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ABSTRACT Y and computing from it @oint estimato. Thesampling

distribution of 6 is often normal, with the statistical quality
Stating a confidence interval is a traditional method of indi- of 6 summarized by itbias
cating the sampling error of a point estimator of a model's R R
performance measure. We propose a single dimensionless biag#, 0) = E@©) — 6
criterion, inspired by Schruben’s coverage function, for eval-
uating and comparing the statistical quality of confidence- and itsvariance
interval procedures. Procedure quality is usually thought
to be multidimensional, composed of the mean (and maybe var@) = E((@ — E))?),
the variance) of the interval-width distribution and the prob-
ability of covering the performance measure (and maybe which can be combined into itsiean squared error
other values). Our criterion, which we argue lies at the

heart of what makes a confidence-interval procedure good ms&@, 0) = E((@ — 0)%) = biag(@, 0) + var®).
or bad, compares a given procedure’s intervals to those of
an “ideal” procedure. For a given point estimator (such Often both bias and variance acn 1), wheren is

as the sample mean) and given experimental data processthe sample siz€or other measure of size of the output-data
(such as a first-order autoregressive process with specified set, such as computation time for Monte Carlo simulation
parameters), our single criterion is a function of only the experiments). The bias contribution to the mse is then
sample size (or other rule that ends sampling). negligible, allowing the quality of to be measured by its

standard error
sted) = /var@).
Wilson and Pritsker (1978) propose a single dimensionless

criterion for comparing methods for dealing with the ini- Alternatively, the quality of¢ can be indicated by a
tial transient in steady-state simulation experiments. In a confidence interva(L,, U,), where the random variables
similar spirit, but with a different approach, we propose a L, andU, are functions of the output datawith the goal
single dimensionless criterion for evaluating and comparing 0f achieving
confidence-interval procedures (CIPSs).
In this section vSe introduce(notat)ion and terminology PI(Ly =6 = Uy =n,

associated with estimation in statistical inference. In Section \yherey is the nominal coverage probability
2we discuss issues associated with evaluatingand comparing  Extension to higher dimensions has a vector perfor-
CIPs, in Section 3 we propose a graphical approach and mance measuré estimated by a random vector point es-
an associated single criterion for evaluating and comparing timator 9, with sampling distribution summarized by a
CIPs, and in Section 4 we list some additional thoughts.  covariance matrix and a confidence region rather than a

o confidence interval. In this paper, we assume a scalar per-
1.1 Estimation formance measure, although the main ideas extend directly

. o ) ) to higher dimensions.
We consider a statistical experiment that estimates the value

of aperformance measureby creating a set afutput data
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1 INTRODUCTION
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1.2 Prototypical Example

In the prototypical example, the performance measure is
6 = u, the mean of a stationary time series with marginal
variances? and lagh autocorrelations

_ E(i Yign) — p?
o2

forh =...,-2,-1,0,,2,.... For dataYy, Yo, ...
the point estimator is the sample average

n
Y=) Yi/n,
i=1

which is unbiased with variance

Oh

)

7Yn:

— o2 " h
var(Y) = —[1+2 > (11— =) pyl.
n 1 n

The standard error, as always, is

staY) = y/var(Y).

If Y is normally distributed with known variance \@m), the
confidence intervalL,, U,) achieves the nominal coverage
probability by choosing

Ly =Y = Za4p/2StEY)
and

Uy =Y 4 2(14y,25teY),
wherez, denotes theyth quantile of the standard normal
distribution; i.e.,

cb(zq):/q $()dz = q.

where¢ (z) = e %°/2//2x is the standard normal density
function.
The interval width is

Wy = Uy — Ly = 221y /2 StE(Y),
a constant. The coverage indicatfy, is random, with

C, = 1 if and only if the nominal coverage probability
is less thamA, where

A=2¢<YTF>—L
staY)
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thecoverage valuéhat yields the shortest interval that covers
the performance measure

1.3 Point Estimators

In general, the performance measdrean be any property

of the (joint) distribution yielding the output datéd and

the point estimator can be any function of the observations
in the output data seY. Given a performance measure
(such as the standard deviation, the coefficient of variation,
a quantile, or a correlation) creating an appropriate point
estimator is often as simple as using the sample analog;
the choice has little to do with the output-data process.
For example, if the performance measure is the marginal
variance,6 = o2, the usual point estimator is the sample
variance

i Y- ny’
n—1 '

Creating an appropriate CIP, however, involves careful
thought about the output-data process.

