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ABSTRACT

One goal in simulation experimentation is to identify whic
input parameters most significantly influence the mean
simulation output. Another goal is to obtain good paramet
estimates for a response model that quantifies how
mean output depends on influential input parameters. T
majority of experimental design techniques focus on eith
one goal or the other. This paper uses a design criterion
follow-up experiments that jointly identifies the importan
parameters and reduces the variance of parameter estim
The criterion is entropy-based, and is applied to a critic
care facility simulation.

1 INTRODUCTION

Response metamodels that describe the relationship betw
inputs to a simulation and the output mean can be useful
design decisions based on simulation, and much focus
gone into selecting simulation inputs in a way that improve
the estimate of the response model (Barton 1998; Kleijn
1996; Law and Kelton 2000; Sanchez 1994). Respon
models can be used in iterative processes to identify des
parameters (e.g., number of servers, line speeds) that o
mize some expected reward criterion (e.g., mean mont
revenue). They can be useful to identify statistical inp
parameters whose uncertain values most greatly influen
uncertainty about the mean system performance (Cheng
Holland 1997; Ng and Chick 2001; Jacobson, Buss, a
Schruben 1991; Morrice and Schruben 1993).

There are a number of design criterion available to sele
input parameters for simulation experiments. Some, li
theMD criterion of Box and Hill (1967), focus on designs
that seek to identify the important input parameters. Othe
like the D-optimal design criterion, determine designs th
optimize the experiments ability to reduce uncertainty abo
estimates of parameters. Relatively little work has been do
to develop experimental design criteria to both select inp
parameters to jointly identify important input paramete
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(also calledmodel selection) and to improve parameter
estimates. Exceptions include Borth (1975), who used
measurement of entropy, and Hill, Hunter, and Wicher
(1968), whose criterion has several parameters to tune.

This paper describes a joint criterion for experimenta
design recently proposed in Ng and Chick (2002) that sele
designs to simultaneously identify important parameters a
to reduce the variance of those estimates. The joint criteri
is based on entropy measurements, but overcomes an imp
problem in Borth’s criterion regarding the calibration o
entropy for model selection with respect to entropy fo
parameter estimation. The criterion simplifies to a close
form for the standard linear regression model with norm
observation errors. Here we present the main ideas a
preliminary experimental results. For a fuller treatmen
see Ng (2001) or Ng and Chick (2002).

The criterion is most applicable to follow-up experi-
ments after a preliminary set of runs has been complete
The criterion informs the selection of inputs for additiona
runs (design points) in a way that both resolves ambigui
about which inputs are most influential on the mean syste
output, and uncertainty in response parameter estimates

Section 2 describes the mathematical formulation fo
the design space and response models. It also describe
Bayesian formulation to quantify input model and paramet
uncertainty, as well as the new entropy based design criteri
Section 3 describes a system, and empirically evaluates
performance of the new joint design criterion with two
other criteria. One describes model uncertainty alone, a
the other tries to improve parameter uncertainty alone. T
new criterion does well at both identifying important factor
and reducing parameter uncertainty. The cost of computi
the criterion, however, means that it is most useful in th
context of simulations with particularly long run times.
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2 FORMALISM

2.1 Design Space and Regression Models

The design criterion is applied here to a finite, but potentia
very large, set of potential choices of inputs to a finit
numbern of simulation runs, wheren is selected by the
experimenter.

There are a finite numberq of real-valued inputs,
x1, . . . , xq , each of which may be chosen to take on
finite set of different values. The inputs may be eithe
design parameters, or parameters of input distributions (e
arrival rate, service time variance). The choice to focus
a finite set of values for each input requires that a discre
set of possible input values be chosen for inputs that m
take on a continuum of values.

In order to allow for response models that are nonline
in the inputs, the inputs can be combined algebraically
generate a finite number,p, of predictors,y1, . . . , yp, each
of which is some function of the inputs. For example,
a linear response model is desired, then setq = p and
yi = xi for i = 1, . . . , q. For quadratic response models
setp = q + q(q + 1)/2 to allow for additional predictors
yk involving cross termsxixj for i ≤ j .

