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ABSTRACT

In recent years, substantial progress has been made in
development of powerful new approaches to modeling a
generation of the stochastic input processes driving simu
tion models. In this panel discussion, we examine some
the central issues and unresolved problems associated w
each of these approaches to simulation input modeling.

1 RUSSELL R. BARTON

I would like to encourage additional research in the u
of input resampling methods for the analysis of simulatio
output when the input distributions are based on empiric
data. I’ll focus on simulation driven by empirical distribu
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tions, rather than fitted parametric distributions, but I believe
that this resampling approach is also important when fittin
parametric distributions to empirical data. My comments
are intended to initiate discussion, and are organized arou
three topics:

• Why two-step bootstrap resampling should be con
ducted when computing confidence intervals for
parameters characterizing simulation output, an
proper conduct of the two-step method;

• What is wrong with the two-step bootstrap method;
and

• Why focus on empirical input distributions rather
than fitted parametric distributions.
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1.1 Why Two-Step Bootstrap Resampling?

There is some confusion about the use of bootstrap resam
pling of input distributions, in terms of how the simulation
runs are conducted, and how the results are analyzed. I
summarize the approach that Lee Schruben and I have be
using, and I refer the reader to Barton and Schruben (200
for details.

First, the bootstrap resampling should not be done
within a simulation run, but rather between runs. Resam
pling within a single run has no impact on the simulation:
the resulting cdf for the input values matches the origina
empirical cdf. This may explain Russell Cheng’s commen
(Cheng 1994):

Given that sampling of the smoothed em-
pirical cdf takes place in the second step,
…, it is not clear that the first step is
necessary or even helpful to carry out.

Resamplingbetweenruns does make a difference, how-
ever. Each simulation run is conducted with different input
distributions. This component of variation is added to the
normal run-to-run variation that occurs due to finite run
length. This combination of two sources of variability af-
fects the validity of the bootstrap approach, as I discus
in the next section. In our experiments, the variation due
to changes in the input distributions overwhelmed run-to
run variation due to finite run lengths. The implication is
that, without bootstrap resampling, the simulationist see
artificially small run-to-run variation, and constructs overly
optimistic confidence intervals for output parameters. This
is why two-step bootstrap resampling should be used: t
capture the uncertainty in the predicted system performanc
due to finiteness of the empirical data used to determin
the input distributions.

There is a second issue in the use of the two-ste
resampling method: intervals are calculated from empirica
percentiles of the output statistic, nott-based intervals using
the across-run standard deviation. The reason is that th
bootstrap resampling provides an estimate of the distributio
function of the statistic one would expect from repeated run
with different input samples of the same size. Increasing
the number of replications (that is, bootstrap resamples
provides a better estimate of thesamedistribution, rather
than a tighter distribution for the statistic.

1.2 What Is Wrong with the Two-Step Bootstrap

Cheng (1994) describes the two sources of error that aris
when using input distributions that are fitted to empirical
data. He identifies the first as bias error, due to the finitenes
of the empirical sample, and the second as variance erro
due to the finiteness of the simulation run length. He
-

n

proposes a parametric bootstrap approach to estimate b
components of variance across simulation runs.

These two sources of variation complicate the tw
step bootstrap approaches that are described in Barton
Schruben (1993) and Barton and Schruben (2001). A n
essary condition for bootstrap estimates of the distributi
of the output statistic to converge to the true distribution (
sample size and the number of bootstrap replications go
infinity) is that the output statistic is a smooth function o
the sample data. In some cases less restrictive assumpt
are possible but the statistic still must still be a determinis
function of the sample input data. For the two-step bootstr
strategy, the finite length of each simulation run means th
the statistic is a stochastic function of the input samp
Of course, the condition of a deterministic function nee
only hold approximately, since calculations of any bootstr
statistic using digital computers leaves a result that mig
be thought to have a random perturbation at the level of
machine precision.

For the queuing examples presented in our two previo
papers, simulation run lengths had 4000 customers or m
with input sample sizes of 500 or less. For these cas
the run-to-run variation from finite input sample size fa
exceeded the variation from finite run length. The resultin
coverages for the bootstrap intervals were indistinguisha
from the nominal 90%. Figure 1 shows that it is possible
generate poor coverage with the two-step bootstrap appro
The graph shows the nominal coverage of 90% interv
based on bootstrap and uniform bootstrap methods. Th
methods were applied to input distribution sample sizes
500 for anM/M/1/10 queue withρ = 0.7, with simulation
run lengths varying from 50 to 8000 customers. The dash
lines indicate approximate 95% confidence intervals on t
coverage. Coverage for both methods is indistinguisha
from the nominal 90% for run lengths with 2000 or mor
customers (after warm-up).

Figure 1: Coverage Error for Short Runs
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To use two-step bootstrap resampling, one must ens
that the variation due to finite run length is relatively sma
compared with the variation due to the finite input samp
size. Otherwise, the intervals may be overly conservativ
This is easy to check by making replications using the sa
input samples, and comparing this variation with repeat
runs using bootstrap resamples of the input distributions

1.3 Why Focus on Empirical Distributions

Perhaps the most common approach to input modeling
simulation is to fit parametric models based on sample da
There have been many papers on this topic in previous Win
Simulation Conferences. See for example last year’s tutor
by Leemis (2001) and the references therein.

Nonetheless, while this is the most common approac
I believe that it is high risk, for several reasons.

1. There is rarely a theoretical justification for a pa
ticular distribution. Many simulation responses ar
sensitive to the tails of the input distributions, ye
these tails are precisely where parametric mode
often fail to capture reality.

2. Testing for or selecting a correct model in suc
circumstances might appear to be futile: as Geor
Box said, “All models are wrong, some are useful.

3. A parametric distribution gives the simulationis
an artificial sense of the well-definedness of th
simulation. While the model is well-defined, it
need not be well-connected to reality.

Empirical distributions are easy to use with most sim
ulation packages. Using them makes the limited fidelity
the model more transparent, particularly if two-step boo
strap resampling is used to characterize uncertainty in
output statistics.

1.4 Acknowledgments

Many of the ideas in this statement came from discussio
with Lee Schruben. Important questions and clarificatio
have been brought to light by discussions with many regu
WSC participants, including Russell Cheng, Steve Chic
Dave Goldsman, Shane Henderson, David Kelton, Ba
Nelson, Bruce Schmeiser, Bob Sargent, Jim Wilson, a
others.

2 RUSSELL C. H. CHENG

Law and Kelton (2000) give a good introduction to bas
input modelling. The stance adopted here is that inp
modelling is inextricably linked with input data. There ar
three main steps in handling input data: (1) Data Gatherin
(2) Data Inspection, and (3) Data Analysis. Input modellin
e

.

