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ABSTRACT the expected number of iterations it takes to converge, and
to provide probabilistic statements regarding finite time per-
The nested partitions method is a flexible and effective formance (Olafsson, 1998; 1999). However, this also means
framework of optimizing large-scale problems with com- that some information is lost between iterations. The selec-
binatorial structure. In this paper we consider the nested tion of a move is based on the good performance of certain
partitions method for simulation optimization and propose solutions that are randomly sampled. When independence
a new variant that uses inheritance to speed convergence.is enforced between iterations, these good solutions are
The new nested partitions method with inheritance algo- necessarily discarded (or at least not used for the search).
rithm performs well for when applied to test problems but Intuitively, however, it has certain appeal to keep a given

it also calls for new analysis of convergence. fraction of the best solutions from one iteration to the next.
The downside is that the simple Markov chain analysis is
1 INTRODUCTION no longer possible.

The NP framework can also be combined with local
Simulation optimization has become a very popular and search heuristics, such as genetic algorithms to speed the
in particular interest in simulation optimization of discrete search (Olafsson and Kim, 2001). When this is done,
problems has grown rapidly over the past decade (Andradét- the motivation for keeping good solution is even more
tir, 1998; Fu, 1994; Jacobson and Schruben, 1989). Many compelling. For example, when using genetic algorithms,
methods that are designed for combinatorial optimization the issue is if the final population in each iteration should
have been applied to simulation, including simulated anneal- be discarded or if the fittest individuals from each iteration
ing, genetic algorithms, tabu search, and neural networks should be allowed to survive to the next iteration. In
(April et al., 2001). Such randomized metaheuristics have this paper we present a new framework for NP that used
indeed to be found to be the most effective for practical prob- genetic algorithms and inheritance and address both practical
lems and have been incorporated into numerous commercial performance and convergence analysis issues related to this
simulation packages. new NP variant.

This paper deals with the nested partitions (NP) frame- The remainder of this paper is organized as follows.
work that has been found to be effective for numerous In Section 2 we present the basis of the NP framework and
applications and is specifically designed for simulation op- in Section 3 we show how to use inheritance to extend the
timization and hence accounts explicitly for the inherent NP method and improve its computational efficiency. In
randomness (Olafsson, 1999; Olafsson and Kim, 2001; Section 4 we address the critical issue of how to determine
Olafsson and Shi, 2000; Shi and Olafsson, 1997; 1998; the amount of computational effort in each iteration of
2000). The NP method uses iterative partitioning of the the method. Some preliminary results from simulation
feasible region to narrow the focus of the optimization experiments are reported in Section 5, and Section 6 contains
search and concentrate the computational effort where good some concluding remarks.
solutions are likely to be found. In the NP variants that
have been proposed in the literature to date, these iterations2 THE NP ALGORITHM
are done independently, which results in the NP search
generating a simple homogeneous Markov chain. Thus, a In mathematical notation, we want to solve the problem
simple but eloquent Markov chain analysis can be used to
prove asymptotic convergence almost surely, to calculate 6r)r;i(r;f @), (1)
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where ® is a finite feasible region, and : ® - R is a
performance function that is subject to noise. In other words,
for any feasible poinb € ©®, J(6) cannot be evaluated
analytically. Oftenf(0) is an expectation of some random
estimate of the performance of a complex stochastic system
given a parameteft, thatis,J (0) = E[L(6)]. HereL(®) is

a random variable which depends on the paramete©.

We assume that (9) is a discrete event simulation estimate
of the true performance, and refer to it as the sample
performance.

In a recent paper, Shi and Olafsson (2000) introduced
an optimization method, theested partitiongNP) method,
for global optimization when the objective function is de-
terministic. In this context, the method has been found to
be quite efficient for combinatorial optimization (Olafsson
and Shi 2000). Furthermore, as was first suggested by Shi
and Olafsson (1997), this method can also be applied to
stochastic problems, where no analytical expression exists
for the objective function and it must be evaluated us-
ing simulation. In Olafsson (1999), this method is further
improved by drawing on ideas from statistical sampling
techniques that have proven useful in simulation in the past,
namely ranking-and-selection methods. Thus, the resulting
algorithm combines statistical sampling techniques tradi-
tionally used for comparing a few alternatives with a global
optimization framework aimed at large-scale optimization
problems.

