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ABSTRACT and Chen and Kelton (2000a) incorporate first-stage sample
mean information in determining the number of additional
Two-stage selection procedures have been widely studied replications. In an average case analysis, both procedures
and applied in determining the required sample size (i.e., are more efficient in allocating sample sizes than Rinott's
the number of replications or batches) for selecting the best procedure. There are several new approaches aiming to im-
of k designs. TheEnhanced Two-Stage SelectifETSS) prove the efficency of R&S procedures; Berger and Deely
procedure is a heuristic two-stage selection procedure that (1994), and Chick (1997) use a Bayesian framework for con-
takes into account not only the variance of samples, but structing ranking and selection procedures. For an overview
also the difference of sample means when determining the of existing methods of R&S see Law and Kelton (2000) or
sample sizes. This paper discusses the use of a conservativeGoldsman and Nelson (2001).
adjustment with the ETSS procedure to increase the prob- Let CS denote the event of “correct selection.” In a
ability of correct selection. We show how the adjustment stochastic simulation, a CS can never be guaranteed with
allocates more simulation replications or batches to more certainty. The possibility of CS, denoted by P(CS), is
promising designs at the second stage. An experimental a random variable depending on sample sizes and other
performance evaluation demonstrates the efficiency of the uncontrollable factors. We propose adding a conservative

adjustment. adjustment to the ETSS procedure to increase the possibility
of correct selection.
1 INTRODUCTION In Section 2, we provide the background necessary

to understand our proposed procedure. In Section 3, we
Discrete-event simulation has been widely used to compare present our methodologies and proposed procedure for the
alternative system designs or operating policies. When ranking and selection. In Section 4, we show our empirical-
evaluatingk alternative system designs, we select one design experiment results. In Section 5, we give concluding re-
as the best and control the probability that the selected design marks.
really is the best. Lel; denote the expected response of
designi. Our goal is to find the design with the smallest 2 BACKGROUND
expected response* = mini<;j<x ;. If the design with
the biggest expected response is desired, just replace minFirst, some notations:
with max in the formula. We achieve this goal by using a

class of ranking and selection (R&S) procedures. However, X;j: the observations from thg” replication or batch

efficiency is still a key concern for using simulation to solve of the i’ design,

R&S problems. N;: the number of replications or batches for design
Many R&S procedures are directly or indirectly de- wu;: the expected performance measure for degign

veloped based on Dudewicz and Dalal (1975) or Rinott’s _ e, u; = E(X;)),

(1978) indifference-zone selection procedures. However, X;: the sample mean performance measure for design

these indifference-zone selection procedures determine the i ie., Z;";l Xij/Ni,

number of addltlongl repl'|cat|ons based on a conservative UiZ: the variance of the observed performance measure

least favorable configuratio(LFC) assumption and do not of designi from one replication or batch, i.e.,

take into account the value of sample means; see Section 02 = Var(X;)
2.2. Some new approaches including Chen et al. (2000) ' !
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Siz(N,-): the sample variance of desigmwith N; repli-
c_ations or batches, i.eS?(N;) = Z;V;l(xij —
Xi)?/(N; = 1).

2.1 Indifference-Zone Selection Procedures

Let u;, be thel’™ smallest of theu;’s, so thatu;, < i, <

. < wi,. Our goal is to select a design with the smallest
expected response;,. However, in practice, if the differ-
ence betweep;, andu;, is very small, we might not care if
we mistakenly choose desigp, whose expected response
is ui,. The “practically significant” differencé* (a positive
real number) between the best and a satisfactory design is
called the indifference zone in the statistical literature, and
it represents the smallest difference about which we care.
Therefore, we want a procedure that avoids making a large
number of replications or batches to resolve differences less
thand*. That means we want P(CS) P* provided that
Wi, — Wiy = d*, where the minimal CS probabilit* and
the “indifference” amound* are both specified by the user.