.
r
l

,

,

can be equated with the last of these, if we take the view th
proper understanding of data requires its characterisati
by a statistical or stochastic model.

Much of the panel discussion will no doubt focus on
methodological issues involved in (3), as these tend
have the greatest academic appeal. However, it is wor
emphasising that no amount of academic cleverness c
make up for basic inadequacies in the quality of the practica
real-life data that fuels and informs the input modelling
process. So, before becoming engrossed in technical nice
it is as well to acknowledge that, arguably, far and away th
most important part of input modelling is (1) and that this
is largely out of our—the analysts’—hands. It is dependen
on the front-line people who gather and collate the dat
Even if the importance of (1) is agreed, it might be deeme
to fall—thankfully—outside the remit of this panel session
However (2), the Data Inspection phase does come with
our remit, and requires some comment, as this phase sho
culminate in the formulation of possible input models tha
are the object of fuller study in (3).

My experience is that a typical case study involves muc
effort in manipulating and organising of data, frequently
from incoherent and suspect sources, in order to shape
into some semblance of credibility and usability. This ca
consume a huge part of a project’s time. In Data Inspectio
two aspects need consideration and evaluation, each w
its own subheadings:

1. Data Quality:

(a) Reliability

(b) Stability

2. Data Complexity:

(a) Type (discrete / continuous, quantitative
qualitative)

(b) Size/Quantity of Data

(c) Probabilistic Nature (including dependence

‘Rubbish in, rubbish out’ is a well-known catch-phrase
that captures the key difficulty of Data Reliability. It often
requires input of expert knowledge to resolve. Unexplaine
variation is usually ascribed to randomness simply becau
we do not know its cause. However unexpected blips in da
can often be explained away with additional information
For instance, an at first sight mysterious dip in reported T
incidence in an African country was due simply probabl
to poor data collection due to the civil war that raged ove
the same period as the dip.

By Data Stability I mean the validity of the data outside
the period of its collection. Stock market forecasts based o
data gathered up to, but not including, the recent burstin
of the dot.com bubble, look misguided. In many simulatio
studies time is better spent evaluating data quality rath
than on the simulation modelling itself.
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In preparing this position statement, I was led to su
veying the summer projects carried out by the students
our Master programme in OR, for a wide range of co
porate clients. All involve handling of real data. Many
of the projects involved simulation; and simulation migh
well have been used in those cases where it was not. T
variety of data was sobering. Here is a small selecti
from the last year or two: HIV epidemics, car windscree
replacement, soft fruit distribution, package holiday sale
air-traffic controller performance, hospital bed-occupanc
mail orders, call centres, human growth curves, environme
tal risk statistics for earthworms, racing car performanc
lost luggage returns, horse-race betting, LNG productio
car worker motivation, bank account statistics, war-gam
studies. What stands out from this list is the sheer varie
and complexity of the data. However it is possible to impo
some order. A simple classification is to observe that da
has a form that is typical of the sector from which it arise
In OR type studies important sectors are: (i) Manufacturin
and Production, (ii) Services, (iii) Leisure, (iv) Environ
mental and Life Sciences, and (v) Physical Sciences.
amusing exercise is to try to pigeon-hole the MSc project l
according to sector. The focus of discrete event simulati
has perhaps been in (i). However the character and nat
of data in other sectors is sometimes refreshingly diffe
ent. There is some scope for formalising this problem
unravelling Data Complexity as one of Data Classificatio

I highlight four further specific problems of Data Com
plexity, in no particular order.

The first is to note that recent advances adopt a mu
more sophisticated approach to input modelling. Advanc
techniques, that allow for data dependence, are review
by Nelson and Yamnitsky (1998) and by Schmeiser (199
More specific techniques for generating correlated data
described by Deler and Nelson (2001) and Ghosh and H
derson (2001).

The second involves non-quantitative data. Seve
of the MSc projects, including air-traffic controller perfor
mance, war games and car worker motivation, involved da
concerned with human factors. These were hard to qu
tify and make reliable. In the war game example, it wa
readily acknowledged that morale and esprit-de-corps w
key factors but almost impossible to quantify. In anoth
instance, a colleague asked participants at a recent works
on Forecasting if they made use of subjective forecasti
techniques. All but one of the group of about 40 indicate
that they did. Alas for Box-Jenkins! Bayesian inference
a powerful formal method for injecting human opinion int
an analysis. This area has been the subject of much st
by statisticians of the Bayesian persuasion, but has not
received the wider recognition that it now deserves.

The third problem is a specific instance of a Data Distr
bution problem. It might be termed the Mixture Problem an
it occurs, for example, in queueing situations. In the MS
f
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list it occurs in the hospital-bed, call centre, mail order, an
air-traffic controller examples. Often data is not homoge
neous, but is a combination of samples from several differe
populations. Correct input modelling will require identi-
fication of the separate subpopulations. This is a difficu
problem technically as it is non-standard. There has be
much recent interest from both classical and Bayesian stat
ticians concerning this problem (See for example Chen
1998).

The fourth problem concerns Data Size. One seem
to lurch from problems where there are literally only a
couple of dozen data points, to those where gigabytes
data are all too readily available. Bayesian techniques see
good for the former situation and Resampling technique
for the latter. I will return to this problem after discussion
of Data Analysis techniques. A point to note is that often
when large data sets are involved, the problem is to t
to identify small subsets of key factors. Classification an
Regression Tree (CART) and Neural Network technique
are two methods that are of interest in this regard but whe
the methodology is not all that advanced.

We turn now to Data Analysis. The purpose of this is
twofold. The first aim is to better understand the structur
of the data. This should be made explicit by fitting a
formal statistical or stochastic model of the data. Second
once such an input model is fitted, it can then be used f
generating input data in its own right, if this is required in
the simulation. The quality of fit of the input model to the
data needs to be evaluated. However this is not enoug
The real need is to assess how the quality of fit of the inp
model affects the quality of the simulation itself. This can
conveniently be treated as a validation problem. (Kleijne
et al. 2001)

Two interesting methodologies seem especially appr
priate to Data Analysis: Bayesian Inference and Bootstra
Resampling.

