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ABSTRACT (also calledmodel selectionand to improve parameter
estimates. Exceptions include Borth (1975), who used a
One goal in simulation experimentation is to identify which measurement of entropy, and Hill, Hunter, and Wichern
input parameters most significantly influence the mean of (1968), whose criterion has several parameters to tune.
simulation output. Another goal is to obtain good parameter This paper describes a joint criterion for experimental
estimates for a response model that quantifies how the design recently proposed in Ng and Chick (2002) that selects
mean output depends on influential input parameters. The designs to simultaneously identify important parameters and
majority of experimental design techniques focus on either to reduce the variance of those estimates. The joint criterion
one goal or the other. This paper uses a design criterion for is based on entropy measurements, but overcomes an implicit
follow-up experiments that jointly identifies the important problem in Borth’s criterion regarding the calibration of
parameters and reduces the variance of parameter estimatesentropy for model selection with respect to entropy for
The criterion is entropy-based, and is applied to a critical parameter estimation. The criterion simplifies to a closed
care facility simulation. form for the standard linear regression model with normal
observation errors. Here we present the main ideas and
preliminary experimental results. For a fuller treatment,
see Ng (2001) or Ng and Chick (2002).

Response metamodels that describe the relationship between  The criterion is most applicable to follow-up experi-
inputs to a simulation and the output mean can be useful for ments after a preliminary set of runs has been completed.
design decisions based on simulation, and much focus hasThe criterion informs the selection of inputs for additional
gone into selecting simulation inputs in a way that improves runs (design points) in a way that both resolves ambiguity
the estimate of the response model (Barton 1998; Kleijnen about which inputs are most influential on the mean system
1996; Law and Kelton 2000; Sanchez 1994). Response output, and uncertainty in response parameter estimates.
models can be used in iterative processes to identify design Section 2 describes the mathematical formulation for
parameters (e.g., number of servers, line speeds) that opti-the design space and response models. It also describes a
mize some expected reward criterion (e.g., mean monthly Bayesian formulation to quantify input model and parameter
revenue). They can be useful to identify statistical input uncertainty, as well as the new entropy based design criterion.
parameters whose uncertain values most greatly influence Section 3 describes a system, and empirically evaluates the
uncertainty about the mean system performance (Cheng andperformance of the new joint design criterion with two

1 INTRODUCTION

Holland 1997; Ng and Chick 2001; Jacobson, Buss, and
Schruben 1991; Morrice and Schruben 1993).

There are a number of design criterion available to select
input parameters for simulation experiments. Some, like
the M D criterion of Box and Hill (1967), focus on designs
that seek to identify the important input parameters. Others,
like the D-optimal design criterion, determine designs that
optimize the experiments ability to reduce uncertainty about
estimates of parameters. Relatively little work has been done
to develop experimental design criteria to both select input
parameters to jointly identify important input parameters
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other criteria. One describes model uncertainty alone, and
the other tries to improve parameter uncertainty alone. The
new criterion does well at both identifying important factors
and reducing parameter uncertainty. The cost of computing
the criterion, however, means that it is most useful in the
context of simulations with particularly long run times.
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2 FORMALISM (i.e., selects the model iM with the most appropriate
functional form), and to estimate its regression parameters.

To formalize this, we first describe uncertainty about
both response model selection and parameter estimation
The design criterion is applied here to a finite, but potentially with probability distributions, then select the design matrix
very large, set of potential choices of inputs to a finite that best improves an entropy-based design criterion.
numbern of simulation runs, where is selected by the
experimenter.

There are a finite numbeg of real-valued inputs,
x1,...,%q, each of which may be chosen to take on a One Bayesian approach to quantify the joint uncertainty
finite set of different values. The inputs may be either about model form and parameter values is to assign a prior
design parameters, or parameters of input distributions (e.g. distribution to each of the model®, € M, then assign a
arrival rate, service time variance). The choice to focus on conditional probability distribution for the parameter vector
a finite set of values for each input requires that a discrete §,, given M,. The identity of the best response model and

set of possible input values be chosen for inputs that may parameter is then inferred by Bayes’ rule, using the prior

2.1 Design Space and Regression Models

2.2.1 Uncertainty Assessment

take on a continuum of values.