The basic idea of the method is to systematically parti-
tion the feasible region into subsets and focus the computa-
tional effort in those subsets that are considered promising.
The main components of the method are:

« Partitioning : at each iteration the feasible region
is partitioned into subsets that cover the feasible
region but concentrate the search in what is believed
to be the most promising region.

» Random sampling to evaluate each of the subsets,
a random sample of solutions are obtained from

centrates the sampling effort by systematic partitioning of
the design space.

The key features in determining how to implement the
method is developing a partitioning method, deciding how
much sample effort to use in each region, and how much
local search effort to use in each iteration. These factors
are of course interconnected. A high quality partition will
lessen the need for sampling and local search, and in general
increased effort along one of these dimensions decreases
the need for the other two. Implementing the NP method
can therefore be quite problem dependent, in particular,
partitioning schemes that have been devised in the past have
drawn heavily on specific structure related to the application
itself. This, however, requires substantial effort on part of
the practitioner using the method, and in this paper we
present a new framework for automating these decision,
namely an intelligent partitioning method, guided random
sampling, and guided local search.

In each iteration of the NP method it maintains what is
called the most promising region, that is, a sub-region that is
considered the most likely to contain the best solution. This
most promising region is partitioned into a given number
of sub-regions, these sub-regions and the surrounding re-
gion are sampled using random sampling, and the sampling
information used to determine which region should be the
most promising region in the next iteration.

As opposed to purely heuristic optimization methods,
the NP method guarantees that the optimum solution is
eventually found (Shi and Olafsson, 2000). Furthermore,
Olafsson (2000) uses standard ranking and selection proce-
dures develop and algorithm that allows us to pre-specify
a probability, say 90% or 95%, and terminate the algo-
rithm when the probability that the correct solution has
been selected exceeds this value. Here the correct subset
of best features is defined as a subset of features that has
a performance that is within a certain distance, that is an
indifference zone, of the optimal performance. The key to
this result is to guarantee in each iteration of the algorithm

each subset and used to estimate the performancethat the correct move is made with a minimum probability

of the region as a whole.
* Local improvement: to improve the estimate of

P*, which can be calculated numerically from the following
equation The termination of the algorithm when solution

each of the subset, the sample points can be used with an indifference zone has been found with a certain

as starting points for a local search procedure that
is constrained within the region.

This method can be understood as an optimization frame-
work that combines adaptive global sampling with local
heuristic search. It uses a flexible partitioning method to

probability should be appealing to many practitioners, as
this is widely known in the comparison of two or more
systems.

3 INCORPORATING INHERITANCE

divide the design space into regions that can be analyzed pq siated in the previous section, the NP method can use

individually and then aggregates the results from each re-
gion to determine how to continue the search, that is, to
concentrate the computational effort. Thus, the NP method

adaptively samples from the entire design space and con-

280

local search to improve the estimates of the best solution
in each region. The search uses the randomly generated
sample points as starting points and continues until some
predetermine criteria is satisfied. In other words, an initial
set of sample point9*/) is obtained from each region
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o (k) inthek-th iteration and then some local search method
is used to transform this set into a new g&D*:/)) that
is presumably an improvement and in particular one would
expect that mip. o pw.jy £(0) < MiNgp.j) f(O).

In general, any local search method can be used, for
example taking each of the points in the sample point set
D%.J) as a starting point, that is,

L)) = {LO)}gepi

whereL(0) is the final solution after starting the local search
at an arbitrary initial solutio® € D%/). However, as the
algorithm already starts with a set of points, using a genetic
algorithm (GA) is a natural companion and we will do so
in our framework.

In the context of using GA within the NP framework, the
initial set of random sample®*:/) is the initial population
of the genetic algorithm, and the GA search then progresses
through a sequence of populatio k’j), ....,D,(,k’j) until
some stopping criterion is satisfied. The final population
D,(,k’-’) of the genetic algorithm is the set of points used by
the NP method to calculate the performance measures for
each region.

The critical issue of inheritance is now what to do with
the final populatior‘D,ﬂk’J') that was used to select the next
most promising regiow (k + 1) = o;+(k). Now clearly,
D& o (k + 1) and the best point iD/" is the best
solution that was found during this iteration. Discarding
such good solutions appears somewhat inefficient and thus
we want to investigate if it is beneficial to inherit all or a
fraction of D,(lk’f*) to the next iteration. Note that in the
next iteration, all the solutions 'rD,(,k’j*) fall into one of the
subregions o0& (k+1). Thus, by only looking afD,(,k’-j*) no
solutions are inherited to the surrounding region which may
induce a bias that makes it difficult to backtrack. However,
high quality solutions also exist that will fall into the next
surrounding region as

U o cevok+1)

J#i*
and many good solutions should be contained in this set
and can be inherited to the next iteration.