Bayesian Inference is an excellent approach for bringin
together prior information and new data (see Chick 2000
which also resolves questions of sensitivity analysis in a ne
way (see Zouaoui and Wilson 2001, for example). Ther
are two scenarios that can be highlighted. The first is th
situation where input streams are dependent on paramete
denoted by the vectorθ , whose values are uncertain. In the
Bayesian approach, this uncertainty is captured by stipula
ing a prior distribution,π(θ), for θ . Let us denote byr(θ),
the result obtained from a simulation run made at parame
value θ . Parameter uncertainty can then be accounted f
by making runs at differentθ values. Denote the set ofθ
values used as{θi, i = 1,2, . . . , n}. If the θi are a random
sample drawn fromπ(θ), then{r(θ), i = 1,2, . . . , n} is a
random sample whose EDF estimates the (prior) CDF
r. This EDF can then be used for inference aboutr in the
usual way.
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If there is real datax, whose distributionp(x|θ) depends
on θ , then this can be incorporated to construct a posteri
distributionp(θ |x) using Bayes’ theorem:

p(θ |x) = l(x|θ)π(θ)
/∫

l(x|θ)π(θ) dθ,

where l(x|θ) is the likelihood (i.e. p(x|θ) treated as a
function of θ ). Markov Chain Monte Carlo (MCMC) is
currently the popular method for carrying out this construc
tion. However I would advocate Importance Sampling a
being intuitively easier to understand than MCMC and a
being just as easy, if not easier, to apply in many cases.

Note that the data,x, can appear at two points. The
simpler situation is wherex is just (additional) data gener-
ated by the input process alone. For instance, in a que
problem,x might be more customer arrival rate data. In
this case the Bayesian procedure is applied solely at t
input modelling stage, with the posteriorp(θ |x) obtained
before the simulation runs are done.

The second more interesting case is wherex represents
output that thesimulation itself is attempting to reproduce.
In this case the likelihood will characterise the distributiona
relationship betweenx and r and so involve both; so it is
not justl(x|θ), but l(x, r|θ). The simulation runs thus form
part of the sampling process used to determine the poster
distribution. If runs are expensive this obviously can b
a serious problem. This second situation occurs in man
interesting forecasting or predictive situations and is an are
of current research interest. A very interesting variant tha
there is no space to discuss concerns certain simulati
optimization problems where the Bayesian approach ca
handle situations that are impossible to contemplate usin
a classical formulation.

Bootstrap Resampling is a general approach (Chen
2001; Barton and Schruben 2001) that really should b
better recognised in simulation given its ease of implemen
tation and generality of application. One reason for thi
lack of recognition is an often voiced suspicion that on
appears to be getting something for nothing. This stem
from a misunderstanding. Bootstrap resamplingdoes not
improve an estimate—nothing can do that if an efficient
estimator is being used—but is simply a means of est
mating thevariability, more generally thedistribution of
the estimator. Thus it is clearly a useful method for han
dling questions involving goodness-of-fit, validation, and
sensitivity analysis.

In considering bootstrap methods an interesting questio
is whether one should bootstrap from the original data o
from the fitted model. When large real data sets are availab
then these might reasonably be taken to be a good pro
of the population, and bootstrapping from the data is th
natural thing to do. However when the original data set i
e

r

n

y

small in size then parametric bootstrapping seems far m
preferable.

In summary, the impact of input modelling on the qualit
of an overall simulation is often of crucial importance. Th
above comments are merely examples of areas and iss
that I have been drawn to through my own research.

3 STEPHEN E. CHICK

Many simulations are run to study how simulation outp
depends on the inputs, be they design parameters or par
eters of probability distributions that describe randomne
(stochastic uncertainty) in an abstracted system. Many to
exist to analyze simulation output, either for a single set
inputs, or as a function of the inputs (e.g., Law and Kelto
2000; previous WSC proceedings; references therein).

Simulations are often required to do more than rela
inputs to output—a model may be required to represent
existing or planned system. While design parameters
often easily related to simulation models (e.g., 5 real serv
correspond to 5 simulated servers), input distributions a
parameters pose a challenge. Why should we believe
actual service times have a Weibull distribution with sha
parameterα = 5 and scale parameterβ = 25? Even
if a simulation exactly determines the mean performan
of the system as a function of the input parametersα, β,
we still may be uncertain about the performance of t
system. Why? In practice we usually don’t know value o
input parameters exactly, or even if the Weibull is the rig
distribution (structural uncertainty).

From this perspective,input distribution selectionand
model validationgo hand in hand. Does a decision-make
find that a given distribution and parameter reasonably re
resent the randomness in a system? Including the decis
maker in the simulation process is a widely accepted k
factor of successful simulation projects. And including th
decision-maker makes input modeling asubjectiveprocess.

The classical approach commonly evaluates statis
cal methods, like the standard input selection method,
studying performance during repeated sampling as a fu
tion of known parameters. It is comforting to know how
well a method works, on average, when applied repeate
Asymptotic methods (e.g. asymptotic normality results f
MLEs) further inspire confidence in the standard mech
nism. There are many benefits with the standard parame
estimation/goodness-of-fit approach.

But there are practical problems (e.g., Raftery 1995
And a decision maker often does not have the benefit
repeated sampling. There may be a few big simulati
projects per year, not an infinite sequence of similar projec
A huge amount of data may not be available.
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Bruno De Finetti (1990) asserts:

Probability doesn’t exist.

In part he means that probability is asubjectivestatement
about uncertainty, not a property defined only for con
ceptually infinite sequences of samples. An implicatio
for simulation is to posit a joint probability model tha
describes both stochastic uncertainty and structural unc
tainty. This includes formalizing statements like ‘the arriva
rate λ is unknown, but is likely around 10–12 per hour
with a probability distribution for the input parameterλ.

This is consistent with the subjective nature of inpu
selection and simulation validation. Conditional probabilit
and observations (field data and simulation observation
help infer the unknown input distributions and paramete
of the modeled system. The posterior distribution of th
inputs is then determined by Bayes’ rule, given availab
data. The simulation output mean, the expectation tak
over both stochastic and structural uncertainty, is determin
by aBayes’model average(e.g. Draper 1995; or Chick 2000
in a simulation context). The BMA samples input mode
and parameters from an appropriate posterior distributio
Simulation outputs are generated for each sampled in
model/parameter combination.

The Bayesian approach is not new: Laplace and Bay
initiated idea streams centuries ago; De Finetti indicat
that Hume and Berkeley influenced his thinking. But th
ideas are not outdated and purely philosophical. They sh
practical insights into many applications (e.g. Gilks et a
1996). Young and Lenk (1998) even improve stock mark
portfolio allocation by accounting for input uncertainty.

The BMA is not the only way to handle input uncer
tainty, as the other panelists indicate. And rigid adheren
to a BMA framework may be more trouble than it is worth
(say, when a rough-cut point estimate/sensitivity analys
provides sufficient information to a decision maker). How
ever the BMA approach does provide a coherent framewo
for thinking about uncertainty that makes direct links to oth
operations research tools, such as decision analysis. An
provides a way of extending the conversation about unc
tainty analysis when a rough-cut analysis is inconclusive

Many practical issues (integration to determine po
terior distributions; generation of samples from those di
tributions) have been well studied. Nonuniform rando
variable generation and output analysis results from t
discrete-event simulation literature play an important rol
Markov Chain Monte Carlo (MCMC) methods play an in
creasingly important role. It is not possible to cite all th
important work given space limitations, but the panel pr
sentation will attempt to identify a number of importan
contributions.
r-

)

n
d

.
t

s
s

d

t

e

k

it
-

-

e
.

