be rewritten as  
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which is a member of the Pareto family of density functions.  
 We next show how to use pseudo-random numbers 
and quasi-random numbers to simulate aggregate loss 
amounts using the predictive distributions for the fre-
quency and severity of insurance claims. 

2.4 Simulating Aggregate Losses 

2.4.1 Solving the Problem via a Pseudo-Random 
Number Generator 

2.4.1.1 Frequency Component 

We assume that the probability of observing 1+mn claims 

during period 1+m is given by the negative binomial dis-
tribution as  
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for .,1,0n 1m …=+   We employ a pseudo-random number 

generator in conjunction with the algorithm for the Modi-
fied Table-Look-Up Approach to the negative binomial 
distribution, given in Section 3.2.5.1 of Herzog and Lord 
(2002), to simulate 10,000 trials of the number of claims. 
The results are summarized in Table 1 below. 
 
Table 1: Frequency Component Constructed Using Pseu-
do-Random Number Generator 

Number of  
Claims 

Frequency of 
Occurrence 

0 1,234 
1 1,852 
2 1,910 
3 1,548 
4 1,110 
5 847 
6 572 
7 356 
8 237 
9 128 

10 93 
11 47 
12 33 
13 14 
14 7 
15 4 
16 6 
17 0 
18 2 

Total 30,278 
 
For the 10,000 trials simulated here we have observed a 
total of 30,278 claims, which is slightly more than the 3 
claims per trial that are expected. (See the discussion in 
Section 3.2.5 of Herzog and Lord (2002) for more details.) 

2.4.1.2 Severity Component 

 For each of the 30,278 individual claims of the previous 
section, we need to simulate an individual loss (or claim) 
amount. We do this by using a pseudo-random number 
generator to produce uniform random numbers over [0,1), 
in conjunction with the inversion scheme of Section 3.1.6 
of Herzog and Lord (2002) applied to the Pareto probabil-
ity distribution function given by 
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where α = 20 and .000,000,2=β In particular, if U is the 

result of simulating a uniform random variable over [0,1), 
then the corresponding Pareto random variable is 
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The results are summarized by the loss sever-

ity distribution for which various percentiles are displayed 
in Table 2 below: 

 
Table 2: Loss Severity Distribution Constructed Using 
Pseudo-random Number Generator 

Percentile Point 

0  $             4 
10  10,930 
25  29,148 
50  70,435 
75  144,126 
90  244,628 

100  1,447,454 

2.4.1.3 Loss Amounts 

Finally, we employ the results of Sections 2.4.1.1 and 
2.4.1.2 to produce the distribution of individual loss 
amounts summarized in Table 3 below. To illustrate the 
process, if an individual trial resulted in two claims, then 
we drew two values from the loss severity distribution. 

 
Table 3: Distribution of Loss Amounts Using Pseudo-
random Numbers 

Percentile Point 

0  $             0 

10  0 

25  71,590 

50  229,179 

75  471,889 

90  753,763 

100  2,738,627 

2.4.2 Solving the Problem using  
Quasi-Random Numbers 

Because we do not know in advance how many quasi-
random numbers we need as input to the algorithm em-
ployed to simulate the negative binomial distribution, we 
can not employ a quasi-Monte Carlo scheme to simulate 
the number of claims. If we attempted to do so, we would 
end up with a biased result. However, we can use a quasi-
Monte Carlo scheme to simulate the severity portion of the 
problem, the loss amounts on the 30,278 claims resulting 
from the first stage of our model. 
 
 Our approach is to employ the Neiderreiter sequence 
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where .278,302556,60 ×= This gives us an empirical 

loss severity distribution consisting of 30,278 individual 
claim amounts in ascending order. The results are summa-
rized in Table 4. 
 
Table 4: Loss Severity Distribution Using Quasi-random 
Numbers 

Percentile Point 

0 $             2 

10 10,563 

25 28,974 

50 70,526 

75 143,540 

90 244,011 

100 1,468,469 
 
We then employed a pseudo-random number generator to 
obtain a “random” permutation of the integers from 1 to 
30,278, in order to “randomly” re-order (or “shuffle”) these 
loss amounts. The loss amounts are then assigned to an in-
dividual trial to produce the distribution of loss amounts 
summarized in Table 5. 
 
