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ABSTRACT algorithms based on grid points. However, their procedures
require that users enter the values of the grid points. For an
This paper discusses the implementation of a two-phase overview of quantile estimation procedures, see Law and
procedure to construct confidence intervals for a simulation Kelton (2000).
estimator of the steady-state quantiles of stochastic pro- It is known that for both i.i.d. ang-mixingsequences,
cesses. We compute sample quantiles at certain grid pointssample quantiles will be asymptotically unbiased if certain
and use Lagrange interpolation to estimate phguantile. conditions are satisfied. Intuitively, a stochastic process is
The algorithm dynamically increases the sample size so that ¢-mixing if its distant future event is essentially independent
guantile estimates satisfy the proportional precision at the of its present and past events (Billingsley 1999). However,
first phase and the relative or absolute precision at the secondin practical situations, simulation experiments are restricted
phase. We show that the procedure gives asymptotically in time, and the required simulation run length for the
unbiased quantile estimates. An experimental performance estimator to be unbiased is not known in advance. Moreover,
evaluation demonstrates the validity of using grid points the variance of the quantile estimator needs to be estimated
and the quasi-independent procedure to estimate quantiles.in order to evaluate the precision of the quantile estimator.
Therefore, a workable finite-sample size must be determined
1 INTRODUCTION dynamically for the precision required of a simulation.
Chen and Kelton (2001) propose a histogram approxi-
Simulation studies have been used to investigate system mation based on a QI procedure to construct a proportional
characteristics, such as the mean and the variance of certainhalf-width (see Section 2.2) confidence interval (Cl) of
system performance of the system under study. In this paper, quantile estimates for stationary simulation outputs. In this
we propose a method to construct an empirical distribution paper, we extend the procedure to construct absolute or rela-
and estimate quantiles of the parameter of interest. For tive precision half-width Cl. The algorithm will sequentially
0 < p < 1, the p quantile (percentile) of a distribution is determine the simulation run length so that quantile esti-
the value at or below which 1@0percent of the distribution mates satisfy the proportional precision at the first phase and
lies. Related to quantilesHistogramis a graphical estimate  the relative or absolute precision at the second phase. The
of the underlying probability density (mass) function and proposed procedure produces asymptotically valid quantile
reveals all the essential distributional features of random estimates. The asymptotic validity of our QI procedure
variables analyzed by simulation. A histogram can be occurs as the sequence appears to be independent, as de-
constructed with a properly selected set of quantiles. termined by theuns-uptest (see Knuth 1998).

Wood and Schmeiser (1995) have experimented on The main advantage of our approach is that by using
overlapping batch quantiles, and concluded that large sample grids to approximate the underlying distribution, we avoid
sizes and batch sizes are needed to obtain reliable standardstoring and sorting all the observations. However, the
error estimators with overlapping batch quantiles, even when savings come ata cost. Using interpolation to obtain quantile
data are independent and identically distributed (i.i.d.). We estimates introduces bias. Fortunately, the bias can be
propose a simpl&uasi-IndependenfQl) algorithm (see reduced by specifying finer grid points, which would then
Chen and Kelton 2000) to determine the simulation run require longer execution time. The QI procedure computes
length and use grid points to construct a histogram (multiple the number of required independent samples at the beginning
guantiles). Iglehart (1976), Seila (1982a,b) and Hurley of the procedure making implementation a relatively simple
and Modarres (1995) have developed quantile estimation task.
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In Section 2, we discuss some theoretical basis of quan-

asn — oo, whereN (u, 02) denotes the normal distribution

. R . : . _ _ o
tile estlmauon in the context of S|mulat|0n_output analysis. \yith meary. and variance 2, and—> denotes convergence
In Section 3, we present our methodologies and proposed i, istribution.

procedure for quantile and histogram estimation. In Section
4, we show our empirical-experimental results of quantile
and histogram estimation. In Section 5, we give concluding
remarks.