In order to allow for response models that are nonlinear
in the inputs, the inputs can be combined algebraically to
generate a finite numbep, of predictors,yy, ..., y,, each
of which is some function of the inputs. For example, if
a linear response model is desired, then get p and
yvi=x; fori =1,...,q. For quadratic response models,
setp =g + q(g +1)/2 to allow for additional predictors
vk involving cross terms;;x; for i < j.

We follow the formulation of Raftery, Madigan, and
Hoeting (1997) to identify the most important of the
predictors. That is, we presume the existence ef 27
candidate response models in a model spsicehat are
linear in some subset of the predictors. More formally, the
outputz; of thei-th simulation run is presumed to be of
the form

zi = Bo+ Py + Baye) + -+ By + &, (D)
whereyy, ..., yq) arer predictors selected from the set of
p predictors, and; is a zero mean noise term. The selection
of a candidate response model is intended to identify the
important predictors in the model, relative to the size of the
noise in the simulation output.

Let D be the (finite) design space of all possible legal
combinations of the inputs for each of theuns. A design
x € D can be represented as & g matrix whosei-th row
contains the values of the inputs for tixh run. For a
model withz predictors, the design matrix can be converted
to an x ¢ predictor matrixy = y(x) whose rows contain
the values of predictors for each run. The values of the
predictors take on a finite set of values, as determined by
the finite set of values that can be assumed by the inputs.
Let z be the column vector of outputs.

2.2 Entropy-Based Formulation

The problem is to choose a desigrthat in some sense is
effective at both identifying the most important predictors
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distributions and the probability distribution of the output,
given the model and input parameters.

We make a standard assumption of jointly independent,
normally distributed errorsg; ~ Normal(0,02). This
means that if model is the true modelg; is the true
parameter, and/ is the predictor matrix of the design,
then the outpuZ has an multivariate normal distribution,
Z ~ Normal, (yB;. 0?1,), wherel, is the identity matrix.
Batching may be indicated if the simulation output is not
roughly normally distributed.

For prior distributions, the analysis presumes the con-
jugate prior distribution (Bernardo and Smith 1994) for the
unknown parametet, = (8,, o2), conditional on the/-th
model M, being correct,

7By | My, 0%~ Normal(ﬂ@ | MvUsz)

VvV VA
2’ 2 )
where the conditional prior mean vectq, and co-
variance matrixo?V, for § may depend on the model
M. The parameters and 1 are selected by the mod-
eler. The InvertedGamma | «, B) distribution has pdf
x~@tDe=B/xgo ) 1 (o) and meang/(a — 1).

The distributions in Eq. (2) can either be based
on prior information alone, or can include information
gained during initial stages of experimentation. Data
Zo from an initial stage ofng observations with pre-

dictor matrix yg is straightforward to incorporate be-
cause of the conjugate form. Replace the mggn

(Vzl + ygy())_l (Ve_lﬂz + yg20>; replace

-1
the matrix V, with (V;l—i—ygyo) ; replacev/2 with

)

(0| My ~ InvertedGamm<a2

with

(v+no)/2; and replaceA /2 with (VA + (zo — you;)T 20+

;
(me — 1)) Vitrp/2.

The prior distribution fo, can be chosen to be discrete
uniform (p(M,) = 1/s) to be noninformative. Closed form
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formulas to update probabilities(M; | zg, yo) based on
preliminary runs are provided by Raftery, Madigan, and
Hoeting (1997).

In the rest of the paper, we presume the distribution
in Eg. (2) and the priorp(M,) for use in a follow-up
stage of experiments are based on noninformative priors in
combination with an initial stage.

2.2.2 Entropy-Based Criterion

Several authors (Lindley 1956; DeGroot 1962; Bernardo

1979) proposed the use of the expected gain in Shannon

information (or decrease in entropy) given by an experiment

as a optimal design criterion to select the values for the design

factors for the experiment. The choice of design influences
the expected gain in information, for example, because the
predictive distribution of future outpuf is determined by
the predictor matriyy and the prior distribution in Eq. (2).