2.2 The Two-Stage Rinott Procedure

The two-stage procedure of Rinott (1978) has been widely
studied and applied. Letg be the number of initial
replications or batches. The first-stage sample means
)_(fl) = Z;f":l X;j/no, and marginal sample variances

(D42
Y =X
nop—1

S7(no) = :
fori =1,2, ...,k are computed. Based on the number of
initial replications or batchesg and the sample variance
estimateS‘l.z(no) obtained from the first stage, the number of
additional simulation replications or batches for each design
in the second stage 8; — ng, where

N; = maxno, [(hS;(no)/d*)?]), fori=1,2 ...k, (1)

where[z] is the smallest integer that is greater than or equal
to the real numbet, and where: (which depends ok, P*,
andng) is a constant which solves Rinott's (1978) integral
(h can be calculated by the FORTRAN prograimott in

2.3 An Enhanced Two-Stage Selection (ETSS) Procedure

Chen and Kelton (2000a) propose an ETSS procedure that
takes into account not only the sample variances, but also
the difference of sample means across designs. The ETSS
is derived with the assumption that we know the true means;
however, the true means are estimated by sample means in
practice. Thus, the ETSS procedure is a heuristic approach
and does not guarantee P(CS)P*. The ETSS procedure
uses fewer simulation replications or batches than Rinott’s
procedure. Moreover, while the observed P(CS)’s of the
ETSS procedure are slightly lower than Rinott’s procedure,
they are still generally higher than the specifid.

We can improve the efficiency of R&S procedures with
a pre-selection The pre-selection approach is a screening
device that attempts to select a (random-size) subset of
the k alternative designs that contains the best one. The
inferior designs will be excluded from further consideration,
reducing the overall simulation time. Chen (2001) points
out that the ETSS procedure self-includes an intrinsic subset
selection process, which means that a subset pre-selection
does not actually need to be performed. That is, design
having the total required sample si2g = ng is excluded
from further simulation. In other words, based@samples
from the first stage, the ETSS procedure has reached certain
confidence on the probability Pf; > X,], fori # b, where
X, is the smallest of theX;’s in the current stage, i.e.,
X, = miny<;<; X;. Thus, we remove the subset selection
step from the ETSS procedure listed in Chen and Kelton
(2000a). Let

max(d*, X; — Xp).

d; = X 2)
The ETSS procedure computes the number of required
simulation replications or batches for each design based on

the following formula
N; = maxno, [(hS;(n0)/d;)?]), fori=1,2,...,k. (3)

In Chen and Kelton (2000a), they set= d; /d*, h; = h/r;,
and

N;i = max(no, [(h;Si(no)/d*)?), fori=1,2,... k.

Bechhofer et al. (1995), or can be found from the tables in Although the sample sizes stay the same, we use equations

Wilcox (1984) or Bechhofer et al. (1995)). We then compute
the overall sample means; = Z;.V;l X;j/N;, and select
the design with the smallest;. Basically, the computing
budget is allocated proportionally to the estimated sample
variances. Moreover, the derivation of this procedure is
based on the LFC (i.e., assuming, = u;, + d*, for all
1=2,3,...,k). However, inreality, we rarely encounter the
LFC; therefore, this procedure is consequently conservative.
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(2) and (3) because they are simpler and easier to interpret.
The ETSS Algorithm:

1.
2.

Simulateng replications.

For each desigh compute the needed additional
replicationsN; — ng. Here N; will be computed
according to equation (3).
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3. SimulateN; — no additional replications for each  order to balance the unusual sample mean in the first stage.

designi. Consequently, the overall sample mean of the best design
4. Return the values and X,. is not the smallest.
. Since ETSS uses not only the variances but also the dif-
The difference between equation (3) and (1) is thas ferences of sample means in the first stage, the ETSS proce-
being used instead af*. This makes sense when our objec-  dure generally requires higher precision in the first stage than
tive is to achieve RX;, < X;, fori =2,3,... k] > P¥, Rinott’s procedure. Chen and Kelton (2000a) suggest using

i.e., to find the good designs. If the objective of the simula- a constant 0< ¢ < 1 so thatd; = max(d*, c(Xi, — fip)), or

tion experiments is to estimate the differences of the expected L (X;), the two-tailed lowet1—«) confidence limit ofi;, to
responses, we can use different experimental designs andcomputed; = max(d*, L(X;) — ji»). The drawback of the
different procedures to obtain more precise estimates. The firstadjustmentis tha¥;’s (i # b) are increased by the same
differences in the sample means are embedded;inon- ratio, and the second adjustment is somewhat cumbersome.
sequently, this procedure will allocate fewer replications or We propose a new adjustment to the ETSS procedure that
batches to the less promising designvhose sample mean  takes into consideration the randomnesX gfand allocates