2 BACKGROUND

This section presents the theoretical basis of our quantile

estimation: order statistics quantile estimators, quantile and
histogram estimation, and proportion estimation.

2.1 Order Statistics Quantile Estimators

LetXq, X2, ---, X,,, be asequence ofi.i.d. random variables
from a continuous distributiof (x) with probability density
function f(x). Letx, (0 < p < 1) denote the 108"
percentile or thep quantile, which has the property that
F(xp) =Pr(X <xp) = p. Thus,x, =inf{x : F(x) > p}.

If Y1,Y>,...,Y,, are the order statistics corresponding to
the X;'s from n independent observations, (i.E. is thei'”
smallest ofXy, X, ..., X,;) then a point estimator far,,
based on the order statistics is the samplguantilex,,

Xp = Yinp) 1)
where[z] denotes the integer ceiling (round-up) of the real
numberz.

For data that are i.i.d., the following properties of
are well known (David, 1981):

p(L—p)f'(xp)

_ 2y.
2072 /3C,) + 0(1/n%);

E(Xp) = xp

p(1—p)
(n +2) f2(xp)

We say thatL,, is large order ofx,, (asn — oo) and write
L, = O(x,) if there exists a constarit > 0 and N such
that| L, || < k|x,| for eachn > N. | L, | denotes the
Euclidean norm ofL,,.

Var(z,) = + 0@1/n?).

(2)

Let
2 o p(1—p)
P =)
Then
(= %) D o, 1)
op(n)
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Quantile estimation based on order statistics not only
can be used when the data are i.i.d., but also when the
data are drawn from a stationarg-mixing process of
continuous random variables. It is shown in Sen (1972)
that quantile estimates, based on order statistics, have a
normal limiting distribution and are asymptotically unbiased
if certain conditions are satisfied. However, for the casg of
mixing sequences, quantile estimation is much more difficult
than in the independent case. The usual order-statistic point
estimate,x,, is still asymptotically unbiased; however, its
variance is inflated by a factor of SSV&,)/p(1— p) (Sen,
1972), where

n—1
SSVQ(x,) = Co+2 lim > @ —k/m)Cy
k=1

3

is the steady-state variance constant arg
CoviX,,, X,n+«] is the lagk covariance of the process.

2.2 Quantile and Histogram Estimation

Let
P if0<P<1,
(Pl3={ 0 if P <O,
1 if P>1.

ande be the proportional half-width of the-da; confidence
interval. The proportional half-widthk is dimensionless; it

is a proportion value with no measurement unit and must
be between 0 and mgx, 1 — p), 0 < p < 1.

Chen and Kelton (1999) propose controlling the preci-
sion of quantile estimates by ensuring that fheuantile
estimatorx, is between th¢p — e](l) and[p —i—e](l) guantiles
with a desired confidence, i.e.,

(4)

PI[)?[, € x[p:l:é]é] >1— w1,
or equivalently
PHlIF(xp) —pl <€l >=1—a1.

Using this precision requirement (i.e. equation (4)), the
required sample size, for a fixed-sample-size procedure
of estimating thep quantile of an i.i.d. sequence is the
minimum n,, that satisfies

2
Zl,al/zp(l - D)
np = —62
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wherezy_q, /2 is the 1—«1/2 quantile of the standard normal  j=1,2,...,n:
distribution, € is the maximum proportional half-width of
the confidence interval, and-1«1 is the confidence level.