We follow the formulation of Raftery, Madigan, and
Hoeting (1997) to identify the most important of thep
predictors. That is, we presume the existence ofs = 2p

candidate response models in a model spaceM that are
linear in some subset of the predictors. More formally, th
output zi of the i-th simulation run is presumed to be o
the form

zi = β0 + β1y(1) + β2y(2) + · · · + βty(t) + ζi, (1)

wherey(1), . . . , y(t) aret predictors selected from the set o
p predictors, andζi is a zero mean noise term. The selectio
of a candidate response model is intended to identify t
important predictors in the model, relative to the size of th
noise in the simulation output.

Let D be the (finite) design space of all possible leg
combinations of the inputs for each of then runs. A design
x ∈ D can be represented as an× q matrix whosei-th row
contains the values of the inputs for thei-th run. For a
model witht predictors, the design matrix can be converte
to a n × t predictor matrixy = y(x) whose rows contain
the values of predictors for each run. The values of t
predictors take on a finite set of values, as determined
the finite set of values that can be assumed by the inpu
Let z be the column vector ofn outputs.

2.2 Entropy-Based Formulation

The problem is to choose a designx that in some sense is
effective at both identifying the most important predictor
g.
n
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(i.e., selects the model inM with the most appropriate
functional form), and to estimate its regression paramete

To formalize this, we first describe uncertainty abo
both response model selection and parameter estima
with probability distributions, then select the design matr
that best improves an entropy-based design criterion.

2.2.1 Uncertainty Assessment

One Bayesian approach to quantify the joint uncertain
about model form and parameter values is to assign a p
distribution to each of the modelsM` ∈ M , then assign a
conditional probability distribution for the parameter vecto
β`, givenM`. The identity of the best response model an
parameter is then inferred by Bayes’ rule, using the pri
distributions and the probability distribution of the outpu
given the model and input parameters.

We make a standard assumption of jointly independe
normally distributed errors,ζi ∼ Normal

(
0, σ 2

)
. This

means that if modeli is the true model,βi is the true
parameter, andy is the predictor matrix of the design
then the outputZ has an multivariate normal distribution
Z ∼ Normaln

(
yβi , σ

2In
)
, whereIn is the identity matrix.

Batching may be indicated if the simulation output is n
roughly normally distributed.

For prior distributions, the analysis presumes the co
jugate prior distribution (Bernardo and Smith 1994) for th
unknown parameterθ` = (β`, σ 2), conditional on thè -th
modelM` being correct,

π(β` | M`, σ
2) ∼ Normal

(
β` | µ`, σ 2V`

)
(2)

π(σ 2 | M`) ∼ InvertedGamma

(
σ 2 | ν

2
,
νλ

2

)
,

where the conditional prior mean vectorµ` and co-
variance matrixσ 2V` for β may depend on the mode
M`. The parametersν and λ are selected by the mod-
eler. The InvertedGamma(x | α, β) distribution has pdf
x−(α+1)e−β/xβα/0(α) and meanβ/(α − 1).

The distributions in Eq. (2) can either be base
on prior information alone, or can include informatio
gained during initial stages of experimentation. Da
z0 from an initial stage ofn0 observations with pre-
dictor matrix y0 is straightforward to incorporate be
cause of the conjugate form. Replace the meanµ`

with µ′̀ =
(
V−1
` + y

T

0y0

)−1 (
V−1
` µ` + y

T

0z0

)
; replace

the matrix V` with
(
V−1
` + y

T

0y0

)−1
; replaceν/2 with

(ν+n0)/2; and replaceνλ/2 with (νλ+ (z0 − y0µ
′̀ )T

z0+(
µ` − µ′̀

)T
V−1
` µ`)/2.

The prior distribution forM` can be chosen to be discret
uniform (p(M`) = 1/s) to be noninformative. Closed form
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formulas to update probabilitiesp(M` | z0, y0) based on
preliminary runs are provided by Raftery, Madigan, an
Hoeting (1997).