But there are several issues to resolve. In addition
the usual simulation desire to more efficiently integrate a
sample variates from posterior distributions, these includ

Prior distributions and sensitivity analysis. How can
a modeler assess a ‘useful’ prior distribution for unknow
input parameters, given that standard ‘noninformative’ d
tributions can have odd consequences in the absence
large amounts of data? Initial work with moment method
has shown some feasibility, but more work is required
handle a broader class of input distributions.

Graphical interfaces to assist in visualization of ho
changing the prior distributions of input parameters affec
the distribution of outputs would be useful.

Experimental design methods for input selection m
also help identify important parameters, and provide b
ter information about performance than naive BMA inpu
sampling.

Simulation software. Input selection, response mod
eling, and output analysis are linked by the BMA. Inpu
are sampled from a distribution, simulations are run wi
those parameters, and the input/output combinations h
describe the system response.

Most simulation software packages do not provide
simple interface to implement the BMA and tovisualizehow
output uncertainty is influenced by both input uncertainty a
stochastic variation. Can a closer link be created betwe
input parameter selection software, the simulation engi
and output analysis tools, to help a modeler assess
relative importance of stochastic and structural uncertain

Inputs may be correlated. How does recent work o
generating vectors of correlated variates apply in the BM
context?

Uncertainty reduction. How should resources be bal
anced, given a choice between running more replicatio
to reduce stochastic uncertainty, or collecting more fie
data, to reduce input parameter uncertainty, when the g
is to reduce an overall measure of uncertainty? Asympto
cally optimal results exist for estimators of the output mea
and for estimating the distribution function of a conditiona
mean, under certain conditions. Can those conditions
relaxed? Can finite sample results be obtained?

Inverse problem. A decision-maker may be better abl
to specify distributions about system outputs than abo
inputs. For example, it may be easier for a manager
say that the mean weekly production is around 40–45 jo
rather than to specify a joint distribution of the unknow
parameters of service time distributions.

The inverse problem is to identify which set of proba
bility measures on inputs that are compatible with a spe
ified distribution on the outputs. In simple cases, e.g.
M/M/1 queue, a direct mapping from some inputs to ou
puts is known. But in general, how should informatio
about likely outputs be used to help identify reasonab
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input parameter values? Perhaps entropy methods are
propriate.

4 SHANE G. HENDERSON

The input modeler today is often spoiled. Large databas
are now the norm rather than the exception. The availabil
of massive amounts of data suggests that the use of tra
driven simulations will become more prevalent in the ne
future. In trace-driven simulations, the recorded data, rath
than observations generated from fitted distributions, is us
to drive the simulation.

There are some important unresolved issues related
the use of trace-driven simulations. For example, the da
may not have been correctly recorded. This issue arose
ambulance simulations in Auckland, New Zealand (He
derson and Mason 1999), where ambulance drivers w
required to punch a button in the ambulance as they co
pleted the various steps related to a call. If the ambulan
drivers forgot to push the button at the appropriate tim
then they often simply “caught up” by repeatedly push
ing the button at a later time. This behaviour shows u
as unrealistically short scene times, hospital transfers a
so forth in a database. Theoretically sound methods
dealing with such problems are needed. It is also high
desirable to develop output analysis procedures for tra
driven simulations that can make some statistically sensi
statement about the output. Some work on validation
trace-driven simulations (Kleijnen et al. 2001) is relevan
but not directly so. More work is needed.

Another area of input modelling that warrants furthe
attention is the modelling of dependence in input rando
variables. One of the key difficulties in this setting is tha
the information required to specify the joint distribution o
a set of random variables grows rapidly with the number
dependent random variables. Even in the finite dimensio
case, where one is attempting to model the joint distrib
tion of a finite number of random variables, we often reso
to simply matching marginal distributions and correlation
see Cario and Nelson (1997), Ghosh and Henderson (20
and Kurowicka and Cooke (2002) for example. It is highl
desirable to be able to exercise more control over the jo
distribution than existing methods allow without an explo
sion in data requirements. If one has a reasonable amoun
data, then one method that is often neglected in this sett
is that of kernel density estimation, which can provide a
estimate of the joint distribution.

The infinite-dimensional problem is perhaps even mo
challenging. Here the goal is to generate a time series
observations (possibly vector-valued). Many of the exis
ing methods for doing this (e.g., Cario and Nelson 199
Melamed, Hill, and Goldsman 1992; Deler and Nelso
2001) are applicable in settings where the time series
short range dependent. Long range dependence seem
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be considerably more difficult to capture with simple mode
but strongly desired in, for example, telecommunicatio
applications.

One final area that deserves a great deal more atten
is the effect of parameter, or even model, uncertainty
simulation results. I am (almost) certain that this issue w
be addressed by other panelists, and so will confine
remarks to my own planned research in this area. Supp
that one has a distribution,G say, on the input parameter
θ for a simulation experiment. This distribution may ari
through Bayesian analysis, asymptotic theory (asympt
in the number of observations used to fit a distribution)
otherwise. The random variable of interest (e.g., through
in a manufacturing setting),X say, depends onθ . If one
assigns a fixed valueθ0 to θ , then in great generality we ca
view the output of the simulation experiment as an estim
of E(X|θ = θ0). Perhaps the primary object of interest
thedistributionofE(X|θ). Lee and Glynn (1999) estimate
the distribution function of this quantity, but perhaps t
density of this quantity (assuming it exists) would be mo
helpful in building understanding. This is a subject
current research.

5 AVERILL M. LAW: THE DEVELOPMENT OF
A COMMERCIAL DISTRIBUTION-FITTING
SOFTWARE PACKAGE

In this talk we discuss the development of a commerc
distribution-fitting software package for simulation pra
titioners and also for analysts in other application are
(actuarial science, agriculture, economics, reliability en
neering, risk analysis, etc.) The first version of our softwa
was developed by an undergraduate student and myse
the University of Wisconsin in 1978 and was called Explo
We had read a large number of papers on distribution fitt
and our philosophy in developing Explore was to inclu
virtually every relevant statistical feature. (At the time w
did not realize that such an extensive number of featu
was beyond the statistical background and interest of
typical simulation practitioner.)

Based on the success of Explore in teaching a Mast
degree course in simulation, we decided to commercia
the software in 1981. The software hit the market in 19
and was called UniFit (R) (univariatefitting software), with
the first customer being the U.S. Air Force. (An unfortuna
aspect of the name UniFit was that some people mis
the first “i” in UniFit and asked for information on the
“unfit” statistical package.) UniFit met with only limited
commercial success due to its technical nature and du
the fact that it was oriented toward mainframe computers
personal computers and a standard graphical interface w
not widely available at that time.