Xi >> Xp. more replications or batches to more promising alternatives.
If X;, — X} > d* andN;, > no, thenforl =2,3, ...k, Let
the ratio
d! = maxd*, X; — Xp — ad*), 6
& B (d£>2 (Si/(n0)>2 (4) i aX( i b a ) ( )
Ni di Siz (n0) wherea > 0. The difference between equations (2) and (6)

is the same as that in the Optimal Computing Budget Allo- S that the difference in sample means from the first stage
cation (OCBA) (Chen et al. 2000). On the other hand, the is adjusted with the amount/* in equation (6). Moreover,

ratio
N} = max(no, [(hS;(no)/d))?1), fori =1,2,... k. (7)

I
N; d* Si,(no) The difference among equations (1), (3), and (7) lies in the
. , i
is different from that of the OCBA. This is because the d'ﬁf‘reh”_t va:;yes otl*, d;, ancli(dl. _that are usedhrespegtwely.
OCBA does not use the indifference parametér With this adjustment, we take into account the randomness
of X, and allocate more simulation replications or batches
to more promising designs.

3 METHODOLOGIES If X, = X, + nd*, then

In this section we present the basis of adding a conservative 1 O<n<1
adjustment to the ETSS procedure to improve the probability d; _1l3 1 -1

of correct selection. As with most two-stage selection d 1/f a/n 1 iz o ta
procedures, independent and identically distributed (i.i.d.) )
normal input data are required. If the input data are not
i.i.d. normal, users can use batch means (see Chen and

Kelton 2000b) to obtain sample means that are essentially

Thus, if N/ and N; > ng, then

i.i.d. normal. N/ 12 O<n<1
F = n l<n<l+4a
' 2
3.1 Adjustment of the Difference of Sample Means ' (n/(n—a))* 14a<n.

From our previous experiments, we notice that the first-stage 1herefore, design with the first stage sample meat,
sample mean of the best design is often not the smallest SUCh thatl™ < X; —X), < (1+a)d”, will have significantly
(ie. Xi, # X, or similarly i1 # b) when the procedure increased simulation repllc_athns or batches W|_th this adjl_,lst-
makes an incorrect selection. This is because ETSS usesMent. The number of replications for that particular design
the smallest sample mean from the first stage as a control to IS increased by? — 1 times, where: = (X; — X;)/d*. On
compute simulation replications or batches for the second the otherhand, it1+a)d* < X; — X}, the extra simulation

stage. The ETSS procedure usés an estimator ofu;,, replications or batches allocated with this adjustment is very

as a reference point to estimate the control distance. When Minimal. If X; — X;, < 4%, then there are no changes in

the best design has an unusually large sample mean or aSimulation replications or batches. _

non-best design has an unusually small sample mean in ~ fais aw/ary.large number (i.e., ap*proachmg, then
the first stage, it often results in a smaller than necessary the values ot/; will always be equal ta/*. The allocation
second stage sample size for the unknown best design in ©f Simulation replications or batches will be the same as
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the Rinott's procedure. Since the variangg has great
influence on the sample mea#),, we seta = Sj,(X})/d*,
where Sy (X,) = Sp(no)//no is the standard deviation
of the sample mean of desigh That is, we will use
X, + S,(X,) as the reference point. If the procedure is
to find the maximum, theiX,, — S,,(X,,) should be used,
where X,, = max<;< X;. Even though this is somewhat
arbitrary, we know that P, < X, + Sp(Xp)] ~ .84.

and it is possible that the following inequality still holds

PrclE2]---PrclEr|E2, E3, ..., Ex_1]

> PrlE2]---PrlEk|E2, E3, ..., Ex-1].
That is, P¢(CS) is still larger than or equal to RCS).