In the rest of the paper, we presume the distributio
in Eq. (2) and the priorp(M`) for use in a follow-up
stage of experiments are based on noninformative priors
combination with an initial stage.

2.2.2 Entropy-Based Criterion

Several authors (Lindley 1956; DeGroot 1962; Bernard
1979) proposed the use of the expected gain in Shann
information (or decrease in entropy) given by an experime
as a optimal design criterion to select the values for the desi
factors for the experiment. The choice of design influence
the expected gain in information, for example, because t
predictive distribution of future outputZ is determined by
the predictor matrixy and the prior distribution in Eq. (2).

Z | M`, y, σ 2 ∼ Normaln
(
yµ`, σ

2
[
yV`y

T + In
])
.

The marginal distribution ofZ given M`, y is obtained
by integrating out overσ 2, and results in a multivariate
t distribution. Entropy is different for discrete (model
selection) and continuous (parameter estimation) rando
variables, so each is discussed in turn.

For model selection, Box and Hill (1967) proposed
the use of the expected increase in Shannon informati
J as a design criterion. The criterion was derived from
information theory where the information (entropy) was
used as a measure of uncertainty for distinguishing thes

candidate models.

J =
s∑
`=1

p(M`)× (3)∫
log

p(Z | M`, y)∑s
l=1p(Z | Ml, y)p(Ml)

p(Z | M`, y)dZ.

In general, a closed form is unknown, so Box and Hill (1967
gave an upper bound approximation forJ , the expected gain
in Shannon information between the predictive distribution
of each pair of candidate modelsMi andMl . This approxi-
mation toJ was originally named theD-criterion (Box and
Hill 1967), but we use the notationMD, as does Meyer,
Steinberg, and Box (1996).

MD =
∑

0≤i 6=l≤s
p(Mi)p(Ml)× (4)

(∫
log

p(Z | Mi, y)
p(Z | Ml, y)

p(Z | Mi, y)dZ
)
.

TheMD criterion has proved to be effective in practice an
popular with research workers (Hill 1978).
n

n

We will useMD for the model discrimination portion
of our joint criterion. For the normal linear model, Hill
and Hunter (1969) and Meyer, Steinberg, and Box (199
showed thatMD reduces to a closed form if a noninformative
prior 1/σ onσ and a conditionally normal prior forβ given
σ are assumed. It can be shown that a closed form a
results if the conjugate prior is assumed.

Proposition 1. Assume the conjugate normal gamma prio

in Eq. (2). Let ẑ` = yµ`, andV∗̀ =
[
yV`y

T + I
]
. Then

MD simplifies to

∑
0≤i 6=l≤s

1

2
p(Mi)p(Ml)

[
−n+ tr(V∗−1

l V∗i ) (5)

+1

λ
(̂zi − ẑl )

T
V∗−1
l (̂zi − ẑl )

]
.

Proof. See Ng and Chick (2002).
For parameter estimation, Bernardo (1979) and Smi

and Verdinelli (1980) adopted an entropy based method
ensure precise estimates for parameters that have alre
been identified as important. They choose the design th
maximizes the expected gain in Shannon information (
equivalently, maximizes the expected Kullback-Leibler dis
tance) between the posterior and prior distributions of th
parameters.

BD =
∫ ∫

p(Z)p(θ | Z) log

[
p(θ | Z)
p(θ)

]
dθdZ (6)

Eq. (6) simplifies considerably for the normal linear mode
into a form known as the Bayesian D-optimal criterion
(hence the choice of nameBD).

Proposition 2. For a linear modelM` of the form Eq. (1),
the prior probability model Eq. (2), and a given designy,

BD = 1

2

(
log

∣∣∣yT
y+V−1

`

∣∣∣− log
∣∣∣V−1
`

∣∣∣) .
Proof. See Ng and Chick (2002).