Z | My,y, %~ Normal, (yM, o? [ngyT + I,,]).

The marginal distribution oz given M,,y is obtained

by integrating out ovew?, and results in a multivariate

¢ distribution. Entropy is different for discrete (model
selection) and continuous (parameter estimation) random
variables, so each is discussed in turn.

For model selection, Box and Hill (1967) proposed
the use of the expected increase in Shannon information
J as a design criterion. The criterion was derived from
information theory where the information (entropy) was
used as a measure of uncertainty for distinguishingsthe
candidate models.

Jo= ) p(Mp) x (3)

=1
/ log

In general, a closed form is unknown, so Box and Hill (1967)

gave an upper bound approximation florthe expected gain

in Shannon information between the predictive distributions

of each pair of candidate model$ and M;. This approxi-

mation toJ was originally named th@®-criterion (Box and

Hill 1967), but we use the notatiom D, as does Meyer,
Steinberg, and Box (1996).

p(Z | My, y)
Y1 p(Z | My, y)p(M))

p(Z | Mg, y)dZ.

MD

> p(My)p(M) x

O<i#l<s

(o

The M D criterion has proved to be effective in practice and
popular with research workers (Hill 1978).

(4)

p(Z | Mi.y)

Z|M;,y)dZ].
p@ | M,y PE M) >
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We will use M D for the model discrimination portion
of our joint criterion. For the normal linear model, Hill
and Hunter (1969) and Meyer, Steinberg, and Box (1996)
showed tha D reduces to a closed form if a noninformative
prior 1/ ono and a conditionally normal prior fg8 given
o are assumed. It can be shown that a closed form also
results if the conjugate prior is assumed.

Proposition 1. Assume the conjugate normal gamma prior
in Eq. (2). LetZ, = yu,, andV;} [ngyT + I]. Then
M D simplifies to

1
ZOfi;élgs EP(Mi)P(MI)[—n‘Ftr(VT_lV?) )

1 T -
Ha-avite )|

Proof. See Ng and Chick (2002).

For parameter estimation, Bernardo (1979) and Smith
and Verdinelli (1980) adopted an entropy based method to
ensure precise estimates for parameters that have already
been identified as important. They choose the design that
maximizes the expected gain in Shannon information (or
equivalently, maximizes the expected Kullback-Leibler dis-
tance) between the posterior and prior distributions of the
parameters.

0| Z
BD = //p<2>p(0|2>log[”( 12)
p(@)

Eq. (6) simplifies considerably for the normal linear model
into a form known as the Bayesian D-optimal criterion
(hence the choice of nam@D).

Proposition 2. For a linear modeM, of the form Eq. (1),
the prior probability model Eq. (2), and a given design

}dOdZ (6)

BD = % (Iog ‘yTerV[l‘ —log ‘V;l‘) .

Proof. See Ng and Chick (2002).

A measures p of the overall expected gain ininformation
for parameter uncertainty averages the entropy from each
candidate regression model. For the linear model, this is

sp=3" _p(g@) logly'y +V;| - ¢ )

=1

for someC that does not depend on the design.
Inessence, Borth (1975) simply added entropy measures
J andSp to obtain a joint criterion. But this ignores the fact
that entropy for continuous variables (parameter estimation)
might not be directly commensurate with entropy for discrete
variables (model selection). These measures may have
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differentranges over the design space. We therefore are led to

renormalize the two entropy measures before summing. And
since it is hard to evaluate thkecriterion, we approximate it
with theM D criterion. Thus, an upper bound approximation
of the joint criterion for model discrimination and parameter
estimation is

_ MD— MDyy
MDmax - MDmin

Sp—Sp

min
SPmax - SP

min

So )]

where M Dyi, M Dpax, Sp,,;,» Sp,... are the smallest and
largestM D values and the smallest and larg&st values
respectively over all designs i
To achieve the dual objective of model discrimination
and parameter estimation, we seek to obtain a desigiD
that maximizesSp in Eq. (8). Eq. (8) equally weights
the model and parameter criteria by normalizing over the
possible range of values, max minus min, over all designs.
For normal linear models§, simplifies to a closed

form (Eq. (5), Eq. (7)).
2.3 Computational Issues

Although Sy simplifies to a closed form for the normal
linear model outlined above, there are three computational
challenges. First, the number of models grows exponentially
in the number of predictors. Second, the min and max values
of the two entropy measures that compiiggare required.
Third, the number of designs grows combinatorially in the
number of candidate runs to select from.

