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ABSTRACT tions, rather than fitted parametric distributions, but | believe
that this resampling approach is also important when fitting

In recent years, substantial progress has been made in theparametric distributions to empirical data. My comments

development of powerful new approaches to modeling and are intended to initiate discussion, and are organized around

generation of the stochastic input processes driving simula- three topics:

tion models. In this panel discussion, we examine some of

the central issues and unresolved problems associated with ¢ Why two-step bootstrap resampling should be con-

each of these approaches to simulation input modeling. ducted when computing confidence intervals for
parameters characterizing simulation output, and
1 RUSSELL R. BARTON proper conduct of the two-step method;
*  What is wrong with the two-step bootstrap method;
| would like to encourage additional research in the use and
of input resampling methods for the analysis of simulation *  Why focus on empirical input distributions rather
output when the input distributions are based on empirical than fitted parametric distributions.

data. I'll focus on simulation driven by empirical distribu-
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1.1 Why Two-Step Bootstrap Resampling? proposes a parametric bootstrap approach to estimate both
components of variance across simulation runs.
There is some confusion about the use of bootstrap resam- These two sources of variation complicate the two-

pling of input distributions, in terms of how the simulation step bootstrap approaches that are described in Barton and
runs are conducted, and how the results are analyzed. I'll Schruben (1993) and Barton and Schruben (2001). A nec-
summarize the approach that Lee Schruben and | have beenessary condition for bootstrap estimates of the distribution
using, and | refer the reader to Barton and Schruben (2001) of the output statistic to converge to the true distribution (as
for details. sample size and the number of bootstrap replications go to
First, the bootstrap resampling should not be done infinity) is that the output statistic is a smooth function of
within a simulation run, but rather between runs. Resam- the sample data. In some cases less restrictive assumptions
pling within a single run has no impact on the simulation: are possible but the statistic still must still be a deterministic
the resulting cdf for the input values matches the original function of the sample input data. For the two-step bootstrap
empirical cdf. This may explain Russell Cheng’s comment strategy, the finite length of each simulation run means that

(Cheng 1994): the statistic is a stochastic function of the input sample.

Of course, the condition of a deterministic function need

Given that sampling of the smoothed em- only hold approximately, since calculations of any bootstrap

pirical cdf takes place in the second step, statistic using digital computers leaves a result that might

.., itis not clear that the first step is be thought to have a random perturbation at the level of the
necessary or even helpful to carry out. machine precision.

For the queuing examples presented in our two previous
papers, simulation run lengths had 4000 customers or more
with input sample sizes of 500 or less. For these cases,
the run-to-run variation from finite input sample size far
exceeded the variation from finite run length. The resulting
coverages for the bootstrap intervals were indistinguishable
from the nominal 90%. Figure 1 shows that it is possible to
generate poor coverage with the two-step bootstrap approach.
uE - ChiEE THTYT The graph shows the nominal coverage of 90% intervals
run variation due to finite run lengths. The implication is 5564 on bootstrap and uniform bootstrap methods. These
that, without bootstrap resampling, the simulationist sees ethods were applied to input distribution sample sizes of
artificially small run-to-run variation, and constructs overly g for anM /M /1/10 queue withp = 0.7, with simulation

pptimistic confidence intervals for output parameters. This 1y lengths varying from 50 to 8000 customers. The dashed
is why two-step bootstrap resampling should be used: 10 jyeg jndicate approximate 95% confidence intervals on the

capture the uncertainty in the predicted system performance qyerage. Coverage for both methods is indistinguishable
due to finiteness of the empirical data used to determine ¢.om the nominal 90% for run lengths with 2000 or more

the input distributions. customers (after warm-up).
There is a second issue in the use of the two-step

resampling method: intervals are calculated from empirical
percentiles of the output statistic, nebased intervals using

the across-run standard deviation. The reason is that the 0.98
bootstrap resampling provides an estimate of the distribution
function of the statistic one would expect from repeated runs

Resamplindetweerruns does make a difference, how-
ever. Each simulation run is conducted with different input
distributions. This component of variation is added to the
normal run-to-run variation that occurs due to finite run
length. This combination of two sources of variability af-
fects the validity of the bootstrap approach, as | discuss
in the next section. In our experiments, the variation due
to changes in the input distributions overwhelmed run-to-

0.96

with different input samples of the same size. Increasing ;-fa 0.94

the number of replications (that is, bootstrap resamples) By [
provides a better estimate of tlsamedistribution, rather © =
than a tighter distribution for the statistic. 09 —

0.88

1.2 What Is Wrong with the Two-Step Bootstrap

. . 0 2600 4600 60‘00 8060
Cheng (1994) describes the two sources of error that arise

when using input distributions that are fitted to empirical
data. He identifies the first as bias error, due to the finiteness ‘ —+— B Coverage —m— U Coverage \
of the empirical sample, and the second as variance error,
due to the finiteness of the simulation run length. He

Number of Customers per Run

Figure 1: Coverage Error for Short Runs
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To use two-step bootstrap resampling, one must ensure can be equated with the last of these, if we take the view that

that the variation due to finite run length is relatively small
compared with the variation due to the finite input sample
size. Otherwise, the intervals may be overly conservative.
This is easy to check by making replications using the same
input samples, and comparing this variation with repeated
runs using bootstrap resamples of the input distributions.

1.3 Why Focus on Empirical Distributions

Perhaps the most common approach to input modeling in
simulation is to fit parametric models based on sample data.
There have been many papers on this topic in previous Winter
Simulation Conferences. See for example last year’s tutorial
by Leemis (2001) and the references therein.

Nonetheless, while this is the most common approach,
| believe that it is high risk, for several reasons.

1. There is rarely a theoretical justification for a par-
ticular distribution. Many simulation responses are
sensitive to the tails of the input distributions, yet
these tails are precisely where parametric models
often fail to capture reality.

Testing for or selecting a correct model in such
circumstances might appear to be futile: as George
Box said, “All models are wrong, some are useful.”
A parametric distribution gives the simulationist
an artificial sense of the well-definedness of the
simulation. While the model is well-defined, it
need not be well-connected to reality.

Empirical distributions are easy to use with most sim-
ulation packages. Using them makes the limited fidelity of
the model more transparent, particularly if two-step boot-
strap resampling is used to characterize uncertainty in the
output statistics.

1.4 Acknowledgments

Many of the ideas in this statement came from discussions
with Lee Schruben. Important questions and clarifications
have been brought to light by discussions with many regular
WSC participants, including Russell Cheng, Steve Chick,
Dave Goldsman, Shane Henderson, David Kelton, Barry
Nelson, Bruce Schmeiser, Bob Sargent, Jim Wilson, and
others.