Summarizing the above thoughts, we now have the
following NP algorithm with inheritance and GA search:

3.1 NP with Inheritance
Step 0 Initializeo (0) = O, k = 1, fo”f’ =0, j=

1,2, ...,m. Let p be the fraction of the initial
population to be inherited.
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Step 1 Partitiono (k) into m — 1 subregionso; (k)
and aggregate the surrounding region into one
om(k) = O\ o (k).

Let 5,(,k_1’j*<k)) be p% best points in
D,Skil’j*(k)). Inherit these points from the pre-
vious iteration:

Step 2

D(()k"’) _ [9 c ﬁr(lk—l,j*(k))w c O'j(k)}v (2

j=12..m - 1. Similarly, inherit point
from (U, 4« DD t0 6, (k).
Step 3 Randomly sample

o~ D7)

®)

points froma;(k) and add to the seDy ",
=12 ..,m.

Applyn steps of a GA search to the set of points
from each region, generating a final population

D = £(Df).

Step 4

(4)

j=212 .., m.

Obtain simulation estimatég6) of the per-
formance of each of the solutions in each of
the final setsg € |, D&,

Find the region that looks the most promising
after the GA search:

Step 5

Step 6

j (k) =argmin min L(6).
J peptd

(®)

Step 7 Select the next most promising region by ei-
ther backtracking if the surrounding region is
best (j*(k) = m) or moving to the appropriate

subregion if one of those is the best:

ok —1),
o k) k),

if j*(k) =m,
otherwise.
(6)
Ifo(k 4+ 1) is a singleton terminate the search
and let the estimate of the best solution be

0(k-|—1)={

Step 8

6 =ok+1). @)

Otherwise let = k + 1 and go back to Step 1.

Of course there is a great deal of detail that is omitted
from Step 4 as the parameters of the GA search must
be specified, that is, the crossover and mutation operators
should be defined, as well as probabilities of survival, etc.
However, this should be done as for any GA search and is
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application specific. It will thus not be discussed further

here. The issue of when to terminate the GA search in
Step 4 is, however, of special interest and requires different
considerations. This will be addressed in the next section.

4 TERMINATING THE GA SEARCH

Within the NP framework a critical issue is how much effort
should be putinto each iteration, thatis, how well each region
should be explored before deciding which region should
become the most promising region in the next iteration.
This calculation of the amount of random sampling is
a key issue in the NP methodology in general and as its
determination is somewhat difficult. Also note that when
applying the NP method to a simulation optimization prob-

least probabilityP*. Thus, the left hand side of (8) becomes
a lower bound on the probability of terminating correctly
within an indifference zone.

We suggest a similar approach for the NP with Inher-
itance algorithm. Note that this is equivalent to determine
how much effort should be devoted to the GA search, that is,
how many populations the GA should generate. Also note
that the usual stopping rules for GA may not be appropriate.
When implementing GA as an independent optimization al-
gorithm it may be appropriate to continue the search while
better solutions can be found by the algorithm, and for ex-
ample use a stopping rule that terminates the search when
no improvement has been found for a fixed number of iter-
ations. However, when using GA to select regions within
the NP framework we may want to terminate the GA search

lem there are two sources of randomness that complicate even it could still make improvements. Specifically, as soon
the selection of the correct subset. First, there is a sam- as the correct region can be selected with sufficiently high
pling error due to a relatively small sample being used to confidence (or probability) then the GA search should be

estimate the performance of an often large set. Secondly,
the performance of each sample points is estimated using
simulation and is hence noisy. It is important to observe
that the former of these elements implies that the variation
within a subset differs greatly from one region to the next.
As an extreme case consider a singleton region that is being
compared to the entire surrounding region. Thatis, a region
containing only one solution being compared to a region
containing all of the other solutions. Clearly the first source
of randomness has been completely eliminated in the sin-
gleton region, whereas it probably accounts for almost all
of the randomness in the surrounding region. This implies
that to make better use of the sampling effort the number
of sample points from each region should be variable and
dependent on the variation within the region.

