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ABSTRACT

Stating a confidence interval is a traditional method of ind
cating the sampling error of a point estimator of a model
performance measure. We propose a single dimensionl
criterion, inspired by Schruben’s coverage function, for eva
uating and comparing the statistical quality of confidenc
interval procedures. Procedure quality is usually thoug
to be multidimensional, composed of the mean (and may
the variance) of the interval-width distribution and the prob
ability of covering the performance measure (and mayb
other values). Our criterion, which we argue lies at th
heart of what makes a confidence-interval procedure go
or bad, compares a given procedure’s intervals to those
an “ideal” procedure. For a given point estimator (suc
as the sample mean) and given experimental data proc
(such as a first-order autoregressive process with specifi
parameters), our single criterion is a function of only th
sample size (or other rule that ends sampling).

1 INTRODUCTION

Wilson and Pritsker (1978) propose a single dimensionle
criterion for comparing methods for dealing with the ini
tial transient in steady-state simulation experiments. In
similar spirit, but with a different approach, we propose
single dimensionless criterion for evaluating and comparin
confidence-interval procedures (CIPs).

In this section we introduce notation and terminolog
associated with estimation in statistical inference. In Secti
2 we discuss issues associated with evaluating and compa
CIPs, in Section 3 we propose a graphical approach a
an associated single criterion for evaluating and compari
CIPs, and in Section 4 we list some additional thoughts

1.1 Estimation

We consider a statistical experiment that estimates the va
of aperformance measureθ by creating a set ofoutput data
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Y and computing from it apoint estimator̂θ . Thesampling
distributionof θ̂ is often normal, with the statistical quality
of θ̂ summarized by itsbias

bias(θ̂ , θ) = E(θ̂)− θ

and itsvariance

var(θ̂) = E((θ̂ − E(θ̂))2),

which can be combined into itsmean squared error

mse(θ̂ , θ) = E((θ̂ − θ)2) = bias2(θ̂ , θ)+ var(θ̂).

Often both bias and variance areO(n−1), wheren is
thesample size(or other measure of size of the output-data
set, such as computation time for Monte Carlo simulatio
experiments). The bias contribution to the mse is the
negligible, allowing the quality of̂θ to be measured by its
standard error,

ste(θ̂) =
√

var(θ̂).

Alternatively, the quality of̂θ can be indicated by a
confidence interval(Lη, Uη), where the random variables
Lη andUη are functions of the output dataY with the goal
of achieving

Pr(Lη ≤ θ ≤ Uη) = η,
whereη is thenominal coverage probability.

Extension to higher dimensions has a vector perfo
mance measureθ estimated by a random vector point es
timator θ̂ , with sampling distribution summarized by a
covariance matrix and a confidence region rather than
confidence interval. In this paper, we assume a scalar p
formance measure, although the main ideas extend direc
to higher dimensions.
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1.2 Prototypical Example

In the prototypical example, the performance measure
θ = µ, the mean of a stationary time series with margin
varianceσ 2 and lag-h autocorrelations

ρh = E(Yi Yi+h)− µ2

σ 2 ,

for h = . . . ,−2,−1,0, ,2, . . .. For dataY1, Y2, . . . , Yn,
the point estimator is the sample average

Y =
n∑
i=1

Yi/n,

which is unbiased with variance

var(Y ) = σ 2

n
[1+ 2

n∑
h=1

(1− h
n
) ρh].

The standard error, as always, is

ste(Y ) =
√

var(Y ).

If Y is normally distributed with known variance var(Y ), the
confidence interval(Lη, Uη) achieves the nominal coverage
probability by choosing

Lη = Y − z(1+η)/2 ste(Y )

and

Uη = Y + z(1+η)/2 ste(Y ),

wherezq denotes theqth quantile of the standard normal
distribution; i.e.,

8(zq) =
∫ zq

−∞
φ(z)dz = q,

whereφ(z) = e−z2/2/
√

2π is the standard normal density
function.