The ETSS procedure uses the difference in sample
means and the variance of samples to compute the required

We use this equation as an approximation and make the sample size for each design. When we use CRNs with the

d; = max(d*, X; —U(X})), whereU (X;) is the upper one-
tailed 0.84 confidence limit oft.

We would like to point out that the purpose of R&S
procedures is not to estimatg,, it is to select desigri
such thatu;, = mini<;<x u;. However, since ETSS uses
X, as a reference point, we would prefer to have some
confidence inX,,. If the variance of the sample of the best
alternative in the first stage is small, we will have more

inference that Ry, < Xp+S,(Xp)] & .84. In this setting,

ETSS procedure, we reduce the variance of the difference
of sample means and improve the precision of pairwise

comparisons. Consequently, the P(CS) of the procedure
may also be improved. Since the proposed procedure is
based on the ETSS procedure, we recommend using CRNs
with the adjusted ETSS procedure.

4 EMPIRICAL EXPERIMENTS

confidence in the mean estimator. Therefore, the adjustment |n this section we present some empirical results obtained

made will be small. On the other hand, if the variance is
large, we are less confident with this mean estimator; and
consequently, the adjustment made will be large.

3.2 Some Intuition of Common Random Numbers

Let P;(CS) denote the probability of correct selection with
independent sampling #CS) denote P(CS) with Common
Random Numbers (CRNSs), event, for I = 2,3, ...k,
denote X;, — X;; > 0, Pr(E;) and Pg(E;) denote the
probability of eventt; with independent sampling and with
CRNS, respectively. With independent sampling across
alternativesE;'s are positively correlated and by Slepian’s
inequality (Tong 1980)

P;(CS) Pr[E; and E3z and ... and Ei]

Pr[Eo]...PylEL|Ey, E3, ..., Ex_1]

k
[ [PulEn
=2

v

The equality holds fok = 2, for k > 2 the equation holds
with strict inequality.
Furthermore, it is known that in some cases

k
PrclEal ... Plc[Ex|Ea, E3. ..., Ex-1] < [ [ PrclEil.
1=2

However,

k k
[[PulEd < []PrelEn,
=2 =2
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from simulations using the Rinott, ETSS, and ATETSS
with adjustmenta) with @ = 0.5, S,(X;)/d*, and 2. We
also run experiments using CRNs with= S, (X;)/d*.

4.1 Experiment 1 Equal Variances

There are ten alternative designs under consideration. Sup-
poseX;; ~ N(i,6%), i = 1,2,...,10, whereN (i, o?)
denotes the normal distribution with meanand variance

o2. We want to select a design with the minimum mean. It
is obvious that design 1 is the best design. The indifference
amountd* is set to 090 for all cases. We compare the
actual P(CS) of Rinott’s procedure, ETSS, and, Afoce-
dures. ATy indicatesa = Sj,(X})/d*. AT ¢ uses CRNs with

a = Sp(Xp)/d*. We use two different initial replications

no = 20, and 30. The variance of the best design3s 6
Therefore, S, (X;)/d* ~ (6/./n0)/0.9, and whemg = 20

and 30,a ~ 149 and 122 respectively. Furthermore,
10,000 independent experiments are performed to obtain
the actual P(CS). The number of times we successfully
selected the true best design (design 1 in this example) is
counted among the 10,000 independent experiments. P(CS),
the correct selection percentage, is then obtained by dividing
this number by 10,000.

Table 1 lists the results of Experiment 1. TRECS)
column lists the percentage of correct selection. The
column lists the average of the total simulation replications
(T = Y 20905 %  Ng,/10000,Ng; is the total number
of replications or batches for desigjin the R independent
run) used in each procedure. TR:ott(20) ETSS(20pand
AT,(20) rows list the results of the procedures with initial
replicationsng = 20. Note that the observed P(CS)'s are
all higher than the specifie@®* = 0.90 and P* = 0.95.