To address the first challenge, the summands foand
M D are computed by using only the most likely models
after the first stage. There are typically far fewer than
s = 2P different models whose probability(M,) will
lead it to be a competitor for the ‘best’ after the initial
stage of experimentation. When direct enumeration is not
computationally feasible, these ‘more important’ models can
be identified heuristically by using Markov chain monte
Carlo model composition, (M& (Madigan and York 1995)
to estimate thep(M;). The state space for MCis the
set of s models, and a sample path visits a sequence of
different models,M,. Candidate states for transitions are
chosen from the set of models with one more or one fewer
active predictors. The relative probabilities for the current

and candidate states, needed to implement the Metropolis-

Hastings step of M&, can be computed from closed-form
formulas in Raftery, Madigan, and Hoeting (1997). The
number of times a model is visited duringC? divided by
the number of iterations o#/C? is a consistent estimate
of the model’s posterior probability.

Second, we estimat® D,,in, M Dinax, SP,in> SPuax DY

Third, we use an optimization heuristic to identify a
design with a high value ofp. Simulated annealing (Aarts
and Korst 1989), nested partitions (Shi and Olafsson 2000),
and a number of other tools are available to help with this.
Here, we generalize a version of theexchange algorithm
of Johnson and Nachtsheim (1983). Thexchange algo-
rithm was first proposed to construct D-optimal designs, but
because it is a general algorithm, it can be used to select
from a finite set of designs as long as an optimality criterion
is given. The algorithm is essentially a greedy algorithm
that swaps in and out design points one at a time. Although
global optimality is not guaranteed, we restart the algorithm
multiple times with random initial conditions to avoid local
optima.

3 NUMERICAL RESULTS
3.1 Example: Critical Care Facility

The critical care facility illustrated in Figure 1 was originally
studied by Schruben and Margolin (1978). Patients arrive
according to a Poisson process and are routed through
the system depending upon their specific health condition.
Stays in the intensive care (ICU), coronary care (CCU), and
intermediate care facilities are presumed to be lognormally
distributed.

s

Patient
Entry
Exit

A\

Figure 1: Fraction of Patients Routed through Different
Units of a Critical Care Facility
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0.20

Intensive Care Unit
(Icu)
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0.55
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0.20
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Coronary Care Unit
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Schruben and Margolin (1978) studied how to allocate
random number streams to reduce variability in response
surface parameter estimates. Their response model predicts
the expected number of patients per moatfZ] that are
denied entry to the facility as a function of the number
of beds in the ICU, CCU, and intermediate care facilities.
They presume fixed point estimates fox= 6 input param-
eters, one per source of randomness, to describe the patient
arrival process (Poisson arrivals, meas= 3.3/day), ICU
stay duration (lognormal, mean43and standard deviation
3.5 days), intermediate ICU stay duration (lognormal, mean
15.0, standard deviation.@), intermediate CCU stay dura-

randomly sampling many designs, then setting the estimates ;5 (lognormal, mean 10, standard deviation.@), CCU

to be the minimum and maximum entropy values sampled
from among those designs.
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stay duration (lognormal, mean83 standard deviation @),
and routing probabilities (multinomiaf; = 0.2, p3 = 0.2,
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pa = 0.05). Some parameters are multivariate, and there
are a total ofK = 1+ 4% 2+ 3 = 12 dimensions of

k-exchange to determine the ‘best) design. We used
50 randomly sampled designs to attempt to avoid local

parameters. The analysis here presumes a linear responseaninima (and we used parameter= 5 for the k-exchange

model in these 12 parameters.