§2 =

1.4 Confidence-Interval Procedures

The prototypical example is misleading in that the CIP
to compute(L,, Uy) is so simple that the ternmterval
estimatoris often used; the worgrocedureis seldom used
when L, and U, are such simple functions df.
Generalizing the prototypical example quickly requires
more-complicated functions, for which the waocbcedure
seems appropriate. Suppose the simplest case, where the
output data are independent and identically distributed (iid)
and normal. Ifthe variance vér) is unknowng, is replaced
by a Student-t quantile. If the performance measure is the
marginal variance, the usual confidence interval is

(n —1)82
Ly=—5—"—
X1-n)/2,n-1
and
—1)82
v, = =S

2 9
X(@+m)/2,n—-1

which is not symmetric around the point estimator.

Even when the performance measure is a mean, cre-
ating a CIP becomes yet more difficult for data s&ts
that are not iid or normally distributed. The sample size
might be a random variable, such as when an experiment
simulatesn factory shifts and theth output observation
Y; is the time that theth part spends waiting for process-
ing. The data might be quite non-normal, as illustrated by
the same example. The data might be autocorrelated, with
unknown autocorrelations. The data might not be identi-
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cally distributed, possibly due to the initial transient in a
steady-state simulation experiment.

It might seem that a good CIP, for a given confi-
dencen, would have the smallest possible expected width

One approach to confidence intervals is to avoid them. E(W,), the smallest possible width variance &), and
Schmeiser (2001) discusses several well-known disadvan- the largest possible actual coverage probability The
tages of confidence intervals. Song and Schmeiser (1994) choice (L,, U,) = @, 0) yields W,, = 0 for the smallest
discuss various alternatives for reporting point-estimator pre- possible mean and variance but Wlth actual coverage prob-
cision. One alternative is to report the estimated standard ability n” = 0. The choice(L,, U,) = (—o0, c0) yields
error, without the additional computation of the confidence W, = oo for the largest possible actual coverage probability
interval, which requires specifying a value fprand addi- n’ = 1 but with infinite interval width.
tional assumptions about the output-data process. Methods The fundamental conflict between the criteria compli-
for estimating the standard error of the sample mean are cates CIP design because only truly bad CIPs are dominated
fairly well developed (Example 1 of Calvin et al. 1999, in all criteria, especially considering that comparisons must
Goldsman and Meketon 1986, Song and Schmeiser 1995, be made for various output-data processes, amount of sam-
Pedrosa 1994, Yeh 2002). These ideas and methods focuspling n, and nominal confidence values
on obtaining a small value for mg&r(Y)). Having the Kang and Schmeiser (1990) argue for a graphical ap-
single criterion simplifies procedure design, evaluation, and proach to comparing CIPs, in the hope that the visualization
comparison. of the multiple criteria would yield clearer conclusions about

Despite their disadvantages, the attraction of confidence CIP quality. Nevertheless, most empirical CIP comparisons
intervals is strong, maybe because they are covered in mostare reported with tables containing estimates of expected
introductory statistics courses. In the systems-simulation width, E(W,), and actual coverage probability, for many
community, for example, a large CIP literature, spanning cases defined by data process amount of sampling,
decades, has been created for the meamith time-series and nominal coverage probability.
data that are assumed to be identically distributed, but non-
normal and autocorrelated (Fishman and Yarbarry 1997, 2.2 Shortcomings of the Usual CIP Criteria
Law and Carson 1979, Steiger et al. 2002).