Table 5: Distribution of Loss Amounts Using Quasi-
random Numbers to Generate the Severity of Loss 

Percentile Point 

0  $            0 

10  0 

25  67,749 

50  227,986 

75  467,540 

90  753,417 

100  2,969,518 
 
Because the quasi-random numbers were “superior” in our 
previous comparisons, we suspect that the results of Table 
5 are “superior” to those of Table 3. 
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3 MODELING HOME EQUITY  
CONVERSION MORTGAGES 

3.1 Introduction 

Many older Americans who own their own homes have 
most of their wealth in their homes.  Some may not oth-
erwise have sufficient wealth to pay for (1) medical bills 
resulting from sudden, unanticipated medical problems, 
(2) major repairs to their houses and/or (3) everyday ex-
penses for food, clothing, and so on.  Home Equity Con-
version Mortgages (HECMs) are designed to allow older 
people to borrow money by using the equity in their 
homes as collateral, without being forced to move out of 
their homes.  The amounts borrowed accumulate with in-
terest until the mortgage’s due date, at which point the 
lender is repaid the entire debt. 

There are three principal types of HECMs: term, split-
term, and tenure.  In a term HECM, equal monthly pay-
ments are made to the older homeowner for a certain num-
ber of months, for example, 180 months or 15 years.  At 
the end of the term, the loan is due and payable.  Term 
HECMs are not popular with older people who fear that 
they will not be able to repay the loan at the end of the 
term and be forced out of their homes. 

In a split-term HECM, equal monthly payments are 
made for a certain number of months, but the loan need not 
be repaid until the older person dies, moves out, or sells 
his/her house.  Finally, in a tenure HECM, equal monthly 
payments are made and the loan need not be repaid as long 
as the older person is alive and living in his/her house. 

The purpose of this work is to estimate the amount of 
a level-payment (annuity) of a tenure HECM.  We assume 
an insurance premium structure comprising two compo-
nents.  The first, payable at origination, is equal to 2 per-
cent of the appraised value of the property.  The second is 
an annual insurance fee equal to 0.5 percent of the actual 
outstanding balance of the loan and is payable monthly.  
We also assume that the insurer and/or mortgagee has a 
share of the future appreciation, if any, of the house. 

Our HECM model attempts to approximate likely fu-
ture experience and is flexible in the sense that it can in-
corporate a wide range of assumptions.  Another important 
feature is that it incorporates the variation associated with 
the key parameters of the model.  Because these parameter 
values are themselves statistical estimates, such a model 
more accurately reflects the total variation of the process of 
interest.  This aspect of the model incorporates concepts 
employed in Herzog and Rubin (1983).  

Our results show that viable HECM programs can be 
constructed by using either a 50/50 shared appreciation 
scheme (that is, where the mortgagor and insurer and/or 
mortgagee share future appreciation equally) or one in 
which the insurer and/or mortgagee receives 100 percent  
of the nominal appreciation.  Of course, the monthly pay-
ments are slightly higher in the 100 percent case. 

3.2 Assumptions 

In this section, we discuss the assumptions of our model. 

3.2.1 Appreciation 

The annual rate of nominal appreciation of individual houses 
is a key element of the HECM model.  Estimates of the an-
nual rate of nominal appreciation are necessarily imprecise 
because (1) the rate of appreciation may vary widely from 
year to year and from neighborhood to neighborhood and (2) 
the expense of annual appraisals of individual houses makes 
the attainment of a reliable nationally representative data-
base of U.S. house values impractical. 

Our approach to estimating the nominal appreciation 
of HECM houses is to construct a two-stage stochastic 
simulation model.  In the first stage, we use annual national 
appreciation data compiled by the National Association of 
Realtors (NAR)(1989) to simulate the posterior distribution 
of national appreciation rates.  We then use the results of 
the first-stage model together with some metropolitan 
NAR data to simulate the posterior distribution of appre-
ciation rates of individual HECM houses.  