2 RUSSELL C. H. CHENG

Law and Kelton (2000) give a good introduction to basic

input modelling. The stance adopted here is that input
modelling is inextricably linked with input data. There are

three main steps in handling input data: (1) Data Gathering,
(2) Data Inspection, and (3) Data Analysis. Input modelling
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proper understanding of data requires its characterisation
by a statistical or stochastic model.

Much of the panel discussion will no doubt focus on
methodological issues involved in (3), as these tend to
have the greatest academic appeal. However, it is worth
emphasising that no amount of academic cleverness can
make up for basic inadequacies in the quality of the practical,
real-life data that fuels and informs the input modelling
process. So, before becoming engrossed in technical niceties
it is as well to acknowledge that, arguably, far and away the
most important part of input modelling is (1) and that this
is largely out of our—the analysts'—hands. It is dependent
on the front-line people who gather and collate the data.
Even if the importance of (1) is agreed, it might be deemed
to fall—thankfully—outside the remit of this panel session!
However (2), the Data Inspection phase does come within
our remit, and requires some comment, as this phase should
culminate in the formulation of possible input models that
are the object of fuller study in (3).

My experience is that a typical case study involves much
effort in manipulating and organising of data, frequently
from incoherent and suspect sources, in order to shape it
into some semblance of credibility and usability. This can
consume a huge part of a project’s time. In Data Inspection,
two aspects need consideration and evaluation, each with
its own subheadings:

1. Data Quality:
(@  Reliability
(b)  Stability
2. Data Complexity:
(&) Type (discrete / continuous, quantitative /

gualitative)
Size/Quantity of Data
Probabilistic Nature (including dependence)

(b)
(€)

‘Rubbish in, rubbish out’is a well-known catch-phrase
that captures the key difficulty of Data Reliability. It often
requires input of expert knowledge to resolve. Unexplained
variation is usually ascribed to randomness simply because
we do not know its cause. However unexpected blips in data
can often be explained away with additional information.
For instance, an at first sight mysterious dip in reported TB
incidence in an African country was due simply probably
to poor data collection due to the civil war that raged over
the same period as the dip.

By Data Stability | mean the validity of the data outside
the period of its collection. Stock market forecasts based on
data gathered up to, but not including, the recent bursting
of the dot.com bubble, look misguided. In many simulation
studies time is better spent evaluating data quality rather
than on the simulation modelling itself.
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In preparing this position statement, | was led to sur-
veying the summer projects carried out by the students of
our Master programme in OR, for a wide range of cor-
porate clients. All involve handling of real data. Many
of the projects involved simulation; and simulation might

Leemis, Schmeiser, Schruben, and Wilson

list it occurs in the hospital-bed, call centre, mail order, and
air-traffic controller examples. Often data is not homoge-
neous, but is a combination of samples from several different
populations. Correct input modelling will require identi-

fication of the separate subpopulations. This is a difficult

well have been used in those cases where it was not. The problem technically as it is non-standard. There has been

variety of data was sobering. Here is a small selection
from the last year or two: HIV epidemics, car windscreen
replacement, soft fruit distribution, package holiday sales,
air-traffic controller performance, hospital bed-occupancy,
mail orders, call centres, human growth curves, environmen-
tal risk statistics for earthworms, racing car performance,
lost luggage returns, horse-race betting, LNG production,
car worker motivation, bank account statistics, war-game
studies. What stands out from this list is the sheer variety
and complexity of the data. However it is possible to impose
some order. A simple classification is to observe that data
has a form that is typical of the sector from which it arises.
In OR type studies important sectors are: (i) Manufacturing
and Production, (ii) Services, (iii) Leisure, (iv) Environ-
mental and Life Sciences, and (v) Physical Sciences. An
amusing exercise is to try to pigeon-hole the MSc project list
according to sector. The focus of discrete event simulation

much recent interest from both classical and Bayesian statis-
ticians concerning this problem (See for example Cheng,
1998).

The fourth problem concerns Data Size. One seems
to lurch from problems where there are literally only a
couple of dozen data points, to those where gigabytes of
data are all too readily available. Bayesian techniques seem
good for the former situation and Resampling techniques
for the latter. | will return to this problem after discussion
of Data Analysis techniques. A point to note is that often,
when large data sets are involved, the problem is to try
to identify small subsets of key factors. Classification and
Regression Tree (CART) and Neural Network techniques
are two methods that are of interest in this regard but where
the methodology is not all that advanced.

We turn now to Data Analysis. The purpose of this is
twofold. The first aim is to better understand the structure

has perhaps been in (i). However the character and natureof the data. This should be made explicit by fitting a

of data in other sectors is sometimes refreshingly differ-
ent. There is some scope for formalising this problem of
unravelling Data Complexity as one of Data Classification.
I highlight four further specific problems of Data Com-
plexity, in no particular order.
The first is to note that recent advances adopt a much

formal statistical or stochastic model of the data. Secondly,
once such an input model is fitted, it can then be used for
generating input data in its own right, if this is required in
the simulation. The quality of fit of the input model to the
data needs to be evaluated. However this is not enough.
The real need is to assess how the quality of fit of the input

more sophisticated approach to input modelling. Advanced model affects the quality of the simulation itself. This can
techniques, that allow for data dependence, are reviewed conveniently be treated as a validation problem. (Kleijnen
by Nelson and Yamnitsky (1998) and by Schmeiser (1999). et al. 2001)
More specific techniques for generating correlated data are Two interesting methodologies seem especially appro-
described by Deler and Nelson (2001) and Ghosh and Hen- priate to Data Analysis: Bayesian Inference and Bootstrap
derson (2001). Resampling.

The second involves non-quantitative data. Several Bayesian Inference is an excellent approach for bringing
of the MSc projects, including air-traffic controller perfor-  together prior information and new data (see Chick 2000),
mance, war games and car worker motivation, involved data which also resolves questions of sensitivity analysis in a neat
concerned with human factors. These were hard to quan- way (see Zouaoui and Wilson 2001, for example). There
tify and make reliable. In the war game example, it was are two scenarios that can be highlighted. The first is the
readily acknowledged that morale and esprit-de-corps were situation where input streams are dependent on parameters,
key factors but almost impossible to quantify. In another denoted by the vectdt, whose values are uncertain. In the
instance, a colleague asked participants at a recent workshopBayesian approach, this uncertainty is captured by stipulat-
on Forecasting if they made use of subjective forecasting ing a prior distribution;r (0), for 6. Let us denote by (9),
techniques. All but one of the group of about 40 indicated the result obtained from a simulation run made at parameter
that they did. Alas for Box-Jenkins! Bayesian inference is value#. Parameter uncertainty can then be accounted for
a powerful formal method for injecting human opinion into by making runs at differerd values. Denote the set 6f
an analysis. This area has been the subject of much studyvalues used a®;,i =1, 2, ..., n}. If the §; are a random
by statisticians of the Bayesian persuasion, but has not yet sample drawn fromr (9), then{r(9),i =1,2,...,n}is a
received the wider recognition that it now deserves. random sample whose EDF estimates the (prior) CDF of