In 1985 UniFit was converted to run on PCs und
DOS and improved graphics were introduced. Howev
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UniFit’s popularity increased by only a moderate amoun
Apparently, many people still did not realize the critical rol
that probability and statistics plays in a successful simulati
study, and/or they did not have the statistical backgrou
required to use UniFit.

UniFit did not change significantly between 1985 an
1992. We then came to the amazing realization that wh
it comes to distribution-fitting software, “less is actuall
more.” We decided to develop an automated procedure
fitting distributions to a data set that was easy and fast to u
but did not sacrifice technical correctness. The methodolo
that we developed automated the following steps:

• Selecting a set of candidate theoretical probabili
distributions (gamma, beta, normal, etc.) that
consistent with the range of the data set being an
lyzed (i.e., nonnegative, bounded, or unbounded

• Estimating the parameters of each candidate d
tribution using a statistically sound method suc
as maximum likelihood;

• Ranking the fitted distributions using one o
more heuristics (e.g., the Kolmogorov-Smirnov te
statistic) to determine which distribution provide
the best representation for the data set; and

• Evaluating the best-fitting distribution to see if i
is good enough in anabsolutesense to actually
use in a simulation model. (For perhaps one thi
of all data sets, no theoretical distribution provide
a good representation. This is often because t
data set is a mixture of two or more heteroge
neous populations or because the data have b
significantly rounded.)

The ranking and evaluation algorithm was develope
as follows. We had 15 heuristics that were thought
have some ability to discriminate between a good-fittin
and bad-fitting distribution. To determine which of thes
heuristics were actually the best, a random sample of s
n was generated from a known “parent” distribution, an
each of the 15 heuristics was applied to see if it could,
fact, choose the correct distribution. This was repeated
200 independent samples, giving an estimated probabi
that each heuristic would pick the parent distribution for th
specified sample size. The whole process was repeated
175 parent-distribution/sample-size pairs, resulting in se
eral heuristics that appeared to be superior. These heuris
were combined to give the overall algorithm for ranking th
fitted distributions. The 35,000 generated data sets w
also used to develop the rule for providing an absolu
evaluation for a fitted distribution.

At the same time that automated fitting was introduce
into UniFit, we also added the ability to provide an explic
representation of a selected distribution for a large number
commercial simulation-software products. The addition
t.
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automated fitting and of simulation-software representatio
made the distribution-fitting process much easier for a
analyst and resulted in a considerable increase in popular
for UniFit.

In 1995 our distribution-fitting package was modified
so that it would run under Windows and the name of th
software was changed to ExpertFit (R).

Version 2 of ExpertFit was released in 1999 and feature
a “distribution viewer” and a batch-mode capability. The
distribution viewer allows an analyst to see characteristic
of a distribution without entering any data. By using a slide
bar for each parameter, one can interactively and quick
change the distribution being viewed. Batch mode allow
an analyst to enter and analyze a large number of data s
in a matter of seconds—it was developed under a contra
with Accenture (then Andersen Consulting).

In 2000 we, once again, tried to make our softwar
easier to use. However, we did not want to “dumb down
the software at the expense of sacrificing technical co
rectness, as we had seen some software vendors do.
therefore introduced into Version 3 of ExpertFit two mode
of operation: Standard and Advanced.Standard Modeis
sufficient for 95 percent of all data analyses and is muc
easier to use than Version 2 of ExpertFit. It focuses the us
on those features that are really important at a particul
point in an analysis.Advanced Modecontains numerous
additional features for the sophisticated user and is simil
in comprehensiveness to Version 2, but it is easier to us
A user can switch from one mode to another at any tim
during an analysis.

We set out to improve the methodology that ExpertF
uses to fit a distribution to a data set in early 2002. For most
the probability distributions available in ExpertFit, we were
able to develop new and improved methods for estimating t
parameters of a distribution, and this capability was releas
as Version 4 of ExpertFit. We tested this new distribution
fitting methodology on 69 sets of real-world data and foun
that it produced better-fitting distributions for 84 percent o
the data sets tested, as compared to the methodology u
in Version 3. Note that the Anderson-Darling statistic—a
powerful measure of goodness-of-fit—was used to compa
the quality of fit for the distributions produced by Versions
3 and 4 of ExpertFit. We also introduced in Version 4 new
capabilities for batch mode—this work was funded by
contract from Oak Ridge National Lab.

We have always had two major goals in the developme
of ExpertFit. The first is to provide the most comprehen
sive and technically correct set of features available in
simulation input-modeling package. In this regard, Exper
Fit makes available 40 different probability distributions, 30
high-quality plots, 4 technically correct goodness-of-fit test
and support for 26 different simulation-software package
There are also modules available to help an analyst choo
reasonable distributions in the absence of data, includin
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modeling machines that are subject to random breakdown
Many of the features that we have added to ExpertFit we
as a result of requests made by our clients.

We have also strived to make ExpertFit easy to use. Th
availability of Standard and Advanced Modes of operatio
allows an analyst to configure ExpertFit to their particu
lar background and to their application. ExpertFit has
comprehensive amount of documentation that includes th
following:

• 450 pages of context-sensitive help for all menu
and results tables/graphs;

• Online feature index and tutorials on goodness-of
fit tests, available distributions, etc.; and

• User’s Guide with 8 complete examples.

In academia, of which I was member for 17 years, i
is critical for algorithms and test procedures to be carefull
documented in the literature, so that they can be indepe
dently checked for technical correctness. However, in th
world of commercial software the practice is often quite
different, since it is common for one software compan
to copy the original ideas of another company. For thi
reason, many of the algorithms used by ExpertFit for fitting
ranking, and evaluating distributions, are proprietary an
do not appear in the literature. However, we spend a co
siderable amount of time and effort verifying the efficacy
and technical correctness of each and every methodolo
used in ExpertFit.

6 LAWRENCE M. LEEMIS

My remarks concerning input modeling will address specifi
areas within input modeling, as opposed to generalities.
will discuss (1) the transfer of new models and associate
algorithms for input modeling to commercial input modeling
software, (2) opportunities for the input modeling commu
nity to partner with hardware vendors in the analysis o
data collected automatically, and (3) future research topi
in input modeling.