When data are correlated, the QI procedure will pro-
gressively increase simulation run length until a sequence
of n samples (taken from the original output sequence) Wwhere
appears to be independent, as determined by the runs-up 1
tests. Briefly, a runs up is a monotonically increasing sub- Ij = {
sequence, and the length of a runs up is known as the run
length. We examine the proportion of different run lengths For data that are i.i.d., the following properties f
to check if the sequence appears to be independent. Weare well known (Hogg and Craig, 1995, pp. 116-117):
obtain QI samples bywystematic samplingi.e., select a E(Ij) = pandVar(I;) = p(1— p). Moreover,E(p) = p
number!, choose that observation and then evifyob- and Var(p) = p(1 — p)/n. Thus, an exact confidence
servation thereafter. Here, the chogeill be sufficiently interval for the estimated proportiop can be obtained
large so that samples are statistically independent. This is using the binomial distribution. However, we cannot assume
possible because we assume the underlying process satisfieshat the/;’s are independent. Instead, we assume that the

p=

S|

n
> 1
j=1

if Xj € w,
0 otherwise.

the ¢-mixing conditions. sequence f;} is covariance stationary. In this case
Chen and Kelton (2001) detail the steps of the quantile

and histogram estimation. Briefly, they computethe n-1

required number of independent samples with equation (5) ~ SSVQU;) = p(1 - p)(1+2 lim Z(l —k/n)pr),

and! for the systematic sampling. The minimum required k=1

sample size is thew = nl, i.e., the total simulation run
length. The starting value dfis 1, and it increases by 1 at
Fhe first two iteratiqns; thgreafter, it is.doubled at every two SSVQp) = SSVA[;)/n, (6)
iterations. To avoid storing and sorting the whole output

sequence, they compute sample quantiles only at certain where p, = Cor(I;, I;4+) is the correlation coefficient
grid points and use (four points) Lagrange interpolation betweenl; and/; ., see Law and Kelton (2000, pp. 246-
(Knuth, 1998) to compute thg quantile. The grid points 252).

and

are strategically allocated such that every grid should contain Since p is based on the mean of the random variable
no more thare of the distribution. That is, the grid will I;, we can use any method developed for estimating the
be small where the probability density is high and will be variance of the mean to estimat&ur(p). The variance

large where the probability density is low. estimator of equation (6) reflects the transformation from

There are a certain number of main and auxiliary grid estimatingx, to p. Furthermore, le€Co = p(1— p)/n and
points. The number of main grid points is computed by Ci = Copx, then equation (6) becomes equation (3).
G, = [1/€], wheree is the desired proportional half-width.
Let b + 1 be the index of the first main grid points. Grid 3 METHODOLOGIES
point g; is set to the minimum of the initiat, 2n, or &
samples, depending on the degree of the correlation of the This section presents the methodologies we will use to
sequence, as determined by the runs-up test. Grid points construct Cl of the quantile estimates such that it satisfy

gv+i-i=1,2,...,Gy, are set to the/G,, quantile of the the absolute or relative half-width requirements, i.e.,
initial n, 2n, or 3= samples, depending on the degree of

correlation of the sequence. P, € x, £€]>1—ay,

2.3 Proportion Estimation or

Chen (2001) modified the quantile estimation procedure in Prit, € xp £rixyll = 1 - a2, @)

the previous section to estimate proportions of correlated \yheree’ = 0 and 1> r > 0 are respectively, the absolute
sequences. When a proportion is estimated, we are interested,q the relative precision.

in the prob_a_bilityp that the random variabl& _belongs to Fori.i.d. sequences, if > n, (of equation (5)), then the
a pre-specified field: p = Pr{X € »}. An estimate ofp quantile estimator should satisfy the precision requirement
is based on a transformation of the output sequeritg.{ of equations (4) or

Plpeptel=1—o,
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where p = F(X,). From equation (2), asymptotically

p(l—p)

Var(ip) ~ nfz—(x,,)

Therefore, when data are i.i.d.

Var(x,)

~ 2
Var(p) ~ 1/ (xp).

(8)

Thus, if the sample size

n

fz(xp) '

n >

then
P, €x,+€]>1— o,

where ¢’ has the same numerical value @asaand has the
same unit ofx,. Moreover, ife” is the desired absolute
precision and

E/
6//

n
n > (=),

fz(xp)
then
Pix, €x, e’ >1—a1.