AT, has better coverage than the ETSS procedure with a
slightly larger total number of replications. Moreover, both



Table 1: P(CS) and Sample Sizes of Experiment 1
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Table 2: Detailed Sample Sizes fér* = 0.90 and

P*=0.90 P*=0.95 ng = 20 of Experiment 1

Procedure P(CS) T P(CS) T Dn Rinott ETSS ATz ATy AT, ATc
Rinott(20) 99.34% 5256 99.74% 6669 1 526 458 485 506 516 528
ETSS(20) 95.08% 1197 95.73% 1502 2 527 304 354 426 466 528
AT 5(20) 96.63% 1391 97.63% 1763 3 526 175 230 315 387 497
AT 5(20) 98.07% 1736 98.79% 2174 4 526 96 127 206 283 194
AT >(20) 98.81% 2047 99.51% 2578 5 522 48 67 117 174 68
AT ¢(20) 100.00% 1937 100.00% 2441 6 524 30 37 62 94 35
Rinott(30) 99.42% 5001 99.76% 6316 7 522 22 25 34 51 24
ETSS(30) 96.89% 1234 97.66% 1497 8 526 20 21 25 30 20
AT 5(30) 97.90% 1405 98.60% 1738 9 526 20 20 21 22 20
AT 5(30) 98.68% 1645 99.42% 2040 10 527 20 20 20 20 20
AT >(30) 99.23% 2037 99.65% 2556

AT ¢(30) 100.00% 1773 100.00% 2199

the P(CS) and the total number of replications increase
asa increases. Although the total number of simulation
replications is significantly smaller, the observed P(CS)’s
are very close to Rinott’'s procedure wher= 2.

Because the variance of the sample mean is larger with
a smaller initial sample sizey, the adjustment yields more
improvement in P(CS) whery is small. Furthermore, using
CRNs with adjusted ETSS and two-stage selection proce-
dures generally improves P(CS). With CRNs, the number
of replications or batches is more than independent sam-
pling across alternatives, and effectively allocating more
samples to more promising alternatives since the frequency
with which the best design has the smallest sample mean

in the first stage is higher than independent sampling, i.e., no =

Prc[X:, = Xp] > Pr[X;, = Xp]. When comparing the
results of ATy and AT¢, we increase the number of repli-
cations or batches only of the best three alternatives and
significantly reduce the number of replications or batches
of inferior alternatives.

Tables 2 and 3 list the detailed simulation replications

Table 3: Detailed Sample Sizes f&¥* = 0.95 and
no = 20 of Experiment 1

Dn Rinott ETSS Als Als AT, Alc
1 669 579 615 645 661 671
2 666 389 458 541 596 670
3 666 233 294 395 492 632
4 668 118 169 258 351 244
5 664 60 87 148 218 86
6 669 34 44 74 117 44
7 671 24 29 41 60 28
8 666 21 22 26 33 22
9 661 200 20 22 24 20
10 666 200 20 20 21 20

20, which is close to the theoretical value 1
((S10(n0)/S1(n0))? = (6/6)2). On the other hand, this ratio

is only 0.0437 (20/458) under the ETSS procedure, see Table
2. This is where ETSS based procedures can significantly
improve the efficiency of the Rinott procedure, i.e., the per-

formance measure of inferior designs are far away from the

best design. Note that 0.0437 is much larger than the theoret-

allocated for each design under different selection procedures ical value 0.01((d*/di,0)?(S10(0)/S1(n0))? = (0.9/9)?)

with ng = 20. We did not list the results af) = 30 because
they are similar. TheRinot; ETSSand AT, columns list

the average simulation replications for each design under
the respective procedure. We would like to point out that
Rinott’s procedure will be the same as the equal allocation
for additional simulation replications in this settings, i.e., the

variances are equal for all designs. Our experimental results

confirm this observation. On the other hand, in the ETSS
and AT, procedures, the number of additional simulation
replications decreases as the differeriggs= X; — X, (> 0)
increase. This makes sense becausé,aéncreases, it is
more likely thatX; > X,. In other words, as the observed
difference of sample means across alternafiygincreases,
it is less likely thatu; < up.