6.1 Technology Transfer

There are generally three types of discrete-event simulatio
input modeling software available presently: standalone in
put modeling software available from vendors, input mode
ing software associated with a particular simulation modelin
language, and freeware on websites posted by academics
practitioners. The first two types of software typically focus
on the estimation of the parameters in standard univaria
distributions (e.g., Weibull) fit by maximum likelihood or
matching moments. The freeware generally fills in the gap
that are left by the commercial software.
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There are relatively elementary stochastic models (e
parametric estimation for nonhomogeneous Poisson p
cesses) that are not presently considered by the exis
commercial software, yet are important enough that th
should be easily accessible to modelers. How can th
models be incorporated into input modeling software?
will suggest three ways:

1. Competition. Once one of these models is im
plemented in one of the commercial packages a
gains popularity, other packages will follow suit
Healthy competition of this type, for example, ha
resulted in increasing capability for the Maple an
Mathematica computer algebra systems.

2. Winter Simulation Conference round table ses-
sion. The developers of the algorithms for more so
phisticated input modeling techniques should me
with the commercial software developers at th
Winter Simulation Conference to encourage th
implementation of the new modeling technique
into existing packages.

3. Demand. Once the simulation modeling language
incorporate a more sophisticated input model in
their packages, it will only be a matter of time befor
the software vendors will include fitting software
for this particular input model in their commercia
software. Unfortunately, this pull-type approac
has put us in our present state where most of t
commercial input modeling software is limited to
univariate data fitting.

6.2 Automated Data Collection

Recently developed hardware for automated data collect
provides the opportunity for the simulation input modelin
community to assume a leadership role in the analysis
the data collected in this fashion. I will cite two exam
ples of hardware from the nonsimulation community in th
paragraphs below.

As documented at<www.factoryware.com> , the
FactoryPulse Systemis a rapid deployment productivity
analysis software package. This system is used to a
lyze cycle time, down time, capacity, utilization, etc. for
discrete-manufacturing system. The system sets up in l
than 30 minutes and contains its own statistical analy
package that can be used to analyze data that is collec
on the system of interest. Although the analysis softwa
contains graphical measures (e.g., pie charts), none of
typical simulation input modeling concerns are address
in the data analysis portion of the system.

A second hardware example is the JAMAR hand-he
counting board and associated PETRA (Professional E
gineers Traffic Reporting and Analysis) software produc
by JAMAR Technologies, Inc. The counting board con

<www.factoryware.com>
http://www.factoryware.com
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tains buttons keyed to turning movement (left-hand tur
straight, right-hand turn) associated with a two-way inte
section. This hardware allows the collection of time an
turning movement data that would be impossible to colle
with a stopwatch and clipboard. Although the analysis so
ware is capable of producing empirical CDFs associat
with various measures of performance on an intersectio
none of the typical input modeling tools (e.g., parametr
distributions) are included.

The input modeling community could provide a valu
able link between hardware of this type and the simulati
modeling community at large.

6.3 Future Research

I believe that there are still fundamentally important, bu
unaddressed problems in input modeling. I will give tw
examples.

The first example considers the analysis of servic
time data for a server capable of processing multiple jo
simultaneously. Examples of such servers include web-s
servers and chefs. As the jobs arrive to the server, the serv
time will increase once a particular threshold (which ma
not be given to the data analyst) is reached. The probl
is further complicated if the jobs are of varying size, a
in the case of the web-site server. It is complicated ev
further if the jobs need to be sequenced so that a subse
the jobs need to be completed at approximately the sa
time. The proper analysis of the record of such a server
order to construct a discrete-event simulation input mod
is a non-trivial task which has not yet been addressed
the literature.

The second example comes from a conversation th
I had with Steve Chick at last year’s Winter Simulatio
Conference. Traditional simulation output analysis assum
that the simulation model is “correct” in the sense that th
stochastic input model being used accurately depicts
random elements of the system of interest. In practice, t
is virtually never the case. Consider the simulation of a
M/M/1 queue using an estimated arrival rate ofλ = 1
customer per minute and an estimated service rate ofµ =
10/9 customers per minute. Assume that the exponen
assumptions are appropriate. One would certainly ha
much less faith in the output analysis of such a model
n = 10 interarrival times andm = 12 service times were
collected than ifn = 1000 interarrival times andm = 1200
service times were collected.

This explicit recognition of sampling error in the inpu
models and how it can be incorporated in output analys
is an emerging research topic. I am presently working
this topic, assessing the sampling variability effects in inp
modeling in discrete-event simulation, with two William &
Mary students, Rob McGregor and Matt Duggan. I will en
with some preliminary results associated with this resear
,
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Assume that the true system of interest is anM/M/1
queue with arrival rateλ, service rateµ, and traffic intensity
ρ = λ

µ
. For the discussion here, assume the arbitrary valu

of λ = 1 andµ = 10
9 for the two rate parameters. The

first question that can be addressed here is whether
expected steady-state queue length is infinite whenλ and
µ are estimated from data. Whenρ ≥ 1, the steady-state
expected queue length is infinite.

Assume that we samplen exponential(λ) interarrival
times, X1, X2, . . . , Xn. The estimated mean interarrival
time from then sampled times isX, and 1/X is the estimated
arrival rate. The distribution ofX is Erlang.

Similarly, assume that we samplem exponential(µ)
service times,Y1, Y2, . . . , Ym. The estimated mean service
time is Y and the estimated service rate is 1/Y . The
distribution ofY is also Erlang.

When the interarrival rate exceeds the service rate, t
expected queue length will not be finite since jobs ar
arriving faster than they are being serviced. It is usefu
to know what the probability is of this occurring, e.g.
P(X < Y) = ∫∞0 ∫∞

x
fx(x)fy(y) dy dx.

In order to see how collecting more service times o
interarrival times will affect the probability of the queue
eventually growing without bound, the probabilities for
values ofn andm adjacent ton = 12 andm = 10 (two
arbitrary sample sizes) are shown in Table 1.

Table 1: Probability of Steady-State Infi-
nite Expected Queue Length

m = 9 m = 10 m = 11
n = 11 0.4025 0.4031 0.4035
n = 12 0.3983 0.3987 0.3990
n = 13 0.3946 0.3949 0.3950

A seemingly counter-intuitive notion in Table 1 is that
P(X < Y) increases inm. We checked this result for larger
values ofm and found that the probability does begin to
decrease eventually. As expected, the probabilities decre
asn increases.

The distribution of the delay times is another outpu
statistic that can be considered. We begin by looking
the delay time of the third customer,D3. Kelton (1985)
has computed the expected delay times of thekth customer
for a standardM/M/1 queue with fixedλ andµ values.
Using Kelton’s formula,E[D3], the expected delay of the
third customer is

λ

µ2

[
1+ 4( λ

µ
)+ 2( λ

µ
)2

( λ
µ
+ 1)3

]
.

For the values chosen,λ = 1 and µ = 10
9 , using

the equation above results inE[D3] ∼= 0.7345, which was
double-checked by 5,000,000 simulation replications time
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with an average delay of the third customer being 0.734
confirming the validity of the equation and the implementa
tion. In addition, Kelton’s formula was checked for severa
other values ofρ.