The third problem is a specific instance of a Data Distri- ». This EDF can then be used for inference about the
bution problem. It might be termed the Mixture Problemand usual way.
it occurs, for example, in queueing situations. In the MSc
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If there is real data, whose distributiop (x|6) depends small in size then parametric bootstrapping seems far more
on @, then this can be incorporated to construct a posterior preferable.
distribution p(9|x) using Bayes' theorem: In summary, the impact of input modelling on the quality
of an overall simulation is often of crucial importance. The
above comments are merely examples of areas and issues
pOlx) = I(XW)]T(@)//I(XW)H(GMQ’ that | have been drawn to tP{rough my own research.
where [(x|0) is the likelihood (i.e. p(x]0) treated as a 3 STEPHEN E. CHICK
function of 8). Markov Chain Monte Carlo (MCMC) is
currently the popular method for carrying out this construc- Many simulations are run to study how simulation output
tion. However | would advocate Importance Sampling as depends on the inputs, be they design parameters or param-
being intuitively easier to understand than MCMC and as eters of probability distributions that describe randomness
being just as easy, if not easier, to apply in many cases. (stochastic uncertainty) in an abstracted system. Many tools
Note that the datay, can appear at two points. The exist to analyze simulation output, either for a single set of
simpler situation is where is just (additional) data gener-  inputs, or as a function of the inputs (e.g., Law and Kelton
ated by the input process alone. For instance, in a queue 2000; previous WSC proceedings; references therein).

problem, x might be more customer arrival rate data. In Simulations are often required to do more than relate
this case the Bayesian procedure is applied solely at the inputs to output—a model may be required to represent an
input modelling stage, with the posteripi(¢|x) obtained existing or planned system. While design parameters are
before the simulation runs are done. often easily related to simulation models (e.qg., 5 real servers

The second more interesting case is wherepresents correspond to 5 simulated servers), input distributions and
output that thesimulation itself is attempting to reproduce.  parameters pose a challenge. Why should we believe that
In this case the likelihood will characterise the distributional actual service times have a Weibull distribution with shape
relationship between andr and so involve both; so it is parametera = 5 and scale paramete# = 25? Even
not justl(x|0), butl(x, r|6). The simulation runs thus form  if a simulation exactly determines the mean performance
part of the sampling process used to determine the posterior of the system as a function of the input parameters,
distribution. If runs are expensive this obviously can be we still may be uncertain about the performance of the
a serious problem. This second situation occurs in many system. Why? In practice we usually don’t know value of
interesting forecasting or predictive situations and is an area input parameters exactly, or even if the Weibull is the right
of current research interest. A very interesting variant that distribution (structural uncertainty).
there is no space to discuss concerns certain simulation From this perspectivanput distribution selectiorand
optimization problems where the Bayesian approach can model validationgo hand in hand. Does a decision-maker
handle situations that are impossible to contemplate using find that a given distribution and parameter reasonably rep-
a classical formulation. resent the randomness in a system? Including the decision-

Bootstrap Resampling is a general approach (Cheng maker in the simulation process is a widely accepted key
2001; Barton and Schruben 2001) that really should be factor of successful simulation projects. And including the
better recognised in simulation given its ease of implemen- decision-maker makes input modelingbjectiveprocess.
tation and generality of application. One reason for this The classical approach commonly evaluates statisti-
lack of recognition is an often voiced suspicion that one cal methods, like the standard input selection method, by
appears to be getting something for nothing. This stems studying performance during repeated sampling as a func-
from a misunderstanding. Bootstrap resampldages not tion of known parameters. It is comforting to know how
improve an estimate-nothing can do that if an efficient  well a method works, on average, when applied repeatedly.
estimator is being used—but is simply a means of esti- Asymptotic methods (e.g. asymptotic normality results for
mating thevariability, more generally thalistribution of MLESs) further inspire confidence in the standard mecha-
the estimator. Thus it is clearly a useful method for han- nism. There are many benefits with the standard parameter
dling questions involving goodness-of-fit, validation, and estimation/goodness-of-fit approach.
sensitivity analysis. But there are practical problems (e.g., Raftery 1995).

In considering bootstrap methods an interesting question And a decision maker often does not have the benefit of
is whether one should bootstrap from the original data or repeated sampling. There may be a few big simulation
from the fitted model. When large real data sets are available projects per year, not an infinite sequence of similar projects.
then these might reasonably be taken to be a good proxy A huge amount of data may not be available.
of the population, and bootstrapping from the data is the
natural thing to do. However when the original data set is
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Bruno De Finetti (1990) asserts:
Probability doesn't exist.

In part he means that probability issaibjectivestatement
about uncertainty, not a property defined only for con-
ceptually infinite sequences of samples. An implication
for simulation is to posit a joint probability model that
describes both stochastic uncertainty and structural uncer-
tainty. This includes formalizing statements like ‘the arrival
rate A is unknown, but is likely around 10-12 per hour’
with a probability distribution for the input parameter

This is consistent with the subjective nature of input
selection and simulation validation. Conditional probability
and observations (field data and simulation observations)
help infer the unknown input distributions and parameters
of the modeled system. The posterior distribution of the
inputs is then determined by Bayes’ rule, given available
data. The simulation output mean, the expectation taken
over both stochastic and structural uncertainty, is determined
by aBayes’model average.g. Draper 1995; or Chick 2000
in a simulation context). The BMA samples input models
and parameters from an appropriate posterior distribution.
Simulation outputs are generated for each sampled input
model/parameter combination.

The Bayesian approach is not new: Laplace and Bayes
initiated idea streams centuries ago; De Finetti indicates
that Hume and Berkeley influenced his thinking. But the
ideas are not outdated and purely philosophical. They shed
practical insights into many applications (e.g. Gilks et al.
1996). Young and Lenk (1998) even improve stock market
portfolio allocation by accounting for input uncertainty.

The BMA is not the only way to handle input uncer-
tainty, as the other panelists indicate. And rigid adherence
to a BMA framework may be more trouble than it is worth
(say, when a rough-cut point estimate/sensitivity analysis
provides sufficient information to a decision maker). How-
ever the BMA approach does provide a coherent framework
for thinking about uncertainty that makes direct links to other
operations research tools, such as decision analysis. And it
provides a way of extending the conversation about uncer-
tainty analysis when a rough-cut analysis is inconclusive.