For the lognormal service times, the log has mean
n and precisionr = 1/02. Subscripts distinguish the
parameters of one service provider from each other (e.g.,
Micus Miicus Hiccw HCCU Ajcys - - -)-

The actual system parameters are not known with cer-
tainty, and the estimated system performance will be in
error if the actual parameter values differ from their point
estimates. As in Ng and Chick (2001), who used naive
Monte Carlo sampling for unknown inputs to do an uncer-
tainty analysis, we fix the number of beds in each of the
three units (14 in ICU, 5 in CCU, 16 in intermediate care),
and study how the expected number of patients per month

that are denied entry depends on the unknown parameters.

3.2 Results: Critical Care Facility

We initially ran a 32 run design with 2 replications for
each of the 32 design points. We first analyzed the data
corresponding to the 32 runs with the Bayesian analysis
technique. We considered twelve input parameters, and
thus 22 distinct linear models in the model spaleke each
differing by the absence and presence of each predictor.
Table 1 shows the posterior probabilities for the top 10
models. The model identified in a 512 run study in Ng and
Chick (2001) is ranked 10th here.

Table 1: The Ten Most Probable Models after 32 Runs

Model Post. Prob.
Asys Miicu» Aiicu» P1> P4 0.513
Asys Hiicu- Aicus P1 3. P4 0.0936
Asys Hiicus Aiicus Kiccw P1 P4 0.0539
Asys Hiicu: P1. P4 0.0427
Asys Accus Miicus Micus P1s P4 0.0370
Asys Kceu Kiicus Aiicu» P1s P4 0.0361
Asys Hiicu- Micu» Aiccw P1 P4 0.0294
Asys Kicus Kiicus AMicu» P1s P4 0.0275
Asys Aicu» Miicu- Aicu» P1 P4 0.0262
Asys Miicu: Aiicu: Hiccu» P1. P3. p4  0.0237

In order to determine a 48 run follow-up experiment
to better discriminate among the top ten models and obtain
more precise estimates for the model, we used the new
So criterion to determine the design. We used the design
points of a full factorial for the 12 parameters as candidates
for the 48 run design. As the number of models is large
and the posterior probabilities of most of the models are
very small, we renormalized the posterior probabilities of
the top ten models, and considered only these models in
the summation ofSp. Since the number of possible 48
run designs from theZ candidate runs is large, we used
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algorithm).

Using the best design found with the k-exchange al-
gorithm, we ran the critical care simulation again with 2
replications for each run. The posterior probabilities for the
top three models, given the data from the combined design
(32*2+48*2), are shown in Table 2. The top model is the
same model identified in the 512 runs analysis in (Ng and
Chick 2001), but the criterion enabled this model to be
identified with far fewer runs.

Table 2: The Three Most Probable Models with 32 +
48 Runs Determined by the New Joint Criteridiyp

Model Post. Prob.
Asys Hiicus Aicus Kiccu P1 P3» Pa 0.424
Asys Miicu- Aiicus P1, P4 0.141
Asys Miicus Aiicu: Hiccus P1: P4 0.140

The joint criterionSy results in different designs than
the model discrimination criteriod D (Eqg. (5)) and the
parameter estimation criteriofp (Eq. (7)). We use the
k-exchange algorithm with similar settings (50 randomly
sampled test design, = 5) to determine a good/D
and Sp design. The posterior probabilities that result after
running theM D design are presented in Table 3. TMeD
design identified the same top model as Hedesign.

Table 3: The Three Most Probable Models with 32 +
48 Runs Determined by th& D Criterion

Model Post. Prob.
Asys Miicus Micus Kiccus P1s P3s P4 0.442
Asys Miicus Aicus P1, P4 0.118
Asys Kiicu: Aiicus Miccus P1: P4 0.102

The M D criterion does a slightly better job in discrim-
inating between the top two models than thg design.
However, Table 4 indicates that desi§p did a better job
than M D at reducing the parameter generalized variance
(the determinant of the posterior covariance matrix of the
parameter estimategy (B)|) of the top model.

Table 4: Comparison ofp
and M D Criteria for A Pos-
teriori Top Model after 32 +

48 Runs
Criterion [V(B)]
So 0.88x 1071
MD 1.46 x 10715

The top two models identified in thge design are the
same models identified in the original 32 run analysis. The
posterior probabilities for these models are about the same
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