A measureSP of the overall expected gain in information
for parameter uncertainty averages the entropy from ea
candidate regression model. For the linear model, this i

SP =
s∑
`=1

p(M`)

2
log

∣∣∣yT
y+V−1

`

∣∣∣− C (7)

for someC that does not depend on the design.
In essence, Borth (1975) simply added entropy measu

J andSP to obtain a joint criterion. But this ignores the fac
that entropy for continuous variables (parameter estimatio
might not be directly commensurate with entropy for discre
variables (model selection). These measures may ha
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different ranges over the design space. We therefore are l
renormalize the two entropy measures before summing. A
since it is hard to evaluate theJ criterion, we approximate it
with theMD criterion. Thus, an upper bound approximatio
of the joint criterion for model discrimination and paramet
estimation is

SQ = MD −MDmin
MDmax −MDmin +

SP − SPmin
SPmax − SPmin

, (8)

whereMDmin,MDmax, SPmin , SPmax are the smallest and
largestMD values and the smallest and largestSP values
respectively over all designs inD

To achieve the dual objective of model discriminatio
and parameter estimation, we seek to obtain a designd ∈ D
that maximizesSQ in Eq. (8). Eq. (8) equally weights
the model and parameter criteria by normalizing over
possible range of values, max minus min, over all desig

For normal linear models,SQ simplifies to a closed
form (Eq. (5), Eq. (7)).

2.3 Computational Issues

Although SQ simplifies to a closed form for the norma
linear model outlined above, there are three computatio
challenges. First, the number of models grows exponenti
in the number of predictors. Second, the min and max val
of the two entropy measures that compriseSQ are required.
Third, the number of designs grows combinatorially in t
number of candidate runs to select from.

To address the first challenge, the summands forSP and
MD are computed by using only the most likely mode
after the first stage. There are typically far fewer th
s = 2p different models whose probabilityp(M`) will
lead it to be a competitor for the ‘best’ after the initi
stage of experimentation. When direct enumeration is
computationally feasible, these ‘more important’models c
be identified heuristically by using Markov chain mon
Carlo model composition, (MC3) (Madigan and York 1995)
to estimate thep(M`). The state space for MC3 is the
set of s models, and a sample path visits a sequence
different models,M`. Candidate states for transitions a
chosen from the set of models with one more or one few
active predictors. The relative probabilities for the curre
and candidate states, needed to implement the Metrop
Hastings step of MC3, can be computed from closed-form
formulas in Raftery, Madigan, and Hoeting (1997). T
number of times a model is visited duringMC3 divided by
the number of iterations ofMC3 is a consistent estimat
of the model’s posterior probability.

Second, we estimateMDmin,MDmax, SPmin , SPmax by
randomly sampling many designs, then setting the estim
to be the minimum and maximum entropy values samp
from among those designs.
to
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Third, we use an optimization heuristic to identify a
design with a high value ofSQ. Simulated annealing (Aarts
and Korst 1989), nested partitions (Shi and Ólafsson 2000
and a number of other tools are available to help with thi
Here, we generalize a version of thek-exchange algorithm
of Johnson and Nachtsheim (1983). Thek-exchange algo-
rithm was first proposed to construct D-optimal designs, b
because it is a general algorithm, it can be used to sele
from a finite set of designs as long as an optimality criterio
is given. The algorithm is essentially a greedy algorithm
that swaps in and out design points one at a time. Althoug
global optimality is not guaranteed, we restart the algorithm
multiple times with random initial conditions to avoid local
optima.

3 NUMERICAL RESULTS

3.1 Example: Critical Care Facility

The critical care facility illustrated in Figure 1 was originally
studied by Schruben and Margolin (1978). Patients arriv
according to a Poisson process and are routed throu
the system depending upon their specific health conditio
Stays in the intensive care (ICU), coronary care (CCU), an
intermediate care facilities are presumed to be lognorma
distributed.