Given that such CIPs exist and continue to be created, The usual striving for short and stable interval widths and
and despite our lack of enthusiasm for confidence intervals for high coverage probabilities leads to CIP-design conflicts.
in practice, we proceed to Section 2 where we argue for a Worse, the desire for short intervals and for high coverage
new view about what makes a CIP good. probabilities is in error. The best value for actual coverage
probability, n’, is not one, but rather the nominal value,
n. The best interval width is not zero, but whatever width
correctly indicates the sampling error in the point estimator
6. A short interval is bad if it misleads the practitioner to
We argue here that the usual CIP criteria are deficient and think that the sampling error is small when it is not. To
argue that a good CIP should be valid (in a certain sense) argue for “shorter is better” is to forget the purpose of the
and should provide intervals appropriate to the observed confidence interval. Therefore, a CIP that is “conservative”
data rather than to the underlying process. in the sense of providing actual coverage probability greater
than the nominal coverage probability is not as good as a
similar CIP that matches the actual to the nominal coverage
probability

One-sided confidence intervals provide another argu-
ment against using interval widtW, for CIP evaluation,
because the intervalé—oco, U,) and (L,, co) both yield
W, = oo.

2 COMPARING CONFIDENCE-INTERVAL
PROCEDURES

2.1 The Usual CIP Criteria

Evaluating and comparing CIPs is complicated by multiple
criteria. The quality of a CIP is usually viewed as being
a function of the joint distribution of thénterval width

W, = U, — L, and of thecoverage indicatoiC,, which is
one if L, <0 < U, and otherwise zero. The two most-
commonly used CIP criteria are the marginal means: the
expected width, BV,)), and theactual coverage probability

n = E(Cy =Pr(L, <6 < U,). A third CIP criterion If short interval widths and high actual coverage probabilities
is var(W,), with a small value indicating interval stability;  are not good, then what is good? First, a CIP needs to be
a high value makes the CIP useless as an indication of good not only for a particular value af but for all values
point-estimator quality. Schmeiser (1982) also discusses of n between zero and one. Schruben (1980) addresses this
the probability of covering points other thédnanalogous to point with his definition of coverage function. As in Section
operating characteristic curves in hypothesis testing, buteven 1.2 for A in the prototypical CIP, but now for any specified
the first three CIP criteria lead to inconclusive comparisons. CIP, definel to be the value of; that, for this CIP and this
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2.3 What Should a Good CIP Do?
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particular realization, yields the shortest confidence interval
that covers the performance meas@rdf the assumptions

of the CIP are true, the¥r is uniformly distributed orQ, 1),

and we say that the CIP iglid. (The coverage valug

is analogous to the value of hypothesis testing, where
if Hp holds then thep value isU (0O, 1).) To graphically
illustrate and statistically test the assumptions underlying
the CIP, Schruben defines tlkeverage functiorio be the
empirical cumulative distribution function (cdf) of (for
which he uses;*). Whenever all assumptions underlying
the CIP are true, the cdf is a straight line fraiy 0) to
1,1).

We argue now for a second property of a good CIP.
This property is that, for each realization, a good CIP
should provide an interval that is appropriate in light of
the information that is provided to it; the interval should
not necessarily be good in terms of the output-data process,
which is unknowable to the CIP. In addition to assumptions,
the information is the output-data s&t If a particular
realization ofY is misleading, then a good CIP should
provide a misleading interval. To hope for a good interval
based on bad sample data is to hope for magic.

If we accept the second property as being desirable,
then we need an implementable definitionagipropriate
We argue that an interval is appropriate if, for this particular
realization, its interval matches that of an expert. In this
case, the expert is ddeal CIP, one for which all statistical
assumptions are true and that is allowed to use information
unavailable to a real-world CIP. The ideal CIP should perform
better than any real-world CIP in the sense that its coverage-
function random variable is U (0, 1) and in the sense that
its intervals are the length appropriate for indicating the
sampling error of).