In place ofλ in the equation, we use the distribution
of 1/X and in place ofµ in the equation, we use the
distribution of 1/Y . However, the problem proved to be
too difficult to be solved analytically, so the distribution o
the third delay has not been determined.

Since the analytic solution is not tractable, we simulate
the third delay time with the estimated parameters 1/X and
1/Y rather than the fixed values forλ andµ. The values
for X and Y are computed forn = 12 andm = 10 on
each replication. The simulation is then run usingX and
Y , and the delay of the third customer is calculated. F
1,000,000 simulation replications, the average delay of t
third customer for the estimated parameters was 0.785
This was compared to the average delay with the fixe
parameters being 0.7345, which is about a 6.9% increase.
The simulation also showed that there are slightly mo
zero delay times with the estimated parameters.

7 BRUCE W. SCHMEISER

At the 1991 Winter Simulation Conference in Phoenix I firs
heard an ingenious idea of how to deal with practitione
uncertainty about the model. During an informal conve
sation, Lee Schruben discussed the idea of expanding
simulation model to include practitioner uncertainty. Fo
example, if a homogeneous arrival rateλ were not known
with certainty, then the rate could be obtained by samplin
from a distribution. The distribution would have a large
variance if practitioner uncertainty were great and zero va
ance if practitioner certainty exists. I forget the origina
version of the idea: perhaps each replication would use o
randomly generated value ofλ. Since 1991 various versions
of the idea have been suggested by Lee and others.

The concept that I wish to discuss is the general attem
to give the practitioner a sense of how practitioner uncertain
about the model affects the point estimator and its standa
error, with the interpretation that the standard error no
reflects both sampling error and modeling error. Althoug
measuring the effect of practitioner uncertainty about th
model is certainly an important issue, I think that using
single measure for these two sources of errors is not a go
idea.

In this discussion, which elaborates on a point made
Schmeiser (2001), I assume that the purpose of the simulat
experiment is to estimate an unknown performance meas
θ0 from an unknown true modelM0. Further, I assume
that other sources of error are negligible: Random-numb
and random-variate generators are perfect, numbers
represented on a computer as real numbers, the simula
,
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code has no bugs, and point estimators have zero bia
(including from an initial transient).

A standard simulation experiment designed to estimate
θ0 then has two sources of error. First, rather than using
modelM0, it might use modelM with associated perfor-
mance measureθ 6= θ0, which we define to be modeling
error. Second, the point estimator̂θ has sampling error,
which we measure by its variance (or its square root, stan
dard error). Typically the variance isO(n−1), wheren is a
measure of computational effort; we assume only that the
variance goes to zero asn goes to infinity.

In the standard simulation experiment, we are using
θ̂ , which has expected valueθ , to estimateθ0. Consider
the usual decomposition of mean squared error (mse) int
squared bias and variance. Modeling error leads to bia
θ − θ0. Sampling error leads to variance V(θ̂). If we
are to combine measures of sampling error and modeling
error, then mse would be an acceptable single measure
Asymptotically for large values ofn, mse goes to squared
bias (as the variance goes to zero). Becauseθ0 is unknown,
the modeling-error bias is unknown, and therefore the quality
of the point estimator̂θ is measured by standard error alone.

All is well as long as the practitioner understands that the
error is with respect toθ and notθ0; that is, modeling error
is not a consideration in the standard simulation experiment
To the extent that simulation is only a method to analyze the
modelM, bias due to modeling error is irrelevant. Modeling
error is important, though, so interest in measuring its effec
is understandable.

The appeal of including practitioner model uncertainty
in M is the hope that the increase in standard error will be
(approximately) equal to the unknown bias. My primary
concern is that I see no reason for such an equality to occu
Consider the following two points.

First, the equality needs to occur for all run lengthsn,
so any reasonable version needs to reflect the fundament
difference that sampling error decreases with additiona
simulation sampling while additional sampling has no impact
on modeling error.

Second, a practitioner’s uncertainty may not reflect real-
ity. A practitioner could be certain, but wrong; a practitioner
could be correct, but uncertain.

Another concern is that a simulation experiment that
includes model uncertainty could have substantially more
bias than the simpler experiment based on a fixed mode
Suppose that the model is a steady-stateM/M/1 queue and
that a bivariate distribution is placed on the arrival rateλ
and service rateµ. Care must be taken to ensure that the
resulting performance measureθ is not infinite, in which
case the associated modeling bias is infinite. Even ifθ is
finite, the bias easily can be larger than that of the standar
experiment.

My conclusion is that model error should be treated
separately from sampling error. Good methods for esti-
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mating standard errors exist. Similarly, good methods f
estimating sensitivity to modeling errors exist. Maintainin
the distinction between these two sources of error simp
fies and clarifies both experimentation and interpretation
results.

8 LEE W. SCHRUBEN

8.1 Introduction

I will present arguments for the following propositions:

1. “Real world” data is not important to the succes
of many simulation studies.

2. Fitting distributions to data for driving simulations
is fundamentally unsound.

3. Beta variates are the only scalar random variab
we need for most practical simulation input mod
eling.

4. Resampling nonhomogeneous renewal processe
a promising way to model time dependency.

Simulation input is defined narrowly here as the da
generated by stochastic models that describe the beha
of the external environmentof the system being simulated
The conventional approach to input modeling involves co
lecting and validating real world data, statistically selectin
probability distributions that fit the data and then generatin
input random variables from these distributions to mod
the system environment.

The importance placed on simulation input modeling
reflected by the considerable amount of space devoted to
topic in simulation textbooks as well as the large number
journal articles and the proliferation of distribution fitting
software. Indeed, input modeling typically consumes mu
of the resources and time in a simulation project.

I would like to consider the propositions that inpu
modeling is really not all that important to the success
a simulation study and that the value of “real world” dat
is highly overrated.

8.2 Reality?

To place the value of real world data in perspective it mig
be helpful to remember the followingFive Dastardly D’s
of Data (Schruben and Schruben 2001). Data can be

1. Distorted: Data might be defined inconsistently o
poorly communicated. Even if communicated co
rectly, the values of observations may have be
mistranslated, scaled, or simply recorded inco
rectly.

2. Dated: The data may be from a system that h
or soon will be changed. For example: factor
data may have been gathered for an older prod
tion process or using last year’s product mix a
demands.

3. Deleted: Observations may be missing from t
data set. This might be because the data w
collected over a finite time interval during whic
important but rare events simply did not occur. F
example: medical trial data might be censored
patients dropping out of the study for various an
unknown reasons.

4. Dependent: Data may be summarized (i.e., o
daily averages are reported) removing critical c
cles or other trends. Data might be collected und
unusual conditions or at systematic times, cre
ing or concealing relationships within and amon
the sets of observations. Fitting a data set to
scalar probability distribution removes depende
cies, maybe the most useful information in the da
set.