The interval width is

Wη = Uη − Lη = 2z(1+η)/2 ste(Y ),

a constant. The coverage indicatorCη is random, with
Cη = 1 if and only if the nominal coverage probabilityη
is less than1, where

1 = 28

(
Y − µ
ste(Y )

)
− 1,
s

thecoverage valuethat yields the shortest interval that covers
the performance measureµ.

1.3 Point Estimators

In general, the performance measureθ can be any property
of the (joint) distribution yielding the output dataY and
the point estimator can be any function of the observation
in the output data setY . Given a performance measure
(such as the standard deviation, the coefficient of variation
a quantile, or a correlation) creating an appropriate poin
estimator is often as simple as using the sample analo
the choice has little to do with the output-data process
For example, if the performance measure is the margin
variance,θ = σ 2, the usual point estimator is the sample
variance

S2 =
∑n
i=1 Y

2
i − nY

2

n− 1
.

Creating an appropriate CIP, however, involves carefu
thought about the output-data process.

1.4 Confidence-Interval Procedures

The prototypical example is misleading in that the CIP
to compute(Lη, Uη) is so simple that the terminterval
estimatoris often used; the wordprocedureis seldom used
whenLη andUη are such simple functions ofY .

Generalizing the prototypical example quickly requires
more-complicated functions, for which the wordprocedure
seems appropriate. Suppose the simplest case, where
output data are independent and identically distributed (iid
and normal. If the variance var(Y ) is unknown,zq is replaced
by a Student-t quantile. If the performance measure is th
marginal variance, the usual confidence interval is

Lη = (n− 1)S2

χ2
(1−η)/2,n−1

and

Uη = (n− 1)S2

χ2
(1+η)/2,n−1

,

which is not symmetric around the point estimator.
Even when the performance measure is a mean, cr

ating a CIP becomes yet more difficult for data setsY
that are not iid or normally distributed. The sample size
might be a random variable, such as when an experime
simulatesn factory shifts and theith output observation
Yi is the time that theith part spends waiting for process-
ing. The data might be quite non-normal, as illustrated b
the same example. The data might be autocorrelated, wi
unknown autocorrelations. The data might not be identi
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cally distributed, possibly due to the initial transient in
steady-state simulation experiment.

One approach to confidence intervals is to avoid the
Schmeiser (2001) discusses several well-known disadv
tages of confidence intervals. Song and Schmeiser (19
discuss various alternatives for reporting point-estimator p
cision. One alternative is to report the estimated standa
error, without the additional computation of the confidenc
interval, which requires specifying a value forη and addi-
tional assumptions about the output-data process. Meth
for estimating the standard error of the sample mean
fairly well developed (Example 1 of Calvin et al. 1999
Goldsman and Meketon 1986, Song and Schmeiser 19
Pedrosa 1994, Yeh 2002). These ideas and methods fo
on obtaining a small value for mse(v̂ar(Y )). Having the
single criterion simplifies procedure design, evaluation, a
comparison.

Despite their disadvantages, the attraction of confiden
intervals is strong, maybe because they are covered in m
introductory statistics courses. In the systems-simulati
community, for example, a large CIP literature, spannin
decades, has been created for the meanµ with time-series
data that are assumed to be identically distributed, but no
normal and autocorrelated (Fishman and Yarbarry 199
Law and Carson 1979, Steiger et al. 2002).

Given that such CIPs exist and continue to be create
and despite our lack of enthusiasm for confidence interv
in practice, we proceed to Section 2 where we argue fo
new view about what makes a CIP good.

2 COMPARING CONFIDENCE-INTERVAL
PROCEDURES

We argue here that the usual CIP criteria are deficient a
argue that a good CIP should be valid (in a certain sen
and should provide intervals appropriate to the observ
data rather than to the underlying process.