Many practical issues (integration to determine pos-
terior distributions; generation of samples from those dis-
tributions) have been well studied. Nonuniform random
variable generation and output analysis results from the
discrete-event simulation literature play an important role.
Markov Chain Monte Carlo (MCMC) methods play an in-
creasingly important role. It is not possible to cite all the
important work given space limitations, but the panel pre-
sentation will attempt to identify a number of important
contributions.
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But there are several issues to resolve. In addition to
the usual simulation desire to more efficiently integrate and
sample variates from posterior distributions, these include:

Prior distributions and sensitivity analysis. How can
a modeler assess a ‘useful’ prior distribution for unknown
input parameters, given that standard ‘noninformative’ dis-
tributions can have odd consequences in the absence of
large amounts of data? Initial work with moment methods
has shown some feasibility, but more work is required to
handle a broader class of input distributions.

Graphical interfaces to assist in visualization of how
changing the prior distributions of input parameters affects
the distribution of outputs would be useful.

Experimental design methods for input selection may
also help identify important parameters, and provide bet-
ter information about performance than naive BMA input
sampling.

Simulation software. Input selection, response mod-
eling, and output analysis are linked by the BMA. Inputs
are sampled from a distribution, simulations are run with
those parameters, and the input/output combinations help
describe the system response.

Most simulation software packages do not provide a
simple interface to implement the BMA andvisualizehow
output uncertainty is influenced by both input uncertainty and
stochastic variation. Can a closer link be created between
input parameter selection software, the simulation engine,
and output analysis tools, to help a modeler assess the
relative importance of stochastic and structural uncertainty?

Inputs may be correlated. How does recent work on
generating vectors of correlated variates apply in the BMA
context?

Uncertainty reduction. How should resources be bal-
anced, given a choice between running more replications,
to reduce stochastic uncertainty, or collecting more field
data, to reduce input parameter uncertainty, when the goal
is to reduce an overall measure of uncertainty? Asymptoti-
cally optimal results exist for estimators of the output mean,
and for estimating the distribution function of a conditional
mean, under certain conditions. Can those conditions be
relaxed? Can finite sample results be obtained?

Inverse problem. A decision-maker may be better able
to specify distributions about system outputs than about
inputs. For example, it may be easier for a manager to
say that the mean weekly production is around 40-45 jobs,
rather than to specify a joint distribution of the unknown
parameters of service time distributions.

The inverse problem is to identify which set of proba-
bility measures on inputs that are compatible with a spec-
ified distribution on the outputs. In simple cases, e.g. an
M /M /1 queue, a direct mapping from some inputs to out-
puts is known. But in general, how should information
about likely outputs be used to help identify reasonable
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input parameter values? Perhaps entropy methods are ap-be considerably more difficult to capture with simple models,

propriate. but strongly desired in, for example, telecommunications
applications.
4 SHANE G. HENDERSON One final area that deserves a great deal more attention

is the effect of parameter, or even model, uncertainty in

The input modeler today is often spoiled. Large databases simulation results. | am (almost) certain that this issue will
are now the norm rather than the exception. The availability be addressed by other panelists, and so will confine my
of massive amounts of data suggests that the use of trace-remarks to my own planned research in this area. Suppose
driven simulations will become more prevalent in the near that one has a distributior; say, on the input parameters
future. In trace-driven simulations, the recorded data, rather 6 for a simulation experiment. This distribution may arise
than observations generated from fitted distributions, is used through Bayesian analysis, asymptotic theory (asymptotic
to drive the simulation. in the number of observations used to fit a distribution) or

There are some important unresolved issues related to otherwise. The random variable of interest (e.g., throughput
the use of trace-driven simulations. For example, the data in a manufacturing setting)X say, depends o#f. If one
may not have been correctly recorded. This issue arose in assigns a fixed valug to 6, then in great generality we can
ambulance simulations in Auckland, New Zealand (Hen- view the output of the simulation experiment as an estimate
derson and Mason 1999), where ambulance drivers were of E(X|60 = 6p). Perhaps the primary object of interest is
required to punch a button in the ambulance as they com- thedistributionof E(X16). Lee and Glynn (1999) estimated
pleted the various steps related to a call. If the ambulance the distribution function of this quantity, but perhaps the
drivers forgot to push the button at the appropriate time, density of this quantity (assuming it exists) would be more
then they often simply “caught up” by repeatedly push- helpful in building understanding. This is a subject of
ing the button at a later time. This behaviour shows up current research.
as unrealistically short scene times, hospital transfers and
so forth in a database. Theoretically sound methods for 5 AVERILL M. LAW: THE DEVELOPMENT OF
dealing with such problems are needed. It is also highly A COMMERCIAL DISTRIBUTION-FITTING
desirable to develop output analysis procedures for trace- SOFTWARE PACKAGE
driven simulations that can make some statistically sensible
statement about the output. Some work on validation of In this talk we discuss the development of a commercial
trace-driven simulations (Kleijnen et al. 2001) is relevant, distribution-fitting software package for simulation prac-
but not directly so. More work is needed. titioners and also for analysts in other application areas

Another area of input modelling that warrants further (actuarial science, agriculture, economics, reliability engi-
attention is the modelling of dependence in input random neering, risk analysis, etc.) The first version of our software
variables. One of the key difficulties in this setting is that was developed by an undergraduate student and myself at
the information required to specify the joint distribution of the University of Wisconsin in 1978 and was called Explore.
a set of random variables grows rapidly with the number of We had read a large number of papers on distribution fitting
dependent random variables. Even in the finite dimensional and our philosophy in developing Explore was to include
case, where one is attempting to model the joint distribu- virtually every relevant statistical feature. (At the time we
tion of a finite number of random variables, we often resort did not realize that such an extensive number of features
to simply matching marginal distributions and correlations; was beyond the statistical background and interest of the
see Cario and Nelson (1997), Ghosh and Henderson (2002),typical simulation practitioner.)
and Kurowicka and Cooke (2002) for example. It is highly Based on the success of Explore in teaching a Master’s
desirable to be able to exercise more control over the joint degree course in simulation, we decided to commercialize
distribution than existing methods allow without an explo- the software in 1981. The software hit the market in 1983
sion in data requirements. If one has a reasonable amount ofand was called UniFit (R)upivariatefitting software), with
data, then one method that is often neglected in this setting the first customer being the U.S. Air Force. (An unfortunate
is that of kernel density estimation, which can provide an aspect of the name UniFit was that some people missed
estimate of the joint distribution. the first “i” in UniFit and asked for information on the

The infinite-dimensional problem is perhaps even more “unfit” statistical package.) UniFit met with only limited
challenging. Here the goal is to generate a time series of commercial success due to its technical nature and due to
observations (possibly vector-valued). Many of the exist- the fact that it was oriented toward mainframe computers—
ing methods for doing this (e.g., Cario and Nelson 1996; personal computers and a standard graphical interface were
Melamed, Hill, and Goldsman 1992; Deler and Nelson not widely available at that time.
2001) are applicable in settings where the time series is In 1985 UniFit was converted to run on PCs under
short range dependent. Long range dependence seems tdOS and improved graphics were introduced. However,
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UniFit's popularity increased by only a moderate amount.
Apparently, many people still did not realize the critical role
that probability and statistics plays in a successful simulation
study, and/or they did not have the statistical background
required to use UniFit.