Note that 1> ¢ > 0, ande” > 0. Furthermore, if- is the
desired relative precision and
, n €

€2
n > fz(xp)(rﬁp) )

then approximately
Prix, e xp £rixpl] = 1 — 1.
Here, |x| is the absolute value of.

Theoretically, whem: is large, the value of (x,,) can
be approximated by finite forward differences:

1
v 9
f(xp) I’l(XAp+l/n — fp) )
because
F/(_xp) = lim F(.x) - F(.Xp) ~ F(.Xp+l/n) — F(.Xp).
X=X (x —xp) (Xp+1/n — Xp)

Alternatively, the value off (x,,) can be approximated by
finite central differences:

2

n(£p+l/n - ip—l/n)

fxp) =
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because

F/(xp) ~ F(xp+l/n) - F(xp—l/n).
(xp+l/n - xp—l/n)

However, in practice for this approximation to be good,
the required size fot is not known. Chen (2002) evaluates
the performance of derivative estimation with finite dif-
ferences using the empirical distribution constructed with
the method of Chen and Kelton (2001). Generally, the
results are excellent in terms of Cl coverage and relative
precision. The observed relative precision of the derivative
estimators of i.i.d. sequences in our experiments are all
within 4%. Since the method requires that the simulation
run length increases as the correlation become stronger,
the observed relative precision of the derivative estimators
become smaller. Furthermore, there is no significant differ-
ence between the performance of forward differences and
central differences when using the histogram approximation
to estimate the derivative.

The value f(x,) has great influence on the required
sample size. However, since the valugs:,) andx, are
unknown, we use the estimated valyfe%p). To be con-
servative, we use the valu;é(;?,,) such that asymptotically

Note that when data are correlated, samplersizél be
replaced byv = nl. Herel isthe lag in the original sequence
such that the QI sequence appears to be independent, as
discussed in Section 2.2.

The two-phase quantile estimation algorithm:

1. Remark:e is the desired proportional half-width,
r is the relative precision specified by the user.

2. Use the Quantile and Histogram estimation algo-
rithm of Chen and Kelton (2001), as discussed
in Section 2.2, to obtain proportional precision
guantile estimates. Save the sample size

3. Use the finite forward differences, i.e., equation
(9), to obtain the derivative estimatg = f (xp)-

4. Letn = [5(%’)21

2

rXp

5. If ' > n, increase the sample sizertq go to step
2.

6. Otherwise, the quantile estimate should already
satisfy the relative precision requirement.

7. RunR replications and compute the confidence in-
terval of the quantile estimator according to equa-
tion (11).

Because we are estimating quantiles of stochastic sys-
tems, inference based on only one output sequence are
unreliable. Therefore, we will ru® (we use 3 in our algo-
rithm) independent replications to getquantile estimators.

Let £, denote the estimator of, in the v’ replication.
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We use

_ 1 R

B == > Epr (10)
r=1

as a point estimator of,. Assuming the asymptotic approx-

imation is valid with the simulation run length determined

by our procedure, then eact, , has a limiting normal

distribution. By the central limit theorem, a confidence

interval for x, using the i.i.d.x,,’s can be approximated

using standard statistical procedures. That is, the ratio

);CP —Xp

S/VR

would have an approximatedistribution with R — 1 d.f.
(degrees of freedom), where

5 1 & . z .2
Sl P
r=1

is the usual unbiased estimator @j(n), the variance of
xp. This would then lead to the 10D— «2)% ClI, for x,,,

S
VR’
wheretr_11-a,/2 iS the 1— ap/2 quantile for ther distri-
bution withR — 1 d.f. (R > 2).

This confidence interval estimator is approximately
valid when the sample size becomes large since the quan-

tile estimatorx, 1, X, 2, ..., X, g become almost normally
distributed (from the theorem of Sen (1972) fpmixing

Xp £ IR-11 a2 (11)

approximately 10p;% of the distribution, thert 4+ 1 new
grid points can be set up betweép_, > and X, ), 2.
Let g} for j = 0,1,...,k be the new grid points, then
8 = Zp—pij2+jp;/k- The array contains the number of
observations between newly set up grid po'mjt& ln;/k],

for j =1,2,...,k—1andn, = n; — (k — Dn}, where
lz] denotes the integer flooring (round-down) of the real
numberz.