2.1 The Usual CIP Criteria

Evaluating and comparing CIPs is complicated by multip
criteria. The quality of a CIP is usually viewed as bein
a function of the joint distribution of theinterval width
Wη = Uη −Lη and of thecoverage indicatorCη, which is
one if Lη ≤ θ ≤ Uη and otherwise zero. The two most
commonly used CIP criteria are the marginal means: t
expected width, E(Wη), and theactual coverage probability,
η′ = E(Cη) = Pr(Lη ≤ θ ≤ Uη). A third CIP criterion
is var(Wη), with a small value indicating interval stability;
a high value makes the CIP useless as an indication
point-estimator quality. Schmeiser (1982) also discuss
the probability of covering points other thanθ , analogous to
operating characteristic curves in hypothesis testing, but ev
the first three CIP criteria lead to inconclusive comparison
.
-
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It might seem that a good CIP, for a given confi
denceη, would have the smallest possible expected wid
E(Wη), the smallest possible width variance var(Wη), and
the largest possible actual coverage probabilityη′. The
choice (Lη, Uη) = (θ̂ , θ̂ ) yields Wη = 0 for the smallest
possible mean and variance but with actual coverage pr
ability η′ = 0. The choice(Lη, Uη) = (−∞,∞) yields
Wη = ∞ for the largest possible actual coverage probabil
η′ = 1 but with infinite interval width.

The fundamental conflict between the criteria comp
cates CIP design because only truly bad CIPs are domina
in all criteria, especially considering that comparisons mu
be made for various output-data processes, amount of s
pling n, and nominal confidence valuesη.

Kang and Schmeiser (1990) argue for a graphical a
proach to comparing CIPs, in the hope that the visualizati
of the multiple criteria would yield clearer conclusions abo
CIP quality. Nevertheless, most empirical CIP compariso
are reported with tables containing estimates of expec
width, E(Wη), and actual coverage probability,η′, for many
cases defined by data processY , amount of samplingn,
and nominal coverage probabilityη.

2.2 Shortcomings of the Usual CIP Criteria

The usual striving for short and stable interval widths an
for high coverage probabilities leads to CIP-design conflic
Worse, the desire for short intervals and for high covera
probabilities is in error. The best value for actual covera
probability, η′, is not one, but rather the nominal value
η. The best interval width is not zero, but whatever wid
correctly indicates the sampling error in the point estimat
θ̂ . A short interval is bad if it misleads the practitioner t
think that the sampling error is small when it is not. T
argue for “shorter is better” is to forget the purpose of th
confidence interval. Therefore, a CIP that is “conservativ
in the sense of providing actual coverage probability grea
than the nominal coverage probability is not as good as
similar CIP that matches the actual to the nominal covera
probability

One-sided confidence intervals provide another arg
ment against using interval widthWη for CIP evaluation,
because the intervals(−∞, Uη) and (Lη,∞) both yield
Wη = ∞.

2.3 What Should a Good CIP Do?

If short interval widths and high actual coverage probabiliti
are not good, then what is good? First, a CIP needs to
good not only for a particular value ofη, but for all values
of η between zero and one. Schruben (1980) addresses
point with his definition of coverage function. As in Sectio
1.2 for1 in the prototypical CIP, but now for any specified
CIP, define9 to be the value ofη that, for this CIP and this
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particular realization, yields the shortest confidence inter
that covers the performance measureθ . If the assumptions
of the CIP are true, then9 is uniformly distributed on(0,1),
and we say that the CIP isvalid. (The coverage value9
is analogous to thep value of hypothesis testing, wher
if H0 holds then thep value isU(0,1).) To graphically
illustrate and statistically test the assumptions underly
the CIP, Schruben defines thecoverage functionto be the
empirical cumulative distribution function (cdf) of9 (for
which he usesη∗). Whenever all assumptions underlyin
the CIP are true, the cdf is a straight line from(0,0) to
(1,1).

We argue now for a second property of a good C
This property is that, for each realization, a good C
should provide an interval that is appropriate in light
the information that is provided to it; the interval shou
not necessarily be good in terms of the output-data proc
which is unknowable to the CIP. In addition to assumption
the information is the output-data setY . If a particular
realization ofY is misleading, then a good CIP shoul
provide a misleading interval. To hope for a good interv
based on bad sample data is to hope for magic.

If we accept the second property as being desirab
then we need an implementable definition ofappropriate.
We argue that an interval is appropriate if, for this particu
realization, its interval matches that of an expert. In th
case, the expert is anideal CIP, one for which all statistical
assumptions are true and that is allowed to use informa
unavailable to a real-world CIP.The ideal CIP should perfo
better than any real-world CIP in the sense that its covera
function random variable1 is U(0,1) and in the sense tha
its intervals are the length appropriate for indicating t
sampling error of̂θ .