Intensive Care Unit

(ICU)

Intermediate ICU

Coronary Care Unit

(CCU)

Intermediate CCU

Patient

Entry

Exit

Exit

Exit

Exit

0.20

0.55

0.20

0.05

Figure 1: Fraction of Patients Routed through Differen
Units of a Critical Care Facility

Schruben and Margolin (1978) studied how to allocat
random number streams to reduce variability in respon
surface parameter estimates. Their response model pred
the expected number of patients per monthE[Z] that are
denied entry to the facility as a function of the numbe
of beds in the ICU, CCU, and intermediate care facilities
They presume fixed point estimates fork = 6 input param-
eters, one per source of randomness, to describe the pat
arrival process (Poisson arrivals, meanλ̂ = 3.3/day), ICU
stay duration (lognormal, mean 3.4 and standard deviation
3.5 days), intermediate ICU stay duration (lognormal, mea
15.0, standard deviation 7.0), intermediate CCU stay dura-
tion (lognormal, mean 17.0, standard deviation 3.0), CCU
stay duration (lognormal, mean 3.8, standard deviation 1.6),
and routing probabilities (multinomial,̂p1 = 0.2, p̂3 = 0.2,
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p̂4 = 0.05). Some parameters are multivariate, and the
are a total ofK = 1 + 4 ∗ 2 + 3 = 12 dimensions of
parameters. The analysis here presumes a linear respo
model in these 12 parameters.

For the lognormal service times, the log has mea
µ and precisionλ = 1/σ 2. Subscripts distinguish the
parameters of one service provider from each other (e.
µicu, µiicu, µiccu, µccu, λicu, . . .).

The actual system parameters are not known with ce
tainty, and the estimated system performance will be
error if the actual parameter values differ from their poin
estimates. As in Ng and Chick (2001), who used naiv
Monte Carlo sampling for unknown inputs to do an unce
tainty analysis, we fix the number of beds in each of th
three units (14 in ICU, 5 in CCU, 16 in intermediate care)
and study how the expected number of patients per mon
that are denied entry depends on the unknown paramete

3.2 Results: Critical Care Facility

We initially ran a 32 run design with 2 replications for
each of the 32 design points. We first analyzed the da
corresponding to the 32 runs with the Bayesian analys
technique. We considered twelve input parameters, a
thus 212 distinct linear models in the model spaceM , each
differing by the absence and presence of each predict
Table 1 shows the posterior probabilities for the top 1
models. The model identified in a 512 run study in Ng an
Chick (2001) is ranked 10th here.

Table 1: The Ten Most Probable Models after 32 Runs
Model Post. Prob.
λsys, µiicu, λiicu, p1, p4 0.513
λsys, µiicu, λiicu, p1, p3, p4 0.0936
λsys, µiicu, λiicu, µiccu, p1, p4 0.0539
λsys, µiicu, p1, p4 0.0427
λsys, λccu, µiicu, λiicu, p1, p4 0.0370
λsys, µccu, µiicu, λiicu, p1, p4 0.0361
λsys, µiicu, λiicu, λiccu, p1, p4 0.0294
λsys, µicu, µiicu, λiicu, p1, p4 0.0275
λsys, λicu, µiicu, λiicu, p1, p4 0.0262
λsys, µiicu, λiicu, µiccu, p1, p3, p4 0.0237

In order to determine a 48 run follow-up experimen
to better discriminate among the top ten models and obta
more precise estimates for the model, we used the ne
SQ criterion to determine the design. We used the desig
points of a full factorial for the 12 parameters as candidate
for the 48 run design. As the number of models is larg
and the posterior probabilities of most of the models ar
very small, we renormalized the posterior probabilities o
the top ten models, and considered only these models
the summation ofSQ. Since the number of possible 48
run designs from the 212 candidate runs is large, we used
se

.,

-

h
s.

d

r.

n

n

k-exchange to determine the ‘best’SQ design. We used
50 randomly sampled designs to attempt to avoid loc
minima (and we used parameterk = 5 for thek-exchange
algorithm).

Using the best design found with the k-exchange a
gorithm, we ran the critical care simulation again with
replications for each run. The posterior probabilities for th
top three models, given the data from the combined des
(32*2+48*2), are shown in Table 2. The top model is th
same model identified in the 512 runs analysis in (Ng a
Chick 2001), but theSQ criterion enabled this model to be
identified with far fewer runs.