For example, the prototypical example of Section 1.2
could be used as the ideal CIP for evaluating and comparing
real-world CIPs that mut estimate v&b. If someone pro-
posed a CIP to compete with the usual Student-t distribution,
then that CIP would be better if, and only if, it returned
intervals closer to the those of the ideal known-variance
CIP than does the Student-t intervals.

An important distinction is that we are not arguing
for comparing the distributions af_,, U,) or of (W,, C;)
from many realizations. Rather, we are arguing for a paired
comparison of intervals from two CIPs based on the same
output-data set. We now combine this non-traditional
view with Schruben’s coverage-function idea to propose a
single CIP criterion.

3 COMPARING TO AN IDEAL CIP

We assume that, for a particular situation, an ideal CIP has
been chosen. We wish to measure the difference between
its intervals and the intervals from a specified real-world
CIP. The comparison is pairwise, in that for each realization
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of Y and nominal confidence, both the ideal CIP and the
specified CIP return an interval.

Like Schruben (1980), we do not specify a value of
n. Rather than comparing the pairs of lower bourids
or pairs of upper bound#,, or pairs of widthsw,, or
pairs of coverage indicatois,, all of which depend upon
the nominaln, we compare the coverage values. et
denote the coverage value from the ideal CIPfeenote
the coverage value from the specified CIP. Each realization
of Y yields one pairn(A, W), which is not a function of a
nominaln value.

In practice, and as illustrated in Subsections 3.2 and
3.3, we advocate comparing a specified CIP to an ideal
CIP with a meta experiment @fMonte Carlo practitioners,
each of whom uses both CIPs. Foe 1, 2,...,r, the jth
practitioner observe$;, 1/;). A scatter plot of the pairs
illustrates the empirical performance of the specified CIP.
Points close to the diagonal represent confidence intervals
that are good in the sense of mimicking the ideal CIP.

Similarly, two specified CIPs can be compared to each
other by comparing each to the ideal CIP. Plotting the 2
points (8, 1/;), using two symbols, visually compares the
empirical performance of the two CIPs. We do not plot the
r pairs ofy;s, since we are arguing that a CIP is good (or
bad) only with respect to an ideal CIP. If there is no agreed
upon common ideal CIP, then we do not provide a method
for comparison.

3.1 The Single Criterion

Although we like visual illustration of performance, a single
numerical criterion is also desirable. The single criterion
should measure how well the specified CIP intervals match
the ideal CIP intervals. We propose using(E — ¥)?),
the expected squared error between the paired coverage
values. Small values are good. The ideal CIP scores
E((A—A)2) = 0. Other CIPs have positive scores, possibly
becauseW is not U(0,1) due to violated assumptions.
Even if a CIP has no violated assumptions (i.e., is valid),
however, it will have a positive score unleds= A for
every realization.

Using squared error, rather than an alternative such as
absolute deviation, yields the decomposition

E((A — V)?) = mse¥, 1/2) + 1i2 —2covA, V),

obtained by subtracting/2 from bothW¥ and A, expanding

the square, using®) = 1/2 and vafA) = 1/12, and sim-
plifying. This decomposition yields two terms correspond-
ing to the two properties that we have argued are important.
First, a valid method has meg, 1/2) = var(¥) = 1/12
becausel is U(0, 1); this term does not depend upon the
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choice of ideal CIP. Second, a good CIP provides intervals
similar to the ideal CIP, as measured by 2chy V).
We have tried to obtain a decomposition with two posi-

In summary, 0< E((A — ¥)?) < 7/12, with every
reasonable CIP satisfying® E((A — ¥)?) < 1/3. Every
valid CIP satisfies O< E((A — W)?) < 1/6. Every com-

tive terms, much like the mse decomposes into squared bias petitive CIP will have a single-criterion value substantially

and variance. We would prefer to have a decomposition
with a non-negative term indicating departure from uni-
formity and a non-negative term indicating coverage-value
distances, but we have not found one.