For example, the prototypical example of Section 1
could be used as the ideal CIP for evaluating and compa
real-world CIPs that mut estimate var(Y ). If someone pro-
posed a CIP to compete with the usual Student-t distributi
then that CIP would be better if, and only if, it returne
intervals closer to the those of the ideal known-varian
CIP than does the Student-t intervals.

An important distinction is that we are not arguin
for comparing the distributions of(Lη, Uη) or of (Wη, Cη)

from many realizations. Rather, we are arguing for a pai
comparison of intervals from two CIPs based on the sa
output-data setY . We now combine this non-traditiona
view with Schruben’s coverage-function idea to propose
single CIP criterion.

3 COMPARING TO AN IDEAL CIP

We assume that, for a particular situation, an ideal CIP
been chosen. We wish to measure the difference betw
its intervals and the intervals from a specified real-wo
CIP. The comparison is pairwise, in that for each realizat
,

of Y and nominal confidenceη, both the ideal CIP and the
specified CIP return an interval.

Like Schruben (1980), we do not specify a value o
η. Rather than comparing the pairs of lower boundsLη,
or pairs of upper boundsUη, or pairs of widthsWη, or
pairs of coverage indicatorsCη, all of which depend upon
the nominalη, we compare the coverage values. Let1

denote the coverage value from the ideal CIP; let9 denote
the coverage value from the specified CIP. Each realizat
of Y yields one pair(1,9), which is not a function of a
nominalη value.

In practice, and as illustrated in Subsections 3.2 a
3.3, we advocate comparing a specified CIP to an id
CIP with a meta experiment ofr Monte Carlo practitioners,
each of whom uses both CIPs. Forj = 1,2, . . . , r, thej th
practitioner observes(δj , ψj ). A scatter plot of ther pairs
illustrates the empirical performance of the specified C
Points close to the diagonal represent confidence interv
that are good in the sense of mimicking the ideal CIP.

Similarly, two specified CIPs can be compared to ea
other by comparing each to the ideal CIP. Plotting ther
points (δj , ψj ), using two symbols, visually compares th
empirical performance of the two CIPs. We do not plot th
r pairs ofψjs, since we are arguing that a CIP is good (
bad) only with respect to an ideal CIP. If there is no agre
upon common ideal CIP, then we do not provide a meth
for comparison.

3.1 The Single Criterion

Although we like visual illustration of performance, a singl
numerical criterion is also desirable. The single criterio
should measure how well the specified CIP intervals ma
the ideal CIP intervals. We propose using E((1 − 9)2),
the expected squared error between the paired cover
values. Small values are good. The ideal CIP sco
E((1−1)2) = 0. Other CIPs have positive scores, possib
because9 is not U(0,1) due to violated assumptions
Even if a CIP has no violated assumptions (i.e., is valid
however, it will have a positive score unless9 = 1 for
every realization.

Using squared error, rather than an alternative such
absolute deviation, yields the decomposition

E((1−9)2) = mse(9,1/2)+ 1

12
− 2 cov(1,9),

obtained by subtracting 1/2 from both9 and1, expanding
the square, using E(1) = 1/2 and var(1) = 1/12, and sim-
plifying. This decomposition yields two terms correspond
ing to the two properties that we have argued are importa
First, a valid method has mse(9,1/2) = var(9) = 1/12
because9 is U(0,1); this term does not depend upon th
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choice of ideal CIP. Second, a good CIP provides interva
similar to the ideal CIP, as measured by 2 cov(1,9).

We have tried to obtain a decomposition with two pos
tive terms, much like the mse decomposes into squared b
and variance. We would prefer to have a decompositi
with a non-negative term indicating departure from un
formity and a non-negative term indicating coverage-val
distances, but we have not found one.

For more insight into the single criterion, we briefly
consider eight special cases, all of which are simple a
none of which are realistic. Throughout,1 from the ideal
CIP is assumed to beU(0,1).