In the case of NP without inheritance this can be ad-
dressed by assuming that enough exploration is done to
make the correct selection with a fixed probabilRy > %
With this assumption, Olafsson (1999) uses a random walk
analysis to show that the probability of terminating cor-
rectly when first encountering a singleton, that is the first
singletons is really the optimal solutiom,,,,,, is given by
the following equation:

(1— PH" — (PpH©
(1 — P*)2d" — (px)2d*”

P [5 - o:p,] —(PH" ®)

whered* is the depth of the tree generated by the iterative

terminated even if it could make further progress.
Given the above discussion, we can now elaborate on
Step 4 in the NP with Inheritance algorithm:

Step 4 Given an initial populatioleék’j) for each
regionj =1,2, ..., m.
Setl = 0.
Loop
Set/ =1[+1.
Foreveryj =1,2,....m

Apply one GA step thl(k’j).
Simulate the performance of @lle
D,
Calculate the meanl(k’j) and vari-
anceVar,(k’j) of this population.
End for
Foreveryj =12, ....m
Use a statistical selection proce-

dure andul(k’j), Varl(k’j), Jj =

1,2, ...,m to determine if more
exploration is needed from; (k).
End for
Until no more exploration is needed.

Return the final populations for each region.

partitions, that is, the maximum number of partitions needed as pefore we have left out the details of the GA search

until the regions become singletons.
Equation (8) assumes that the correct selection is made
with a fixed probability and this must therefore be somehow

assured. Olafsson (1999) suggests to use a ranking-and-

itself (crossover, mutation, etc) as it is problem specific. We
have also not specified which statistical selection procedure
should be used.

In past NP variants (without inheritance), two-stage

selection procedure (Goldman and Nelson, 1998) to pre- yrocedures such as Rinott's procedure (Rinott, 1978; Olaf-
scribe the number of sample points that are needed to makeggon 1999) and the Nelson-Matejcik procedure (Matejcik

the correct selection, within an indifference zone, with at and Nelson, 1995: Olafsson and Kim, 2001) have been
282



Kim and Olafsson

used. As these procedure guarantee correct selection withinnew region should be selected. This topic requires further
an indifference zone with a predetermined probability, they research.
fit nicely with the analysis of NP without inheritance and The empirical performance of using inheritance is
equation (8) can be used. Here, however, the random walk promising with significant speedups in the running time
analysis that lead to this equation can no longer be applied as of the algorithm. One of the most interesting elements of
the inheritance causes a dependency between iterations thabur initial experiments, however, is that the best levels of
means that there is no longer an underlying homogeneous inheritance are very low, perhaps one one or two of the
Markov chain structure to be used for the analysis. best solutions. The explanation for this may be that the NP
Due to the lack of independence, previously use rank- method uses the best point from each region to determine
ing and selection methods may not be the best choice now which region becomes the most promising in the next it-
for controlling the search, and another approach to making eration, and this is the critical decision in each iteration.

the correct selection is to use Bayesian analysis (Chick,
1997; Chick and Inoue, 1999; 2000). This approach does
not guarantee a correct selection probability within an in-
difference zone, but may be more consistent with NP with
Inheritance as inheriting points simply means that there is
an informative prior before more effort is put into each
iteration to obtain a new posterior distribution.

5 PRELIMINARY NUMERICAL RESULTS

We have conducted some simulation experiments for opti-
mizing simple queuing systems to indicate the promising of
the proposed inheritance feature in the NP algorithm. The
preliminary results indicate the following:

Inheritance can significantly speed convergence
with common speedup factor being 20% to 30%.

The quality of the solution is not affected by the

inheritance feature.

The optimal level of inheritance seems to be sur-
prisingly low. For the small test problems, just

inheriting one or two of the best solutions tends
to have the best performance.

Detailed results of the simulation experiments will be re-
ported later.

6 CONCLUSIONS

In this paper we have looked at the NP method for simulation
optimization and proposed a new variant that incorporates

inheritance between iterations to speed convergence. A de-

tailed algorithm is presented for the new method, which

also incorporates genetic algorithm search, and the primary
theoretical and practical issues involved in adding the in-

heritance feature are discussed.

From convergence analysis standpoint the main issue is
that independence from one iteration to the next is needed
for all of the prior analysis for the NP method, and this
independence no longer holds for the NP with Inheritance
algorithm. Thus a new approach must be investigated and
we propose that this could be based on using Bayesian
analysis to guide the search, that is, to determine when a

283

However, more experimental results are need to confirm
this behavior and more analysis is needed to obtain a sat-
isfactory explanation of why small amount of inheritance
are preferable.
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