As shown in the last column of Table 6, the NAR’s 
mean annual rate of increase of the median sales prices of 
an existing home between December 1981 and December 
1988 was 4.26 percent.  The corresponding sample vari-
ance was 0.000256.  The sample autocovariance coeffi-
cients of these appreciation rates at lags of one, two, and 
three years are 0.000110, 0.000029, and 0.00000084, re-
spectively. 

 
Table 6: Annual Appreciation Rates, 1981-1988 
Source: National Association of Realtors (1989) 

Year Existing Homes 
Median Sales 

Price 

Annual  
Appreciation 

Rate 
1981 $66,600  
1982 $67,800 1.80% 
1983 $70,300 3.69% 
1984 $72,400 2.99% 
1985 $75,500 4.28% 
1986 $80,300 6.36% 
1987 $85,600 6.60% 
1988 $89,100 4.09% 
Mean  4.26% 

 
We assume that the first-stage model has a multivari-

ate normal distribution with mean 4.26 percent and vari-
ance-covariance matrix equal to 0.0001 times. 
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 Thus, we assume that the average rate of appreciation 
over the entire U.S. in year 2n +  is influenced by the rates 
of appreciation in years n and 1n + . 

The second-stage model is used to predict the appre-
ciation rates of individual house values.  For each year, we 
use a separate univariate normal distribution whose mean 
is the corresponding result of the first-stage model and 
whose standard deviation is 0.08.  The value of 0.08 is 
chosen as a rough measure of the dispersion of the distribu-
tion of annual appreciation rates from the first quarter of 
1988 to the first quarter of 1989 in the 84 large metropoli-
tan areas of the U. S. considered by Downs (1989).  In par-
ticular, we note from Appendix B of DiVenti and Herzog 
(1991) that, based on a mean appreciation rate of  5.21 per-
cent and a standard deviation of 8 percent, we observe one 
metropolitan area, namely Fort Worth, whose appreciation 
rate is more than two standard deviations below the mean 
and five metropolitan areas in California – San Francisco, 
Orange County, Los Angeles, San Diego, and Riverside – 
whose appreciation rates are more than two standard devia-
tions above the mean. 

The procedures used to generate the random normal 
deviates required for both stages of the model are de-
scribed in Chapter 4 of Herzog and Lord (2002). 

In addition to 4.26 percent, we also run the model with 
annual average appreciation rates of 3 percent, 2 percent, 
and  0 percent.  This is because the elderly tend to live in 
the oldest housing stock, have difficulty keeping their 
property in good repair, and are unlikely to make home 
improvements, their property is not likely to appreciate as 
fast as other property. 

3.2.2 Mortality Rates 

The basic mortality rates are taken from Wade (1989).  
Following May and Szymanoski (1989), we assume that all 
of the mortgagors are single females.  This may not be a 
sufficiently conservative assumption if many married peo-
ple or other individuals obtain HECMs jointly.  Unfortu-
nately, the Social Security Administration cannot provide 
us with the necessary projected joint mortality rates for 
married couples.  Moreover, our model does not incorpo-

2.56 1.10 0.29 0 .   .   . .   .   . .   .   . .   .   . 0
1.10 2.56 1.10 0.29 .
0.29 1.10 2.56 1.10 .
0 .
. .
. .
. 0
. 1.10 2.56 1.10 0.29
. 0.29 1.10 2.56 1.10
0 .   .   . .   .   . .   .   . .   .   . 0 0.29 1.10 2.56
 
rate the likely adverse selection of healthier older people 
choosing an HECM.  Consequently, we recommend that 
those using this model to price an HECM product make 
appropriate adjustment for these two factors. 