• As discussed above, but included here for com
pleteness, if9 = 1, then E((1−9)2) = 0.

• If a CIP is valid, then9 is U(0,1), which im-
plies that E((1 − 9)2) = (1 − corr(1,9))/6.
(If all CIPs were valid, then either cov(1,9) or
corr(1,9) would be an appropriate single crite
rion.)

• If a CIP returns intervals that are independent
those of the ideal CIP (despite having commo
dataY ), then E((1−9)2) = mse(9,1/2)+1/12,
in which case the single criterion cannot be les
than 1/12.

• Combining the previous two cases (a valid CIP th
is independent of the ideal) yields E((1−9)2) =
1/6, quite a large value. Despite returning interva
independent of those of the ideal CIP, Schruben
coverage function is a straight line because it co
siders only the effects of incorrect assumptions.

• A perversely bad case is9 = 1−1, which also
corresponds to a valid CIP. Now the CIP return
a large interval when the ideal CIP returns a sho
interval, and vice versa. Here E((1−9)2) = 1/6.

• A trivially easy CIP to implement is to assume
that ste(θ̂) = 0. Then the confidence interva
has zero width at̂θ , yielding 9 = 1 except in
the (unlikely) realizations in whicĥθ = θ . Here
E((1−9)2) = 1/3.

• Also easy to implement is the more-general CIP th
flips a coin to return a zero-width interval atθ̂ with
probability 1− η and (Lη, Uη) = (−∞,∞) with
probabilityη. For any value ofη, this CIP provides
the nominal coverage probabilityη. Nevertheless,
the distribution of9 is notU(0,1). Rather, Pr(9 =
0) = η and Pr(9 = 1) = 1−η. For every value of
η ∈ [0,1], the single criterion is E((1 − 9)2) =
1/3.

• The worst case in terms of maximizing the singl
criterion is9 = 1 whenever1 < 1/2 and9 = 0
whenever1 ≥ 1/2. Here E((1−9)2) = 7/12.
s

In summary, 0≤ E((1 − 9)2) ≤ 7/12, with every
reasonable CIP satisfying 0≤ E((1−9)2) ≤ 1/3. Every
valid CIP satisfies 0≤ E((1 − 9)2) ≤ 1/6. Every com-
petitive CIP will have a single-criterion value substantial
less than 1/6.

3.2 Example: Student-t CIPs

To gain more insight into the single criterion, we consid
the performance of Student-t confidence intervals for t
meanµ of iid normal data. The ideal CIP is the prototypica
example in Section 1, with all zero autocorrelations. Th
is, the ideal CIP produces the confidence interval cente
at Y with half width z(1+η)/2 σ/

√
n. The Student-t CIP

produces the confidence interval centered atY with half
width t(1+η)/2,n−1 S/

√
n, wheretq,ν is theqth quantile of

the Student-t distribution withν degrees of freedom.
The coverage-function values for the Student-t CIP a

9 = 2Fn−1

(
|Y − µ|
S/
√
n

)
− 1,

whereFν is the Student-t cumulative distribution function
(cdf) with ν degrees of freedom. The analogous formu
for the ideal CIP’s1 is in Subsection 1.2.

Consider samples of sizen = 10. Figure 1 is a scatter
plot of 100 Monte Carlo observations(δj , ψj ), representing
the simulated experience ofr = 100 practitioners. Because
the ideal CIP and the Student-t CIP are valid, the margin
distributions of both1and9 areU(0,1), which is consistent
with the r = 100 points. The points cluster around th
diagonal, as is required of a CIP that mimics the ideal C

Because Student-t CIPs are valid, E((1 − 9)2) =
(1/6)(1 − corr(1,9)). In this example, the empirical
covariance iŝcov(1,9) ≈ 0.080 and the corresponding
correlation isĉorr(1,9) = 12ĉov(1,9) ≈ 0.960. The
corresponding empirical value of the single criterion
Ê((1−9)2) ≈ 0.0069. (These empirical results are base
on r = 20000 simulated practitioners; all digits shown a
correct to within one unit.)