Table 2: The Three Most Probable Models with 32 +
48 Runs Determined by the New Joint Criterion,SQ
Model Post. Prob.
λsys, µiicu, λiicu, µiccu, p1, p3, p4 0.424
λsys, µiicu, λiicu, p1, p4 0.141
λsys, µiicu, λiicu, µiccu, p1, p4 0.140

The joint criterionSQ results in different designs than
the model discrimination criterionMD (Eq. (5)) and the
parameter estimation criterionSP (Eq. (7)). We use the
k-exchange algorithm with similar settings (50 random
sampled test designs,k = 5) to determine a goodMD
andSP design. The posterior probabilities that result aft
running theMD design are presented in Table 3. TheMD
design identified the same top model as theSQ design.

Table 3: The Three Most Probable Models with 32 +
48 Runs Determined by theMD Criterion
Model Post. Prob.
λsys, µiicu, λiicu, µiccu, p1, p3, p4 0.442
λsys, µiicu, λiicu, p1, p4 0.118
λsys, µiicu, λiicu, µiccu, p1, p4 0.102

TheMD criterion does a slightly better job in discrim
inating between the top two models than theSQ design.
However, Table 4 indicates that designSQ did a better job
thanMD at reducing the parameter generalized varian
(the determinant of the posterior covariance matrix of t
parameter estimates,|V (β)|) of the top model.

Table 4: Comparison ofSQ
andMD Criteria for A Pos-
teriori Top Model after 32 +
48 Runs
Criterion |V (β)|
SQ 0.88× 10−15

MD 1.46× 10−15

The top two models identified in theSP design are the
same models identified in the original 32 run analysis. T
posterior probabilities for these models are about the sa



Chick and Ng

e

e
on

an
r
of

to
o
n
e

th

l

ig
o
o

on

s

s.
f
es
m
x

o

n
a
a

7–
d

ty.

-
.

-

f
t

-

al

s

l

1.
-

for
n

l-
.

ls
as the original analysis. The top model identified by theSQ
andMD design is only ranked eighth when theSP design
is used. As the top models differ, direct comparison of th
generalized variance for the model cannot be made.

3.3 Discussion: Critical Care Facility

The results for this experiment illustrate the compromis
between model discrimination and parameter estimati
obtained when using the joint criterionSQ. TheSQ design
performed slightly poorer than theMD design for model
discrimination, but was better in parameter estimation th
MD. The SP criteria focuses solely on the paramete
estimates of the top models. As the posterior probability
the top model forSQ (λsys, µiicu, λiicu, µiccu, p1, p3, p4)
was quite small after only 32 runs, theSP criteria focused on
designs that had good parameter estimation for only the
models with higher posterior probability. This example als
shows that when there are quite a few input parameters a
the output response is uncertain, with only a small numb
of runs (32 runs), using theSP criterion may prematurely
focus the attention on the top few models identified wi
this small number of runs for parameter estimation.

4 CONCLUSIONS

In this numerical example, theSQ criterion did almost as
well as theMD criterion for model discrimination, and did
better in parameter estimation thanMD. The top model
for the SP design was the same model found in the initia
32 runs (and different from the top model ofSQ andMD).
This illustrates that using theSP criterion too early in the
experimentation process might prematurely focus the des
and experimentation on one or two top models that may
may not be good approximations to the system (because
the small number of runs). Results from another applicati
(data not shown) support this assessment.

More generally, the large number of matrix calculation
required to compute theSQ criterion needs to be balanced
against the cost of actually running simulation replication
In the critical care facility simulation, the simulation itsel
requires a rather small amount of CPU time. CPU cycl
might better be spent running replications rather than co
putingSQ if the simulations are rather small. For comple
simulations with long run times, however, theSQ criterion
may be an effective mechanism to balance the needs
factor identification and parameter estimation.

Future work includes allowing the weight betwee
model and parameter uncertainty to vary through time in
sequential experimentation process, and the use of altern
discrete optimization tools for selecting the best design.
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