For more insight into the single criterion, we briefly
consider eight special cases, all of which are simple and
none of which are realistic. Throughout, from the ideal
CIP is assumed to b& (0, 1).

» As discussed above, but included here for com-
pleteness, il = A, then (A — ¥)2) = 0.

 If a CIP is valid, then¥ is U(0, 1), which im-
plies that E(A — W)?) = (1 — corr(A, ¥))/6.

(If all CIPs were valid, then either cox, W) or
corr(A, W) would be an appropriate single crite-
rion.)

» If a CIP returns intervals that are independent of
those of the ideal CIP (despite having common
datay), then E(A —¥)?) = msgW, 1/2)+1/12,
in which case the single criterion cannot be less
than 1/12.

»  Combining the previous two cases (a valid CIP that
is independent of the ideal) yield§ @ — W)?) =
1/6, quite alarge value. Despite returning intervals
independent of those of the ideal CIP, Schruben’s
coverage function is a straight line because it con-
siders only the effects of incorrect assumptions.

* A perversely bad case & = 1— A, which also
corresponds to a valid CIP. Now the CIP returns
a large interval when the ideal CIP returns a short
interval, and vice versa. Herg & — ¥)?) = 1/6.

« A trivially easy CIP to implement is to assume
that st€9) = 0. Then the confidence interval
has zero width ab, yielding ¥ = 1 except in
the (unlikely) realizations in whicld = 6. Here
E(A —W)?) = 1/3.

» Alsoeasytoimplementisthe more-general CIP that
flips a coin to return a zero-width interval@tith
probability 1— » and (L, Uy) = (—o0, co) with
probabilityn. For any value ofy, this CIP provides
the nominal coverage probability Nevertheless,
the distribution oft isnotU (0, 1). Rather, P(Y =
0) = nand P(¥ = 1) = 1—1n. For every value of
n € [0, 1], the single criterion is EA — ¥)2) =
1/3.

» The worst case in terms of maximizing the single
criterion is¥ = 1 wheneverA < 1/2 and¥ =0
wheneverA > 1/2. Here E(A — W)2) = 7/12.
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less than 16.
3.2 Example: Student-t CIPs

To gain more insight into the single criterion, we consider
the performance of Student-t confidence intervals for the
meany of iid normal data. The ideal CIP is the prototypical
example in Section 1, with all zero autocorrelations. That
is, the ideal CIP produces the confidence interval centered
at Y with half width z(14,),20/+/n. The Student-t CIP
produces the confidence interval centeredrawith half
width #(14.9)/2,n—1 S/+/n, wheret, , is thegth quantile of
the Student-t distribution withv degrees of freedom.

The coverage-function values for the Student-t CIP are

Y — ul

S/ﬁ)_l’

where F, is the Student-t cumulative distribution function
(cdf) with v degrees of freedom. The analogous formula
for the ideal CIP’sA is in Subsection 1.2.

Consider samples of size= 10. Figure 1 is a scatter
plot of 100 Monte Carlo observatioris;, v/;), representing
the simulated experience of= 100 practitioners. Because
the ideal CIP and the Student-t CIP are valid, the marginal
distributions of bott\ andW¥ areU (0, 1), which is consistent
with the r = 100 points. The points cluster around the
diagonal, as is required of a CIP that mimics the ideal CIP.

Because Student-t CIPs are valid((E — ¥)?) =
(1/6)(1 — corr(A, ¥)). In this example, the empirical
covariance isCov(A, W) ~ 0.080 and the corresponding
correlation isCorr(A, &) = 12Cow(A, &) ~ 0.960. The
corresponding empirical value of the single criterion is
E((A —W)?) ~ 0.0069. (These empirical results are based
on r = 20000 simulated practitioners; all digits shown are
correct to within one unit.)