How does this value of the single criterion relate t
more-traditional measures of CIP performance? Althou
Ê((1−9)2) ≈ 0.0069 seems close to zero, this CIP is fa
from the ideal. From Table 1 of Schmeiser (1982), for an
coverage probabilityη, the confidence-interval widthsWη

have coefficient of variation 0.24, whereas the ideal has zer
coefficient of variation. Forη = 0.95, the expected interval
width is about 4.4 standard errors, whereas the ideal C
has expected interval width of about 3.9 standard errors.

Now consider the effect of taking batches of sizem = 2.
Then = 10 observations form five batch means, with fou
degrees of freedom. Figure 2 compares the Student-t C
for ten batches of sizem = 1 and five batches of size
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Figure 1: Forn = 10 and IID Normal Data, Student-t
Coverage Values9 Plotted against Normal Coverage Values
1

m = 2. The r = 100 points (shown as×) from Figure 1
for batches of size one are shown with the correspondin
r = 100 points (shown as◦) for batches of sizem = 2,
based on the same Monte Carlo realizations. Because of
common1 values, the points appear as vertical pairs. Th
points corresponding to batches of sizem = 2 cluster less
around the diagonal, as is to be expected, with empiric
covarianceĉov(1,9) ≈ 0.076, empirical correlation is
ĉorr(1,9) ≈ 0.908, and empirical value of the single
criterion Ê((1−9)2) ≈ 0.0154.

3.3 Example: Invalid-normal CIPs

Now consider the (invalid) CIP for the meanµ of iid normal
data that uses an estimated varianceS2, but assumes that
σ 2 = S2 by using half widthz(1+η)/2S/

√
n rather than the

valid half width from Subsection 3.2. Despite this CIP
being invalid, using the traditional criteria it is better than
the Student-t CIP in that its widthsWη are shorter and have
smaller variance. It is worse than the Student-t CIP in tha
its actual coverage probabilities are less than nominal.

This invalid-normal CIP is compared to the Student-
CIP for n = 10 observations with batches of sizem = 2 in
Figure 3, using the samer = 100 realizations as Figures 1
and 2. Ther = 100 Student-t points from Figure 2 (still
shown as◦) are shown with the correspondingr = 100 points
(shown as+) for the invalid-normal CIP. Even with only four
degrees of freedom, the difference between the two CIP
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ψ 

∆ 

Figure 2: Forn = 10 and IID Normal Data, Student-t
Coverage Values Plotted against Normal Coverage Valu
for Batch Sizesm = 1 (×) andm = 2 (◦)

is not immediately visually obvious. Closer examinatio
shows that for each of ther = 100 realizations, the invalid-
normal+ lies above the Student-t◦. The shorter widths
yield larger9 coverage values, which is good when th
data yield a variance estimateS2 that is substantially larger
than the true varianceσ 2. On the whole, however, the
inappropriately short intervals perform worse.

Based onr = 20000 Monte Carlo practitioners, with
negligible standard errors, the(n = 10, m = 2) invalid-
normal empirical covariance iŝcov(1,9) ≈ 0.081, the
empirical correlation iŝcorr(1,9) ≈ 0.909, and the em-
pirical single-criterion value iŝE((1−9)2) ≈ 0.0182.

The invalid-normal single criterion is about 18% large
than for the Student-t single criterion. It is larger becau
the underlying assumptions are violated, resulting in t
distribution of9 being non-uniform. In particular, although
the empirical mean̂E(9) is one half, the empirical value of
the invalid-normal variance iŝvar(9) ≈ 0.096, larger than
1/12.

Because Student-t confidence intervals have substan
foundation in both theory and practice, it would be surprisin
if any alternative CIP were better. Therefore, if an alternati
CIP, such as the invalid-normal CIP considered in th
subsection, produced a lower single criterion, that would
a strong argument that our single criterion is not adequ
for evaluating CIPs.
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Figure 3: Forn = 10,m = 2 and IID Normal Data, Student-
t Coverage Pairs (◦) Compared to Invalid-Normal Coverage
Pairs (+)

4 ADDITIONAL THOUGHTS

Throughout this paper we have assumed that the purpo
of a CIP is to indicate the precision of a point estimato
θ̂ . Competing CIPs therefore are assumed to be based o
common data setY of sizen, from which a common point
estimatorθ̂ is computed. The community of researcher
with competing CIPs is expected to agree on the ideal C
to be used for the single criterion.