UniFit did not change significantly between 1985 and
1992. We then came to the amazing realization that when
it comes to distribution-fitting software, “less is actually
more.” We decided to develop an automated procedure for
fitting distributions to a data set that was easy and fast to use,
but did not sacrifice technical correctness. The methodology
that we developed automated the following steps:

» Selecting a set of candidate theoretical probability
distributions (gamma, beta, normal, etc.) that is
consistent with the range of the data set being ana-
lyzed (i.e., nonnegative, bounded, or unbounded);

» Estimating the parameters of each candidate dis-
tribution using a statistically sound method such
as maximum likelihood;

* Ranking the fitted distributions using one or
more heuristics (e.g., the Kolmogorov-Smirnov test
statistic) to determine which distribution provides
the best representation for the data set; and

» Evaluating the best-fitting distribution to see if it
is good enough in ambsolutesense to actually
use in a simulation model. (For perhaps one third
of all data sets, no theoretical distribution provides

Leemis, Schmeiser, Schruben, and Wilson

automated fitting and of simulation-software representations
made the distribution-fitting process much easier for an

analyst and resulted in a considerable increase in popularity
for UniFit.

In 1995 our distribution-fitting package was modified
so that it would run under Windows and the name of the
software was changed to ExpertFit (R).

Version 2 of ExpertFit was released in 1999 and featured
a “distribution viewer” and a batch-mode capability. The
distribution viewer allows an analyst to see characteristics
of a distribution without entering any data. By using a slider
bar for each parameter, one can interactively and quickly
change the distribution being viewed. Batch mode allows
an analyst to enter and analyze a large number of data sets
in a matter of seconds—it was developed under a contract
with Accenture (then Andersen Consulting).

In 2000 we, once again, tried to make our software
easier to use. However, we did not want to “dumb down”
the software at the expense of sacrificing technical cor-
rectness, as we had seen some software vendors do. We
therefore introduced into Version 3 of ExpertFit two modes
of operation: Standard and Advancefitandard Modes
sufficient for 95 percent of all data analyses and is much
easier to use than Version 2 of ExpertFit. It focuses the user
on those features that are really important at a particular
point in an analysis.Advanced Modeontains numerous
additional features for the sophisticated user and is similar
in comprehensiveness to Version 2, but it is easier to use.

a good representation. This is often because the A user can switch from one mode to another at any time

data set is a mixture of two or more heteroge-

neous populations or because the data have been

significantly rounded.)

The ranking and evaluation algorithm was developed
as follows. We had 15 heuristics that were thought to
have some ability to discriminate between a good-fitting
and bad-fitting distribution. To determine which of these
heuristics were actually the best, a random sample of size
n was generated from a known “parent” distribution, and
each of the 15 heuristics was applied to see if it could, in
fact, choose the correct distribution. This was repeated for
200 independent samples, giving an estimated probability
that each heuristic would pick the parent distribution for the

specified sample size. The whole process was repeated for

175 parent-distribution/sample-size pairs, resulting in sev-

eral heuristics that appeared to be superior. These heuristics

were combined to give the overall algorithm for ranking the
fitted distributions. The 35,000 generated data sets were
also used to develop the rule for providing an absolute
evaluation for a fitted distribution.

At the same time that automated fitting was introduced
into UniFit, we also added the ability to provide an explicit
representation of a selected distribution for a large number of
commercial simulation-software products. The addition of
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during an analysis.

We set out to improve the methodology that ExpertFit
usesto fita distribution to a data setin early 2002. For most of
the probability distributions available in ExpertFit, we were
able to develop new and improved methods for estimating the
parameters of a distribution, and this capability was released
as Version 4 of ExpertFit. We tested this new distribution-
fitting methodology on 69 sets of real-world data and found
that it produced better-fitting distributions for 84 percent of
the data sets tested, as compared to the methodology used
in Version 3. Note that the Anderson-Darling statistic—a
powerful measure of goodness-of-fit—was used to compare
the quality of fit for the distributions produced by Versions
3 and 4 of ExpertFit. We also introduced in Version 4 new
capabilities for batch mode—this work was funded by a
contract from Oak Ridge National Lab.

We have always had two major goals in the development
of ExpertFit. The first is to provide the most comprehen-
sive and technically correct set of features available in a
simulation input-modeling package. In this regard, Expert-
Fit makes available 40 different probability distributions, 30
high-quality plots, 4 technically correct goodness-of-fit tests,
and support for 26 different simulation-software packages.
There are also modules available to help an analyst choose
reasonable distributions in the absence of data, including
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modeling machines that are subject to random breakdowns.

There are relatively elementary stochastic models (e.g.,

Many of the features that we have added to ExpertFit were parametric estimation for nonhomogeneous Poisson pro-

as a result of requests made by our clients.

cesses) that are not presently considered by the existing

We have also strived to make ExpertFit easy to use. The commercial software, yet are important enough that they
availability of Standard and Advanced Modes of operation should be easily accessible to modelers. How can these

allows an analyst to configure ExpertFit to their particu-

models be incorporated into input modeling software? |

lar background and to their application. ExpertFit has a will suggest three ways:

comprehensive amount of documentation that includes the
following:

» 450 pages of context-sensitive help for all menus
and results tables/graphs;

* Online feature index and tutorials on goodness-of-
fit tests, available distributions, etc.; and

* User's Guide with 8 complete examples.

In academia, of which | was member for 17 years, it
is critical for algorithms and test procedures to be carefully
documented in the literature, so that they can be indepen-
dently checked for technical correctness. However, in the
world of commercial software the practice is often quite
different, since it is common for one software company
to copy the original ideas of another company. For this
reason, many of the algorithms used by ExpertFit for fitting,
ranking, and evaluating distributions, are proprietary and
do not appear in the literature. However, we spend a con-
siderable amount of time and effort verifying the efficacy
and technical correctness of each and every methodology
used in ExpertFit.