How does this value of the single criterion relate to
more-traditional measures of CIP performance? Although
E((A — ¥)?) ~ 0.0069 seems close to zero, this CIP is far
from the ideal. From Table 1 of Schmeiser (1982), for any
coverage probability), the confidence-interval width®,
have coefficient of variation.Q4, whereas the ideal has zero
coefficient of variation. For = 0.95, the expected interval
width is about 4 standard errors, whereas the ideal CIP
has expected interval width of abou93standard errors.

Now consider the effect of taking batches of size= 2.
Then = 10 observations form five batch means, with four
degrees of freedom. Figure 2 compares the Student-t CIPs
for ten batches of sizen = 1 and five batches of size

v = 2Fn_1(



Schmeiser and Yeh

X%
08f X %
07t « e ,
0.6 b
05r X % i
04r X i
0.3+ % X 1
0.2 X X q

0.1f

0.7 0.8 0.9 1

Figure 1: Forn = 10 and IID Normal Data, Student-t
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A

m = 2. Ther = 100 points (shown ax) from Figure 1
for batches of size one are shown with the corresponding
r = 100 points (shown as) for batches of sizen = 2,
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Figure 2: Forn 10 and IID Normal Data, Student-t
Coverage Values Plotted against Normal Coverage Values,
for Batch Sizesn =1 (x) andm = 2 (o)

is not immediately visually obvious. Closer examination
shows that for each of the= 100 realizations, the invalid-
normal + lies above the Students. The shorter widths

based on the same Monte Carlo realizations. Because of theyijeld larger & coverage values, which is good when the

commonA values, the points appear as vertical pairs. The
points corresponding to batches of size= 2 cluster less
around the diagonal, as is to be expected, with empirical
covariancetov(A, W) ~ 0.076, empirical correlation is
corr(A, W) ~ 0.908, and empirical value of the single
criterion E((A — W)2) &~ 0.0154.

3.3 Example: Invalid-normal CIPs

Now consider the (invalid) CIP for the mearof iid normal
data that uses an estimated variasée but assumes that
o2 = §2 by using half widthz(1.4,),25/+/n rather than the
valid half width from Subsection 3.2. Despite this CIP
being invalid, using the traditional criteria it is better than
the Student-t CIP in that its width#,, are shorter and have
smaller variance. It is worse than the Student-t CIP in that
its actual coverage probabilities are less than nominal.
This invalid-normal CIP is compared to the Student-t
CIP forn = 10 observations with batches of size= 2 in
Figure 3, using the same= 100 realizations as Figures 1
and 2. Ther = 100 Student-t points from Figure 2 (still
shown a®) are shown with the corresponding= 100 points
(shown ast) for the invalid-normal CIP. Even with only four
degrees of freedom, the difference between the two CIPs
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data yield a variance estima$€ that is substantially larger
than the true variance2. On the whole, however, the
inappropriately short intervals perform worse.

Based onr = 20000 Monte Carlo practitioners, with
negligible standard errors, the = 10,m = 2) invalid-
normal empirical covariance iSow(A, W) ~ 0.081, the
empirical correlation iorm(A, ¥) ~ 0.909, and the em-
pirical single-criterion value i€((A — W)?) ~ 0.0182.

The invalid-normal single criterion is about 18% larger
than for the Student-t single criterion. It is larger because
the underlying assumptions are violated, resulting in the
distribution ofw being non-uniform. In particular, although
the empirical meaf (W) is one half, the empirical value of
the invalid-normal variance igar(¥) ~ 0.096, larger than
1/12.

Because Student-t confidence intervals have substantial
foundation in both theory and practice, it would be surprising
if any alternative CIP were better. Therefore, if an alternative
CIP, such as the invalid-normal CIP considered in this
subsection, produced a lower single criterion, that would be
a strong argument that our single criterion is not adequate
for evaluating CIPs.
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Figure 3: Fom = 10,m = 2 and IID Normal Data, Student-
t Coverage Pairsj Compared to Invalid-Normal Coverage
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4 ADDITIONAL THOUGHTS

will arise from assuming knowledge of unknowable val-
ues about either the data process or the point-estimator’s
sampling distribution.