The ratio of the average number of simulation repli-
cations allocated for design 10 and design 1 of Rinott's
procedure is 1.0019 (527/526) wheR* = 0.90 and
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becauseg > N; for some design. For example, if we use

ng =5 (> 0.01 x 458), the ETSS procedure would have
eliminated design 10. Moreover, the self-included intrin-
sic subset pre-selection of the ETSS procedure has better
performance with largeng, i.e., inferior designs having

N; = nog.

4.2 Experiment 2 Increasing Variances

This is avariation of Experiment 1. All settings are preserved
except that the variance of each design increases as the
mean increases. Namely;; ~ NG, (6 + (i — 1)/2)?),
i=12,...,10.

The results are listed in Tables 4 through 6. Because
most designs have larger variances than designs in Exper-
iment 1, the total simulation replications are greater than
Experiment 1. We are less confident of the best selection
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in the first stage of this setting. Therefore, more simulation
replications are needed to obtain the desired confidence. All
procedures allocate more additional simulation replications
for designs because of larger variances. For Rinott's proce-
dure, the simulation replications allocation is based entirely
on the variances; thusy; > N; when S;(ng) > S;(no).

The ETSS and AJ procedures take into consideration the
difference of sample means; therefake,< N; even though
Si(ng) > S;(no). The ETSS procedure has the most sig-
nificant reduction in the number of replications or batches
in this setting, i.e., the inferior alternatives have the largest
variances. All observed P(CS)’s are greater than the speci-
fied nominal level. The results of using CRNs are similar
with Experiment 1. Since inferior designs have larger vari-
ances, we are not confident to exclude those designs from
further simulations. That is, based ay samples from

Table 6: Detailed Sample Sizes f&* = 0.95 and
no = 20 of Experiment 2

Dn Rinott ETSS Als ATs AT, Alc¢
1 664 565 599 641 658 670
2 785 444 510 624 683 787
3 911 313 390 540 643 837
4 1042 209 274 417 542 426
5 1181 136 187 301 401 180
6 1344 90 121 203 291 98
7 1500 63 82 133 195 65
8 1679 44 58 94 125 48
9 1861 35 42 62 90 38

10 2049 30 35 48 64 32

4.3 Experiment 3 Decreasing Variances

the first stage, the ETSS procedure cannot conclude that This is another variation of Experiment 1. All settings are

X; > X, for i # b with a desired confidence. Therefore,

preserved except that the variance of each design decreases as

additional samples are required for those designs to increasethe mean increases. NameX;; ~ N, (6— (i — 1)/2)2),

the confidence.

Table 4: P(CS) and Sample Sizes of Experiment 2

P*=0.90 P* =0.95

Procedure P(CS) T P(CS) T

Rinott(20) 99.30% 10224 99.78% 13020
ETSS(20) 93.73% 1518 95.22% 1933
AT 5(20) 95.89% 1835 97.19% 2302
AT 5(20) 97.96% 2420 98.60% 3069
AT »(20) 98.50% 2922 99.18% 3697
AT ¢(20) 100.00% 2507 100.00% 3185
Rinott(30) 99.47% 9757 99.74% 12280
ETSS(30) 96.39% 1489 97.15% 1836
AT 5(30) 97.60% 1763 98.06% 2200
AT 5(30) 98.87% 2172 99.22% 2701
AT >(30) 99.22% 2821 99.57% 3524
AT ¢(30) 100.00% 2178 100.00% 2730

Table 5: Detailed Sample Sizes fé&* = 0.90 and
no = 20 of Experiment 2

Dn Rinott ETSS Al ATs AT, Alc
1 526 447 474 505 515 527
2 619 345 407 488 534 620
3 717 241 312 423 509 659
4 822 161 221 326 428 333
5 932 106 143 237 322 140
6 1053 69 94 163 228 77
7 1178 50 67 111 153 51
8 1315 37 46 71 106 38
9 1457 31 37 52 72 31
10 1601 26 30 40 51 27

i=12,...,10.