As with the appreciation component, we develop a 
two-stage stochastic simulation model to predict future 
mortality experience of HECM mortgagors.  In the first 
stage, we simulate the death rates 1057065 q,,q,q …  using 

a separate univariate normal model for each death rate.  
The means of these models are taken from Wade (1989), 
see Table 7.  In particular, we use the value of  x65q +  pro-

jected for calendar year x1990+ for .,400,5,x …=   We 

set 110q  equal to one; that is, we assume that no one sur-

vives to age 111. 
The standard errors are estimated as follows.  We first 

use the method of least squares to fit a separate linear 
equation to each of the four sets of 26 values of x65q + , for 

.15,105,0,x =    The 26 values of the sq'  are taken from 

the 1961-1986 U.S. Life Tables for Female Lives, con-
structed by the National Center for Health Statistics (see 
Table 8).  The standard error of the estimate is used as the 
estimated standard error of each of these four sets of sq' .  

The remaining standard errors are obtained by fitting a lin-
ear equation to the standard errors of the estimates of 

807570 qand,q,q .  The resulting equation is: 

 
standard error of 0.000740.000686xq 5x60 −=+  

 
for 98,,76,,5x = . 

 
Table 7: Mortality Rate by Year for Annuitants Aged 65 in 
1990 

 

1990
65q  1.3653% 

1995
70q  2.0428% 

200075q  2.8602% 
2005

80q  4.4065% 

2010
85q  6.9947% 

2015
90q  11.5756% 

2020
95q  17.8137% 

2025
100q  23.2054% 

2030
105q  28.7804% 

 
After the first-stage simulation is run, we obtain the inter-
mediate mortality rates by using a geometric procedure 
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described on page 272 of Waldman and Gordon (1988).  
To illustrate this method, we calculate  
 

x/5

70

75
70x70 q

q
qq 





⋅=+  

 
for 43,2,1,x = . 

 The second-stage model is a binomial model that 
simulates the experience of each of the individual insureds.  
The mortality rates used here are those resulting from the 
first stage of the model and the interpolation scheme de-
scribed above.  The procedure employed to select the 
pseudo-random numbers is described in Section 3.2.3 of 
Herzog and Lord (2002). 
 Finally, we wonder how the value of the property will 
be affected if probate problems increase the time it takes 
the insurer/mortgagee to acquire legal title to the property. 
 

Table 8: U.S. Female Mortality Rates by Age 
and Calendar Year 

Age Calendar 
Year 65 70 75 80 
1961 1.83% 2.84% 4.64% 7.65% 
1962 1.84 2.84 4.69 7.73 
1963 1.85 2.84 4.71 7.78 
1964 1.80 2.73 4.52 7.46 
1965 1.79 2.69 4.50 7.44 
1966 1.78 2.73 4.52 7.41 
1967 1.73 2.66 4.37 7.12 
1968 1.78 2.71 4.46 7.29 
1969 1.72 2.66 4.32 7.04 
1970 1.69 2.64 4.33 6.99 
1971 1.62 2.57 4.20 6.75 
1972 1.62 2.62 4.24 6.71 
1973 1.57 2.53 4.16 6.62 
1074 1.51 2.47 3.95 6.30 
1975 1.44 2.36 3.77 5.95 
1976 1.43 2.30 3.68 5.86 
1977 1.42 2.24 3.55 5.65 
1978 1.42 2.22 3.48 5.62 
1979 1.39 2.15 3.37 5.45 
1980 1.44 2.21 3,46 5.61 
1981 1.43 2.17 3.39 5.62 
1982 1.42 2.13 3.30 5.28 
1983 1.40 2.15 3.34 5.39 
1984 1.40 2.15 3.33 5.38 
1985 1.40 2.15 3.35 5.41 
1986 1.40 2.16 3.33 5.34 

 

 
3.2.3 Move-out Rates  

Some mortgagors may move out of their homes and repay 
their HECM loans because they are in poor health and need 
to move to a hospital, nursing home, or the home of a 
friend or relative.  Others may move simply because they 
desire to live in another place.  Because their monthly 
HECM payments terminate in all these instances, we must 
accurately predict the rate and time at which such moves 
take place for the population of insureds.  Unfortunately, 
little or no useful data are currently available to construct 
such estimates.  May and Szymanoski (1989) use a rate of 
30 percent of the mortality rate at each individual age.  We 
have employed this assumption as well as an assumption of 
zero.  Although we know that zero is too low, it neverthe-
less does give a measure of the sensitivity of our results to 
changes in the value of this parameter. 