5. Deceptive: Any of the above four data problem
might be intentional.

Even if we have a very large set of valid system data
fundamental problem with using real system data rema
once the data is observed, it isold. Most simulation studies
are motivated by a desire to learn what would happen
we were tochangea system. By modeling the input to ou
experiments using data from the old system, we implici
assume that the environment in which the system lives
stationary over the time between data collection and
end of the study; this is probably not the case.

We are also assuming that the system we are study
is closed to its environment. For example, if we were
improve customer service that we would not attract mo
customers. If we assume that changing the system
have no significant impact on its environment, we have
ask ourselves: why are we considering changing it? O
so-called, “what if?” experiments are more aptly “as if
experiments.

I am not suggesting that real system data is useless.
justification given for collecting is to verify the simulatio
code. Here I would prefer driving the simulation with th
original data traces (preserving dependencies and redu
the variance between real and simulated performance
fitting scalar distributions to the data.

A very good reason for using real system data is
estimate the statistical performance of the current syst
This sounds silly since we usually can directly observe
performance of the current system. However, the goa
many simulation studies is to improve an existing syste
and doing nothing is the default decision. A case need
be made for any proposed changes. Accurately estima
the effects of proposed changes must be relative to the
performance of the current system. The central questio
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not whether or not the proposed change is an improvem
but rather whether is itenoughof an improvement to justify
the costs of the changes. Accurately estimating the d
ference between the simulated and the actual performa
of the current system is an imperfect way to calibrate
simulation, but it is better than nothing. How to do th
calibration is an interesting topic for research.

Probably the best reason for encouraging the collect
of real world data is to force simulation practitioners
observe the systems they are modeling. Collecting a
analyzing data gives them something to do while learn
how the system works.

8.3 Reality Check?

I feel the best approach for estimating the current perf
mance of a real system is to construct percentile confide
intervals using the two-step empirical resampling me
ods advocated in Russ Barton’s contribution to this pan
This approach retains some of the shortcomings of fitt
distributions to data (such as ignoring dependencies
nonstationarity), but it does account for the uncertainty
not knowing the true input distribution or its parameters

One of these methods for generating independent sc
random variables, a Bayesian bootstrap, has a great de
appeal since it uses only the information in the data.
distributions are actually fit to the data.

Consider some important real world random variab
X. Rather than estimating its unknown distribution fun
tion, FX(x) (and thereafter treating this as a known fun
tion), we can implicitly randomize this function by observ
ing real values of its horizontal coordinates and generat
its vertical coordinates from the appropriate distribution

The random variableX is observable in the real system
and we know that the distribution ofY = FX(X) is iid
uniform. We can implicitly sample points onF by observing
n ordered values ofX as its horizontal coordinates,x[1], x[2],
. . . , x[n]. Then foreverynew simulation run, we generate
newset ofn vertical coordinates forF , y[1], y[2], . . . , y[n]
as n uniform order statistics. To simulate a new value
X we generate an iid uniformly distributed pseudorando
number,U , and interpolate the inverse ofF betweenx[i]
and x[i+1] whereU falls betweeny[i] and y[i+1] (search
starting ati = bnUc). Since we are resampling, percenti
confidence intervals should be used.

The coverage of the confidence intervals for this a
proach as well as for other resampling approaches dram
ically dominates that for conventional methodology wh
the simulation runs are long enough so that the error du
a finite real world sample is less important than the er
due to a finite simulation run length. This is usually th
case since simulated observations are much cheaper
real world data.
t

e

e

d

r
of

t-

n

8.4 Beta Testing

For simulating proposed systems, it is unreasonable to
sume that the environment from which we collected our r
world data will not change. Here the question is: how mig
the environment react to our changing the system to m
the change worthwhile … or to break it? This questi
is answered by treating simulation input as another se
factors in our simulation experimental design. We perfo
sensitivity analysis on the input to try to find out where o
proposed system will best operate (considering both iss
of optimality and robustness).

For sensitivity analysis, beta variates are the only o
we need for most simulation studies. The four parame
of a beta distribution (including location and range) off
plenty of flexibility for input sensitivity analysis as show
in Figure 2 from Schruben and Schruben (2001). T
distribution also has the advantage of having finite supp

8.5 Nonhomogeneous Renewal Processes

A model that may be useful for sensitivity analysis to no
stationary simulation environments is what I will call
nonhomogeneous renewal process. This is the obvious
eralization of a nonhomogeneous Poisson Process (NH

The conventional approach for modeling a NHPP, an
ogous to fitting distribution functions to iid data, is to es
mate the cumulative intensity function and treat it as kno
throughout the simulation study. This approach, of cour
does not account for the uncertainty in the cumulative
tensity function.

The idea is to resample the process without exp
itly estimating the cumulative intensity function. We fir
sample the total number of events independently for
ery simulated cycle using a resampling scheme like tha
Barton and Schruben (2001). Aggregated cycle data (
total daily demand) is likely to be readily available where
detailed event times probably are not. Then, condition
on the number of observations in a simulated cycle,
have exactly the same situation as we did for the Bayes
bootstrap. The cumulative intensity function maps a no
stationary Poisson process along time on the horizontal
into a stationary Poisson process along the vertical axis w
a rate of 1. The horizontal coordinates of the randomized
mulative intensity function are the observed real event tim
in (superimposed) cycles. The vertical coordinates are
order statistics from the appropriate uniform distribution
relying on the fact that given the total number of even
in a homogeneous Poisson process cycle the actual e
times have a joint uniform distribution.

Now consider generalizing this to other nonhomog
neous stochastic processes. Assume the existence
function that maps nonstationary (real) time into statio
ary time like the cumulative intensity function does for th
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Figure 2: Beta “Shape Matrix”
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NHPP. If we knew this function, then we could genera
a stationary renewal process along the vertical (stationa
time) axis and map the nonstationary event times along
horizontal (real time) axis via the inverse of this function
If the stationary point process (conditioned on the num
ber of events in the simulated cycle) has events distribut
like uniform random variables we have the NHPP. Sinc
we are dealing with order statistics and the uniform di
tribution is a special case of the beta distribution, using
nonhomogeneous beta process suggests itself as an obv
generalization for sensitivity analysis.

Finally, for small samples, it may be worthwhile to
randomize the nonstationary empirical cumulative intens
function proposed in Leemis (1991). The goal would b
to randomly resample anewempirical cumulative intensity
function for every simulated cycle. This might partially
account for the uncertainty in not knowing this function
Ideally we would simulate using randomly resampled fun
tions like in Figure 7 in Arkin and Leemis (2000) rathe
than using the estimated function like in Figure 8 for eve
simulated cycle.
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