6 LAWRENCE M. LEEMIS

My remarks concerning input modeling will address specific
areas within input modeling, as opposed to generalities. |
will discuss (1) the transfer of new models and associated
algorithms for input modeling to commercial input modeling
software, (2) opportunities for the input modeling commu-
nity to partner with hardware vendors in the analysis of

Competition. Once one of these models is im-
plemented in one of the commercial packages and
gains popularity, other packages will follow suit.
Healthy competition of this type, for example, has
resulted in increasing capability for the Maple and
Mathematica computer algebra systems.

Winter Simulation Conference round table ses-
sion. The developers of the algorithms for more so-
phisticated input modeling techniques should meet
with the commercial software developers at the
Winter Simulation Conference to encourage the
implementation of the new modeling techniques
into existing packages.

Demand Once the simulation modeling languages
incorporate a more sophisticated input model into
their packages, it will only be a matter of time before
the software vendors will include fitting software
for this particular input model in their commercial
software. Unfortunately, this pull-type approach
has put us in our present state where most of the
commercial input modeling software is limited to
univariate data fitting.

6.2 Automated Data Collection

Recently developed hardware for automated data collection
provides the opportunity for the simulation input modeling
community to assume a leadership role in the analysis of
the data collected in this fashion. | will cite two exam-
ples of hardware from the nonsimulation community in the

data collected automatically, and (3) future research topics paragraphs below.

in input modeling. As documented atwww.factoryware.com> , the
FactoryPulse Systens a rapid deployment productivity
analysis software package. This system is used to ana-
lyze cycle time, down time, capacity, utilization, etc. for a
There are generally three types of discrete-event simulation discrete-manufacturing system. The system sets up in less
input modeling software available presently: standalone in- than 30 minutes and contains its own statistical analysis
put modeling software available from vendors, input model- package that can be used to analyze data that is collected
ing software associated with aparticularsimulation modeling on the system of interest. A|th0ugh the ana|ysis software
language, and freeware on websites posted by academics antontains graphical measures (e.g., pie charts), none of the
practitioners. The first two types of software typically focus  typical simulation input modeling concerns are addressed
on the estimation of the parameters in standard univariate in the data analysis portion of the system.
distributions (e.g., Weibull) fit by maximum likelihood or A second hardware example is the JAMAR hand-held
matching moments. The freeware generally fills in the gaps counting board and associated PETRA (Professional En-
that are left by the commercial software. gineers Traffic Reporting and Analysis) software produced
by JAMAR Technologies, Inc. The counting board con-
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tains buttons keyed to turning movement (left-hand turn,
straight, right-hand turn) associated with a two-way inter-
section. This hardware allows the collection of time and
turning movement data that would be impossible to collect
with a stopwatch and clipboard. Although the analysis soft-
ware is capable of producing empirical CDFs associated
with various measures of performance on an intersection,
none of the typical input modeling tools (e.g., parametric
distributions) are included.
The input modeling community could provide a valu-

able link between hardware of this type and the simulation
modeling community at large.

6.3 Future Research

| believe that there are still fundamentally important, but
unaddressed problems in input modeling. | will give two
examples.

The first example considers the analysis of service-
time data for a server capable of processing multiple jobs

Leemis, Schmeiser, Schruben, and Wilson

Assume that the true system of interest isiMpM /1
queue with arrival rat, service ratet, and traffic intensity
p = %. For the discussion here, assume the arbitrary values

w'
of A =1andu = 1—90 for the two rate parameters. The
first question that can be addressed here is whether the
expected steady-state queue length is infinite whemd
wu are estimated from data. When> 1, the steady-state
expected queue length is infinite.

Assume that we sample exponential{) interarrival
times, X1, Xo, ..., X,,. The estimated mean interarrival
time from then sampled times iX, and /X is the estimated
arrival rate. The distribution ok is Erlang.

Similarly, assume that we sample exponentialg)
service timesyY, Yo, ..., Y,,. The estimated mean service
time is Y and the estimated service rate ig¥l The
distribution of Y is also Erlang.

When the interarrival rate exceeds the service rate, the
expected queue length will not be finite since jobs are
arriving faster than they are being serviced. It is useful
to know what the probability is of this occurring, e.g.

simultaneously. Examples of such servers include web-site px - 7) = J2 [ @ f5() dy dX.
X - J)

servers and chefs. As the jobs arrive to the server, the service

time will increase once a particular threshold (which may
not be given to the data analyst) is reached. The problem
is further complicated if the jobs are of varying size, as

In order to see how collecting more service times or
interarrival times will affect the probability of the queue
eventually growing without bound, the probabilities for
values ofn andm adjacent ton = 12 andm = 10 (two

in the case of the web-site server. It is complicated even arpitrary sample sizes) are shown in Table 1.

further if the jobs need to be sequenced so that a subset of

the jobs need to be completed at approximately the same
time. The proper analysis of the record of such a server in
order to construct a discrete-event simulation input model
is a non-trivial task which has not yet been addressed in
the literature.

The second example comes from a conversation that
| had with Steve Chick at last year's Winter Simulation
Conference. Traditional simulation output analysis assumes
that the simulation model is “correct” in the sense that the
stochastic input model being used accurately depicts the
random elements of the system of interest. In practice, this
is virtually neverthe case. Consider the simulation of an
M/M/1 queue using an estimated arrival rate o= 1
customer per minute and an estimated service raje sf
10/9 customers per minute. Assume that the exponential
assumptions are appropriate. One would certainly have
much less faith in the output analysis of such a model if
n = 10 interarrival times and: = 12 service times were
collected than itz = 1000 interarrival times ana = 1200
service times were collected.

This explicit recognition of sampling error in the input
models and how it can be incorporated in output analysis
is an emerging research topic. | am presently working on
this topic, assessing the sampling variability effects in input
modeling in discrete-event simulation, with two William &
Mary students, Rob McGregor and Matt Duggan. | will end
with some preliminary results associated with this research.
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Table 1: Probability of Steady-State Infi-
nite Expected Queue Length

m=9 m=10 m=11
n=11| 0.4025 0.4031 0.4035
n=1210.3983 0.3987 0.3990
n=13|0.3946 0.3949 0.3950

A seemingly counter-intuitive notion in Table 1 is that
P(X < Y) increases im. We checked this result for larger
values ofm and found that the probability does begin to
decrease eventually. As expected, the probabilities decrease
asn increases.

The distribution of the delay times is another output
statistic that can be considered. We begin by looking at
the delay time of the third customeRs. Kelton (1985)
has computed the expected delay times ofitiecustomer
for a standardV/M /1 queue with fixed. and u values.
Using Kelton’s formula,E[ D3], the expected delay of the
third customer is

For the values chosert, = 1 and u = 7, using
the equation above results K[ D3] = 0.7345, which was
double-checked by 5,000,000 simulation replications times

1+4() +2(3)?
(2 +13

A
12

10
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with an average delay of the third customer being 0.7344,
confirming the validity of the equation and the implementa-
tion. In addition, Kelton’s formula was checked for several
other values of.