Another purpose of a CIP is to provide a confidenc
interval as the primary product, rather than as an auxilia
to the point estimator. Here competing CIPs use a comm
data setY of sizen, but the point estimator might differ (or,
in rare cases, such as quantile estimation, the CIP mig
not be a function of a point estimator). Here, again, th
community of researchers with competing CIPS is expect
to agree on the ideal CIP to be used for the single criterio

Some CIPs determine the sample sizen as part of
the procedure. Because competing CIPs then have uneq
sample sizes, they cannot be compared using exactly
same data setY . How to choose an ideal CIP is less obviou
in this setting.

Other than suggesting the prototypical example of Su
section 1.2 for the mean, we have said nothing about t
nature of the ideal CIP except the assumption that it
usually valid and is always the standard of comparison. W
have not been able to define a procedure for automatica
determining an ideal CIP. Our impression is that it usual
e

a

n

t

d
.

al
e

-
e

y

will arise from assuming knowledge of unknowable va
ues about either the data process or the point-estimat
sampling distribution.

Another use of a CIP is as a means to evaluate procedu
for other statistical problems. For example, Wilson an
Pritsker (1978) base their start-up criterion on confidenc
interval properties and Wilson and Pritsker (1984) compa
variance-reduction techniques using CIP properties (as w
as on the standard-error of the resulting point estimato
In these cases there is only one CIP, to which different d
setsY are input. Our single criterion has, we think, nothin
to say about this use of CIPs.

Finally, we mention that maybe the single criterion ca
be used to evaluate and compare individual CIPs acr
sample sizes and families of CIPs that are parameteri
by degrees of freedom. For example, for Student-t CI
applied to iid normal data, the single criterion decreas
to zero as sample size (and degrees of freedom) go
infinity. In Subsection 3.2, for bothν = 9 andν = 4, the
empirical value of the product ofν and the single criterion
Ê((1−9)2) is 0.062, which suggestsO(ν−1). Whenever
this rate holds, the product of sample size and the sin
criterion (or of degrees of freedom and the single criterio
would be a single criterion for the entire family of CIPs.

APPENDIX: WHY NOT USE COVARIANCE?

We choose E((1 − 9)2) as our single criterion after also
considering cov(1,9), for which large values would indi-
cate good CIP performance. If, as is ideal,9 = 1, then
cov(1,9) = var(1) = 1/12 because1 is U(0,1). For a
CIP with 9 independent of1, the covariance is zero. All
reasonable CIPs have positive values.

The covariance is not a good single criterion, howev
because it is not maximized by cov(1,1) = 1/12. A
counter example is to define9 = 1b, which corresponds
to the ideal CIP forb = 1. Because1 is U(0,1),

cov(1,9) = E(91)− E(9)

2

= E(1b+1)− E(1b)

2

= 1

b + 2
− 1

2(b + 1)
.

Rather than being maximized atb = 1, the maximum
covariance value occurs atb = √2 and yields cov(1,9) ≈
0.086, which is larger than cov(1,1) = 1/12.

The deficiency in using covariance is that it does n
include our desire for9 to beU(0,1), as is required of
every valid CIP. At the optimal powerb = √2, the mean
is E(9) ≈ 0.414, not E(9) = 0.5.

As another example of the deficiency of using cova
ance, consider the invalid-normal CIP from Subsection 3
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There, the invalid-normal covariance is 0.081, which is
larger than the Student-t covariance of 0.076 in Subsection
3.2.

Another brief thought was to use corr(1,9). A quick
counter example is to consider9 = b1, which yields
corr(1,9) = 1 for everyb ∈ (0,1]. Becauseb = 1 is not
the unique optimal coefficient, correlation is not an adequa
criterion for evaluating CIPs. Also, both the invalid-norma
CIP and the Student-t CIP yielded a correlation of about 0.91.
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