The results are listed in Tables 7 through 9. Because
most designs have smaller variances than Experiment 1, the
total simulation replications are smaller than Experiment
1. We have more confidence of the best selection in the
first stage of this setting. Therefore, fewer simulation repli-
cations are needed to obtain the desired confidence. All
procedures allocate smaller additional simulation replica-
tions for designs with inferior designs in this setting, i.e.,
the variances decrease as the sample means increase. Once
again, AT, has better coverage than ETSS with little ad-
ditional replications or batches. Moreover, with CRNs the
procedure effectively allocates extra replications or batches
to more promising alternatives and improves P(CS). Since
inferior designs have smaller variances, we are confident to
exclude those designs from further simulations, i.e., based
on the first-stage information the ETSS procedure has con-
cluded with certain confidence that, > X for designi

with N; = nop.

Table 7: P(CS) and Sample Sizes of Experiment 3

P*=0.90 P*=0.95

Procedure P(CS) T P(CS) T

Rinott(20)  99.48% 2361 99.66% 2989
ETSS(20) 95.78% 1038 96.69% 1279
AT 5(20) 97.18% 1164 97.82% 1431
AT 5(20) 98.56% 1362 98.84% 1695
AT2(20) 99.02% 1549 99.54% 1948
ATc(20)  99.99% 1563 99.97% 1957
Rinott(30) 99.33% 2247 99.66% 2830
ETSS(30) 97.49% 1078 97.92% 1302
AT 5(30) 98.32% 1206 98.86% 1473
ATs(30)  98.77% 1348 99.37% 1653
AT >(30) 99.27% 1579 99.64% 1954
AT ¢(30) 100.00% 1476 100.00% 1816
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Table 8: Detailed Sample Sizes fdét* = .90 and larger adjustment. However, conservative users can increase
no = 20 of Experiment 3 the value of the adjustment to meet their requirements. For
Dn Rinott ETSS Als ATg AT, ATc example, letU (X;) be the upper one-taile#t* confidence
1 525 470 493 512 518 527 limit of wp.
2 443 267 308 362 400 444 Moreover, since the quality of the first-stage sample
3 367 125 162 223 282 338 means have great influence in the performance of ETSS
4 297 49 69 111 162 116 procedure, we recommend using a larger first-stage sample
5 233 24 29 47 73 35 size for the ETSS procedure. Note that with the same
6 179 20 20 23 31 21 minimal required possibility of correct selecti@f, the total
7 131 20 20 20 20 20 sample sizes usingy = 30 are less than using = 20 and
8 91 20 20 20 20 20 achieve higher P(CS) at the same time in all our experiments
9 59 20 20 20 20 20 with AT .
10 33 20 20 20 20 20 Our experimental results show that the Afadjusted

ETSS) procedure is a powerful tool for selecting the best
design out ofk alternatives. The main advantage of the

Table 9: Detailed Sample Sizes fdét* = .95 and AT, is that the algorithm determines the number of addi-
ng = 20 of Experiment 3 tional simulation replications based on both the means and
Dn Rinott ETSS Als ATs ATz ATc variances, which significantly improves the efficiency of

1 665 600 619 648 663 671 R&S procedures. Furthermore, the added adjustment effi-
2 558 334 387 457 511 563 ciently improves P(CS) of the ETSS procedure with only

3 465 155 204 284 355 429 slightly larger simulation replications. The simplicity of this

4 374 61 84 142 206 147 method should make it attractive to simulation practitioners
5 295 27 33 56 93 42 or software developers.

6 228 20 21 25 36 22 One drawback of two-stage selection procedures is that
7 167 20 20 20 21 20 they rely heavily on the information from only one stage. To
8 116 20 20 20 20 20 eliminate this drawback, we are working on sequentializing
9 74 20 20 20 20 20 the ETSS procedure.

10 42 20 20 20 20 20
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