3.2.4 Origination Fees and Other Closing Costs 

We assume that at the time the HECM is originated, the 
mortgagor pays closing costs equal to 1.5 percent of the 
appraised value of the property.  This is intended to cover 
such costs as the origination fee charged by the lender, the 
cost of the appraisal of the property, and legal fees.  We 
assume the mortgagor will borrow the closing costs from 
the lender and incorporate them into the loan. 

3.2.5 Transaction Costs 

We include estimated transaction costs incurred in selling 
the house after the older person dies or moves out.  Be-
cause the real estate sales commission is typically 6 or 7 
percent and there are frequently other costs borne by the 
seller, we assume seller transaction costs of 8 percent of 
the sale price of the house.  If the insurer/mortgagee has to 
take possession of the property and carry out the preserva-
tion costs normally done with a PD (property disposition ) 
property, the transaction costs may be larger than 8 per-
cent.  Foster and van Order (1984) used transaction costs 
of 10 percent of the sale price of the house in their study of 
defaults on FHA-insured mortgages.  We also wonder 
whether the insurer/mortgagee will be notified promptly 
after older people die or move out of their homes. 

3.2.6 Salaries and Administrative Expenses 

We include a component for staff salaries and administra-
tive expenses incurred in running a HECM operation.  We 
set this cost equal to 1 percent of the initial appraised value 
of the property insured.  This rate is comparable to that 
employed in the principal FHA single-family program. 
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3.2.7 Interest Rates 

We consider three pairs of assumptions for the contract 
interest rate on the annuity and the discount rate: 

Table 9: Interest and Discount Rates 
Contract Interest Rate Discount Rate 

8.5% 7.0% 
10.0% 8.5% 
11.0% 10.0% 

3.2.8 House Price 

We assume that the HECM is based on an appraised house 
value of $100,000.  This value is selected for mathematical 
convenience.  If the appraised value of the house is less 
than $100,000, then the amount of the monthly payment 
should be reduced proportionately.  The NAR data shown 
in the Appendix of DiVenti and Herzog (1991) for the en-
tire U.S. give a median home sales price of $91,600 for the 
first quarter of calendar year 1989.  Hence, even in 1990 a 
substantial portion of older Americans may have less than 
$100,000 of equity in their homes.  Consequently, their 
monthly annuity payment would be less than those shown 
in Table 10. 

3.3 Results 

We have run each of the first-stage models 10 times and 
simulated 100 individual HECMs.  The mean of the 1,000 
simulations is shown in Table 10.  These results are sensi-
tive to changes in mean annual appreciation rates, mortal-
ity rates, interest rates, and move-out factors.  The choice 
of an appropriate set of assumptions is of course subjec-
tive.  The insurer/mortgagee naturally must be conserva-
tive.  By using a move-out factor of 1.0 (to compensate for 
the high mortality rates resulting from the use of female 
lives selected from the general population), an annual av-
erage nominal appreciation rate of 2 percent, a contract in-
terest rate of 11.5 percent, and a discount rate of 10.0 per-
cent, we obtain a monthly payment of about $220 with a 
50/50 shared appreciation HECM and $245 with all the po-
tential appreciation going to the insurer/mortgagee.  Hence, 
HECM instruments may be attractive to some older home-
owners.  On the other hand, if the insurer decides to de-
crease the projected mortality rates sharply, increase the 
standard deviation of the second stage model (say, from 8 
percent to 18 or 20 percent), and/or eliminate the shared 
appreciation feature, then the monthly HECM payment 
may be so low that no older people will be interested in ob-
taining one.   
 