In place of in the equation, we use the distribution
of 1/X and in place ofu in the equation, we use the
distribution of /Y. However, the problem proved to be
too difficult to be solved analytically, so the distribution of
the third delay has not been determined.

Since the analytic solution is not tractable, we simulated
the third delay time with the estimated parametef® And
1/Y rather than the fixed values farand u. The values
for X andY are computed fon = 12 andm = 10 on
each replication. The simulation is then run usiXigand
Y, and the delay of the third customer is calculated. For
1,000,000 simulation replications, the average delay of the

third customer for the estimated parameters was 0.7853.

This was compared to the average delay with the fixed
parameters being 0.7345, which is about.@% increase.
The simulation also showed that there are slightly more
zero delay times with the estimated parameters.

7 BRUCE W. SCHMEISER

At the 1991 Winter Simulation Conference in Phoenix | first

heard an ingenious idea of how to deal with practitioner
uncertainty about the model. During an informal conver-
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code has no bugs, and point estimators have zero bias
(including from an initial transient).

A standard simulation experiment designed to estimate
6o then has two sources of error. First, rather than using
model My, it might use modelM with associated perfor-
mance measuré # 6p, which we define to be modeling
error. Second, the point estimatérhas sampling error,
which we measure by its variance (or its square root, stan-
dard error). Typically the variance 8(n~1), wheren is a
measure of computational effort; we assume only that the
variance goes to zero asgoes to infinity.

In the standard simulation experiment, we are using
é\, which has expected valug to estimatedy. Consider
the usual decomposition of mean squared error (mse) into
squared bias and variance. Modeling error_leads to bias
6 — 6p. Sampling error leads to variance(®y. If we
are to combine measures of sampling error and modeling
error, then mse would be an acceptable single measure.
Asymptotically for large values of, mse goes to squared
bias (as the variance goes to zero). Bec#gse unknown,
the modeling-error bias is unknown, and therefore the quality
of the point estimato is measured by standard error alone.

Allis well as long as the practitioner understands that the
error is with respect té and notdp; that is, modeling error
is not a consideration in the standard simulation experiment.
To the extent that simulation is only a method to analyze the
modelM, bias due to modeling error is irrelevant. Modeling

sation, Lee Schruben discussed the idea of expanding theerror is important, though, so interest in measuring its effect

simulation model to include practitioner uncertainty. For
example, if a homogeneous arrival ratevere not known
with certainty, then the rate could be obtained by sampling
from a distribution. The distribution would have a large
variance if practitioner uncertainty were great and zero vari-
ance if practitioner certainty exists. | forget the original

version of the idea: perhaps each replication would use one

randomly generated value bf Since 1991 various versions
of the idea have been suggested by Lee and others.

The concept that | wish to discuss is the general attempt
to give the practitioner a sense of how practitioner uncertainty

about the model affects the point estimator and its standard

error, with the interpretation that the standard error now
reflects both sampling error and modeling error. Although
measuring the effect of practitioner uncertainty about the
model is certainly an important issue, | think that using a

is understandable.

The appeal of including practitioner model uncertainty
in M is the hope that the increase in standard error will be
(approximately) equal to the unknown bias. My primary
concern is that | see no reason for such an equality to occur.
Consider the following two points.

First, the equality needs to occur for all run lengths
so any reasonable version needs to reflect the fundamental
difference that sampling error decreases with additional
simulation sampling while additional sampling has no impact
on modeling error.

Second, a practitioner’s uncertainty may not reflect real-
ity. A practitioner could be certain, but wrong; a practitioner
could be correct, but uncertain.

Another concern is that a simulation experiment that
includes model uncertainty could have substantially more

single measure for these two sources of errors is not a good bias than the simpler experiment based on a fixed model.

idea.
In this discussion, which elaborates on a point made in

Suppose that the model is a steady-std{g\//1 queue and
that a bivariate distribution is placed on the arrival rate

Schmeiser (2001), | assume that the purpose of the simulation and service rate.. Care must be taken to ensure that the
experiment is to estimate an unknown performance measure resulting performance measufeis not infinite, in which

6y from an unknown true modely. Further, | assume
that other sources of error are negligible: Random-number

case the associated modeling bias is infinite. Eveh ig
finite, the bias easily can be larger than that of the standard

and random-variate generators are perfect, numbers areexperiment.

represented on a computer as real numbers, the simulation
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My conclusion is that model error should be treated
separately from sampling error. Good methods for esti-
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mating standard errors exist. Similarly, good methods for
estimating sensitivity to modeling errors exist. Maintaining
the distinction between these two sources of error simpli-
fies and clarifies both experimentation and interpretation of
results.

8 LEE W. SCHRUBEN

8.1 Introduction

I will present arguments for the following propositions:

1. “Real world” data is not important to the success
of many simulation studies.

2. Fitting distributions to data for driving simulations
is fundamentally unsound.

3. Beta variates are the only scalar random variables
we need for most practical simulation input mod-
eling.

4. Resampling nonhomogeneous renewal processes is

a promising way to model time dependency.

Simulation input is defined narrowly here as the data
generated by stochastic models that describe the behavior
of the external environmendf the system being simulated.
The conventional approach to input modeling involves col-
lecting and validating real world data, statistically selecting
probability distributions that fit the data and then generating
input random variables from these distributions to model
the system environment.

The importance placed on simulation input modeling is
reflected by the considerable amount of space devoted to this
topic in simulation textbooks as well as the large number of
journal articles and the proliferation of distribution fitting
software. Indeed, input modeling typically consumes much
of the resources and time in a simulation project.

I would like to consider the propositions that input
modeling is really not all that important to the success of
a simulation study and that the value of “real world” data
is highly overrated.

8.2 Reality?

To place the value of real world data in perspective it might
be helpful to remember the followingive Dastardly D’s
of Data (Schruben and Schruben 2001). Data can be

1. Distorted: Data might be defined inconsistently or
poorly communicated. Even if communicated cor-
rectly, the values of observations may have been
mistranslated, scaled, or simply recorded incor-
rectly.
Dated: The data may be from a system that has
or soon will be changed. For example: factory
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data may have been gathered for an older produc-
tion process or using last year's product mix and
demands.

Deleted: Observations may be missing from the
data set. This might be because the data was
collected over a finite time interval during which
important but rare events simply did not occur. For
example: medical trial data might be censored by
patients dropping out of the study for various and
unknown reasons.