Another use of a CIP is as a means to evaluate procedures
for other statistical problems. For example, Wilson and
Pritsker (1978) base their start-up criterion on confidence-
interval properties and Wilson and Pritsker (1984) compare
variance-reduction techniques using CIP properties (as well
as on the standard-error of the resulting point estimator).
In these cases there is only one CIP, to which different data
setsY are input. Our single criterion has, we think, nothing
to say about this use of CIPs.

Finally, we mention that maybe the single criterion can
be used to evaluate and compare individual CIPs across
sample sizes and families of CIPs that are parameterized
by degrees of freedom. For example, for Student-t CIPs
applied to iid normal data, the single criterion decreases
to zero as sample size (and degrees of freedom) go to
infinity. In Subsection 3.2, for both = 9 andv = 4, the
empirical value of the product of and the single criterion
E((A — ¥)?) is 0.062, which suggest® (v—1). Whenever
this rate holds, the product of sample size and the single
criterion (or of degrees of freedom and the single criterion)
would be a single criterion for the entire family of CIPs.

APPENDIX: WHY NOT USE COVARIANCE?

We choose EA — W)?) as our single criterion after also

Throughout this paper we have assumed that the purposeconsidering covA, V), for which large values would indi-

of a CIP is to indicate the precision of a point estimator

cate good CIP performance. If, as is ided#,= A, then

0. Competing CIPs therefore are assumed to be based on acov(A, W) = var(A) = 1/12 because\ is U (0, 1). For a

common data set of sizen, from which a common point
estimatorf is computed. The community of researchers
with competing CIPs is expected to agree on the ideal CIP
to be used for the single criterion.

Another purpose of a CIP is to provide a confidence
interval as the primary product, rather than as an auxiliary
to the point estimator. Here competing CIPs use a common
data set of sizen, but the point estimator might differ (or,
in rare cases, such as quantile estimation, the CIP might
not be a function of a point estimator). Here, again, the
community of researchers with competing CIPS is expected
to agree on the ideal CIP to be used for the single criterion.

Some CIPs determine the sample sizeas part of

CIP with W independent ofA, the covariance is zero. All
reasonable CIPs have positive values.

The covariance is not a good single criterion, however,
because it is not maximized by ocav, A) = 1/12. A
counter example is to defing = A?, which corresponds
to the ideal CIP foh = 1. BecauseA is U(0, 1),

COV(A,¥) = EWMA)-— @
b
— E(Ab+1) _ E(A )
2
1 1

b+2 2b+1)

the procedure. Because competing CIPs then have unequal
sample sizes, they cannot be compared using exactly the Rather than being maximized &t = 1, the maximum

same data sat. How to choose an ideal CIP is less obvious
in this setting.

Other than suggesting the prototypical example of Sub-
section 1.2 for the mean, we have said nothing about the
nature of the ideal CIP except the assumption that it is
usually valid and is always the standard of comparison. We
have not been able to define a procedure for automatically
determining an ideal CIP. Our impression is that it usually
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covariance value occurs at= +/2 and yields coA, W) ~
0.086, which is larger than con, A) = 1/12.

The deficiency in using covariance is that it does not
include our desire folr to be U (0, 1), as is required of
every valid CIP. At the optimal power = /2, the mean
is E(W) ~ 0.414, not E¥) = 0.5.

As another example of the deficiency of using covari-
ance, consider the invalid-normal CIP from Subsection 3.3.
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There, the invalid-normal covariance is081, which is
larger than the Student-t covariance ddT6 in Subsection
3.2.

Another brief thought was to use cof, ). A quick
counter example is to conside¥ = bA, which yields
corr(A, W) = 1 for everyb € (0, 1]. Becauseé = 1 is not
the unique optimal coefficient, correlation is not an adequate
criterion for evaluating CIPs. Also, both the invalid-normal
CIP and the Student-t CIP yielded a correlation of abc@t 0
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