 
Table 10: Monthly Annuity Payments Based on a $100,000 
House and an Annuitant Age 65 at Purchase 

Monthly Annuity Payments 
Contract Interest Rate 

11.5% 10.0% 8.5% 
Discount Rate 

 
 
 

Appreciation 
Rate 

 
 

Insurer’s 
Share of 

Appreciation 10.0% 8.5% 7.0% 
Move-out Factor = 1 

4.258% 100% $335 $379 $433 
 50 269 298 334 
3.0 100 282 314 352 
 50 240 264 292 
2.0 100 247 272 302 
 50 221 240 264 
0.0 100 193 208 226 
 50 185 199 215 

Move-out Factor = 1.3 
4.258% 100% $395 388 $439 
 50 321 352 388 
3.0 100 337 370 410 
 50 290 315 344 
2.0 100 299 325 365 
 50 269 289 314 
0.0 100 238 254 273 
 50 229 243 261 

4 THOUGHTS ON MODEL VALIDATION 

Statistical models can be applied fruitfully to problems in 
the physical and life sciences, as well as in the social sci-
ences.  In the physical and life sciences, the fit of models to 
observed data may often be good, especially if the scientist 
is highly skilled at his or her trade.  Such results are found  
in (1) the well-known geneticist Mendel’s classic experi-
ments with peas that are discussed in  Cramer (1947) as 
well as (2) various tests on the characteristics of random 
number generators. 
 We are less sanguine about the application of such 
models to problems in the social sciences.  In the social 
sciences, it is virtually impossible to model anything with 
100% accuracy.  At best, such models should be consid-
ered to be rough approximations of reality.  Hence, models 
in the social sciences should not be considered panaceas.  
This especially applies to finance and insurance problems 
that often involve a myriad of economic variables.  More-
over, predictions of future economic phenomena are espe-
cially perilous as they typically depend critically upon fu-
ture conditions.  As George Box says (presumably in the 
context of social science problems), “All models are 
wrong, but some are useful.” 
 One consequence is that when considering statistical 
models of social science phenomena, we must be aware 
that as the sample size gets larger, the probability of reject-
ing the null hypothesis that the observations fit the model 
at a given level of significance increases.  As a result, 
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when the sample size is “large,”  the application of classi-
cal statistical tests will almost always lead to the rejection 
of the null hypothesis. 

One solution is to adopt the suggestion of Berger 
(1985) to employ loss functions instead of statistical tests 
of significance, in order to select the “best” of several 
competing statistical models.  In this context, loss func-

tions, denoted, )ˆ,(L θθ , are mathematical functions that 

compare a vector of parameters, θ , to an estimator of θ ,  

denoted θ̂ .  For example, if )O,,O,O(ˆ
k21 …=θ and 

)E,,E,(E)np,,np,np( k21k21 …… ==θ , where iE  is 

used to denote the expected value of the i-th component, 

then one possible loss function is 
( )∑

=

−k

1i i

2
ii

E

EO
.  This is 

just the well-known goodness-of-fit chi-square statistic.  Of 
course, there is no need to select a widely-used statistic as 
a loss function or even a requirement to select one with a 
well-known asymptotic distribution. 
 Several different loss functions should be employed to 
determine the relative appropriateness of competing mod-
els.  Herzog (1989) shows that different loss functions can 
lead to different model selections, and warns that “one 
should not mechanically apply frequentist tests of signifi-
cance without carefully thinking about the data and how 
they should best be analyzed.”  Berger (1985) argues that 
“a ‘statistically significant’ difference between the true pa-
rameter (true model) and the null hypothesis can be an un-
important difference practically.  Likewise a difference that 
is not statistically significant can nevertheless be very im-
portant practically.” 
 Herzog (1989) suggests the use of two loss functions  
 

∑
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E
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  and  ∑
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   (3) 

 
(neither of whose asymptotic distribution we claim to know) 
as supplements to the usual chi-square goodness-of-fit statis-

tic 
( )∑

=

−k

1i i

2
ii

E

EO
.  The two additional loss functions above 

have the advantage that they are less affected by outliers 
than is the usual chi-square goodness-of-fit statistic. 
 It is not our goal to propose an optimal loss function 
for a general class of problems or even for the specific 
problem considered in Herzog (1989).  Our suggestion is 
that the analyst should consider a number of alternative 
loss functions that are appropriate for the data under con-
sideration, irrespective of whether or not their asymptotic 
distributions are well known. 
4.1 A Case Study: Modeling the Prevalence  
of AIDS in Canada and the U.S. 