Dependent: Data may be summarized (i.e., only
daily averages are reported) removing critical cy-
cles or other trends. Data might be collected under
unusual conditions or at systematic times, creat-
ing or concealing relationships within and among
the sets of observations. Fitting a data set to a
scalar probability distribution removes dependen-
cies, maybe the most useful information in the data
set.

Deceptive: Any of the above four data problems
might be intentional.

3.

5.

Even if we have a very large set of valid system data, a
fundamental problem with using real system data remains:
once the data is observed, itdkl. Most simulation studies
are motivated by a desire to learn what would happen if
we were tochangea system. By modeling the input to our
experiments using data from the old system, we implicitly
assume that the environment in which the system lives is
stationary over the time between data collection and the
end of the study; this is probably not the case.

We are also assuming that the system we are studying
is closed to its environment. For example, if we were to
improve customer service that we would not attract more
customers. If we assume that changing the system will
have no significant impact on its environment, we have to
ask ourselves: why are we considering changing it? Our
so-called, “what if?” experiments are more aptly “as if!”
experiments.

| am not suggesting that real system data is useless. One
justification given for collecting is to verify the simulation
code. Here | would prefer driving the simulation with the
original data traces (preserving dependencies and reducing
the variance between real and simulated performance) to
fitting scalar distributions to the data.

A very good reason for using real system data is to
estimate the statistical performance of the current system.
This sounds silly since we usually can directly observe the
performance of the current system. However, the goal of
many simulation studies is to improve an existing system,
and doing nothing is the default decision. A case needs to
be made for any proposed changes. Accurately estimating
the effects of proposed changes must be relative to the real
performance of the current system. The central question is
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not whether or not the proposed change is an improvement 8.4 Beta Testing

but rather whether is #noughof an improvement to justify
the costs of the changes. Accurately estimating the dif-

For simulating proposed systems, it is unreasonable to as-

ference between the simulated and the actual performancesume that the environment from which we collected our real

of the current system is an imperfect way to calibrate a
simulation, but it is better than nothing. How to do this
calibration is an interesting topic for research.

Probably the best reason for encouraging the collection
of real world data is to force simulation practitioners to
observe the systems they are modeling. Collecting and
analyzing data gives them something to do while learning
how the system works.

8.3 Reality Check?

| feel the best approach for estimating the current perfor-

mance of a real system is to construct percentile confidence in Figure 2 from Schruben and Schruben (2001).

intervals using the two-step empirical resampling meth-
ods advocated in Russ Barton’s contribution to this panel.
This approach retains some of the shortcomings of fitting

distributions to data (such as ignoring dependencies and

world data will not change. Here the question is: how might
the environment react to our changing the system to make
the change worthwhile ... or to break it? This question
is answered by treating simulation input as another set of
factors in our simulation experimental design. We perform
sensitivity analysis on the input to try to find out where our
proposed system will best operate (considering both issues
of optimality and robustness).

For sensitivity analysis, beta variates are the only ones
we need for most simulation studies. The four parameters
of a beta distribution (including location and range) offer
plenty of flexibility for input sensitivity analysis as shown
This
distribution also has the advantage of having finite support.

8.5 Nonhomogeneous Renewal Processes

nonstationarity), but it does account for the uncertainty of A model that may be useful for sensitivity analysis to non-

not knowing the true input distribution or its parameters.

stationary simulation environments is what | will call a

One of these methods for generating independent scalar nonhomogeneous renewal process. This is the obvious gen-
random variables, a Bayesian bootstrap, has a great deal oferalization of a nonhomogeneous Poisson Process (NHPP).

appeal since it uses only the information in the data. No
distributions are actually fit to the data.
Consider some important real world random variable,
X. Rather than estimating its unknown distribution func-
tion, Fx(x) (and thereafter treating this as a known func-
tion), we can implicitly randomize this function by observ-
ing real values of its horizontal coordinates and generating
its vertical coordinates from the appropriate distribution.
The random variablé& is observable in the real system
and we know that the distribution df = Fx(X) is iid
uniform. We can implicitly sample points anby observing
n ordered values aX as its horizontal coordinates;, x2),

.., X[n]. Then foreverynew simulation run, we generate a
newset ofxn vertical coordinates foF, yr1y, y2, -- - Y]
asn uniform order statistics. To simulate a new value of
X we generate an iid uniformly distributed pseudorandom
number,U, and interpolate the inverse @ betweenxy;
and x;; 417 where U falls betweenyy;; and yji+1; (search
starting ati = |[nU]). Since we are resampling, percentile
confidence intervals should be used.

The coverage of the confidence intervals for this ap-

proach as well as for other resampling approaches dramat-

ically dominates that for conventional methodology when

The conventional approach for modeling a NHPP, anal-
ogous to fitting distribution functions to iid data, is to esti-
mate the cumulative intensity function and treat it as known
throughout the simulation study. This approach, of course,
does not account for the uncertainty in the cumulative in-
tensity function.

The idea is to resample the process without explic-
itly estimating the cumulative intensity function. We first
sample the total number of events independently for ev-
ery simulated cycle using a resampling scheme like that in
Barton and Schruben (2001). Aggregated cycle data (e.g.
total daily demand) is likely to be readily available whereas
detailed event times probably are not. Then, conditioned
on the number of observations in a simulated cycle, we
have exactly the same situation as we did for the Bayesian
bootstrap. The cumulative intensity function maps a non-
stationary Poisson process along time on the horizontal axis
into a stationary Poisson process along the vertical axis with
arate of 1. The horizontal coordinates of the randomized cu-
mulative intensity function are the observed real event times
in (superimposed) cycles. The vertical coordinates are the
order statistics from the appropriate uniform distribution—
relying on the fact that given the total number of events

the simulation runs are long enough so that the error due to in a homogeneous Poisson process cycle the actual event

a finite real world sample is less important than the error
due to a finite simulation run length. This is usually the

case since simulated observations are much cheaper thameous stochastic processes.

real world data.
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times have a joint uniform distribution.

Now consider generalizing this to other nonhomoge-
Assume the existence of a
function that maps nonstationary (real) time into station-
ary time like the cumulative intensity function does for the
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NHPP. If we knew this function, then we could generate

poration and the National Science Foundation is greatly

a stationary renewal process along the vertical (stationary appreciated.

time) axis and map the nonstationary event times along the
horizontal (real time) axis via the inverse of this function.
If the stationary point process (conditioned on the num-

ber of events in the simulated cycle) has events distributed Arkin, B. L., and L. M. Leemis.

like uniform random variables we have the NHPP. Since
we are dealing with order statistics and the uniform dis-
tribution is a special case of the beta distribution, using a
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