In Tables 11 and 12 below, we summarize some data (taken 
from Panjer (1988)) on the prevalence of AIDS infections.  
The predicted data are obtained from stochastic models and 
are, presumably, rounded to the nearest integer. 
 

Table 11: AIDS Cases in Canada 
Time 

Period 
Number  

Observed 
Number  

Predicted 
1 4 2 
2 6 8 
3 22 28  
4 14 12 
5 15 15 
6 11 19 
7 14 23 
8 30 28 
9 34 34 

10 40 40 
11 43 47 
12 59 55 
13 77 64 
14 93 74 
15 96 85 
16 91 97 
17 122 110 
18 127 125 
19 143 141 
20 138 158 
21 162 176 

Total 1,341 1,341 
 

Table 12: AIDS Cases in U.S. 
Time 

Period 
Number 

Observed 
Number 

Predicted 
1 89 98 
2 182 177 
3 368 368 
4 655 672 
5 1,241 1,114 
6 1,611 1,714 
7 2,500 2,484 
8 3,261 3,430 
9 4,573 4,549 

10 5,890 5,837 
11 7,453 7,281 
12 8,790 8,867 
13 10,557 10,580 

Total 47,710 47,171 
 

For the Canadian data of  Table 11, the goodness-of-fit chi-
square statistic (with 20 degrees of freedom) is 26.1.  This 
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is not even statistically significant at the 10% level of sig-
nificance.  The values of the two statistics of Expression 
(3) are 3.67 and 3.76, respectively. 

In contrast, regarding the U.S. data of Table 12, the 
goodness-of-fit chi-square statistic (with 12 degrees of 
freedom) is equal to 35.9.  This is statistically significant at 
the 1% level of significance.  However, the values of the 
two statistics of Expression (3) are only 0.42 and 0.43, re-
spectively. 

Therefore, based on the goodness-of-fit chi-square sta-
tistics, the observed Canadian data fit the data derived from 
the model much better than the observed U.S. data fit their 
model.  However, the opposite results are obtained when 
the two loss functions of Expression (3) are employed. 

5 FURTHER THOUGHTS 

In order to test the ability of various entities to survive ad-
verse economic conditions, a number of different ap-
proaches have been proposed.  Under one scheme known 
as Value at Risk probabilistic models are developed to es-
timate the value of a portfolio of assets and/or liabilities.  
In addition, Federal or State regulators often subject the 
entities they are regulating to various stress tests.  For ex-
ample, the U.S. Department of Housing and Urban Devel-
opment (HUD) typically performs stress tests of this type 
on the two Government Sponsored Enterprises that it regu-
lates: the Federal National Mortgage Association (Fannie 
Mae) and the Federal Home Loan Mortgage Corporation 
(Freddie Mac).  Specifically, these stress tests simulate an 
Enterprise’s financial performance over a 10-year period 
under severe economic conditions.  These conditions in-
clude large losses resulting from mortgage defaults and 
large, sustained movements in interest rates, both increas-
ing and decreasing.  The U.S. Government Accounting Of-
fice (GAO) has carried out similar analyses in the past to 
test the financial condition of HUD’s Mutual  Mortgage 
Insurance Fund. 
 At the State level, the State of New York Insurance 
Department has developed seven scenarios that it uses to 
test the financial worthiness of insurance entites under its 
jurisdiction. 

The question arises as to whether such schemes are 
better or worse than those based on pseudo-random or 
quasi-random numbers.  The short answer is “sometimes 
better and sometimes worse”.   Moreover, once the pa-
rameters and the initial seed of the pseudo-random number 
generator have been specified, then all three schemes are 
strictly deterministic, even though the analyst may not be 
able to visualize what the pseudo-random number se-
quence looks like.  Nevertheless, for important problems, 
the analyst should probably employ a wide variety of 
schemes to get (1) additional insight into the underlying 
issues as well as (2) additional comfort with the results. 
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