4 EMPIRICAL EXPERIMENTS

In this section, we present some empirical results obtained
from simulations using the quantile estimation procedure
proposed in this paper. The purpose of the experiments
was not only to test the methods thoroughly, but also to
demonstrate the interdependence between the correlation
of simulation output sequences and simulation run lengths,
and the validity of our methods. We tested the proposed
procedure with several i.i.d. and correlated sequences. In
these experiments, we uBe= 3 (see step 7 in the algorithm)
independent replications to construct Cl's. We estimated
four quantile points: 0.25, 0.50, 0.75, and 0.90 for each
distribution and used a relative precision of 0.05 for our
experiments. We conservatively set the required parameters
of determining the simulation run length (i.e. equation (5))
with p = 0.5, ¢ = 0.005, anda; = 0.05. The confidence
level o of the quantile CI (i.e. equation (11)) is set to
0.1. Moreover, the confidence level of the runs-up test of
independent is set to 90%.

4.1 Independent Sequences

We tested two independent sequences:

sequences). Our QI procedure addresses the problem of

determining the simulation run length that is required to
satisfy the assumptions of normality and independence of
the quantile estimate. Theoretically, if these assumptions
are satisfied, then the actual coverage of the CI's should be
close to the pre-specified level.

For large sample sizes, it becomes impractical to store
and sort the entire sequence. These limitations can be
overcome by using the proposed histogram approximation,
which computes quantiles only at grid points and uses
the quasi-independent algorithm to determine the required
simulation run length. Savings in storage and sorting are
substantial for our method.

To improve the precision of the second phase quantile

Observations are i.i.d. normal with mean 0 and
variance 1, denoted as’(0, 1).

Observations are i.i.d. negative exponential with
mean 1, denoted as expon(1).

The summary of our experimental results of the i.i.d.
sequences are listed in Tables 1 and 2. Each design point
is based on 100 independent simulation runs. Phrew
lists the quantile we want to estimate. Theantile row
lists the truep quantile value. Thecover prow lists the
percentage of the quantile estimates that satisfy equation
(4), i.e., the coverage deviation of the quantile estimator is
within the specified value. The coveragerow lists the

estimation, we can put more grid points in the grid that Percentage of the CI's that cover the true quantile value.
contains ther, quantile estimator found in the first phase Theavg. rprow lists the average of the relative precision
and the Surrounding grids before we start the second phase_Of thex,, estimators. Here, the relative preCiSion is defined
Of course, the newly set up grid points need to be based asrp = |, —xp|/|%,|. Thestdev rprow lists the standard
on interpolations. For example, #i_1 < £, < g and deviation of the relative precision of the quantile estimators.

the gnd betweergi_l and gi ContainSnl. observations and Thean. hwrow lists the average of the absolute half-width.
Thestdev hwow lists the standard deviation of the absolute
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Table 1: Coverage of 90% Confidence Quantile Estimators iS smaller than that of the 0.25 quantile estimators, those
for the A/ (0, 1) Distribution

ltem Quantile
p 0.25 0.45 0.75 0.90
guantile  -0.674189 -0.125381 0.674189 1.28173
cover p 100% 100% 100% 100%
coverage 94% 94% 85% 90%
avg. rp 0.004832 0.010206 0.004693 0.002997
stdev rp 0.003624  0.007715 0.003680 0.002195
avg. hw  0.010011 0.004996 0.008920 0.012771
stdev hw  0.004653 0.002447 0.005363 0.006741
avg. sp 41875 175039 41875 41875
stdev sp 6267 42596 6267 6267

Table 2: Coverage of 90% Confidence Quantile Estimators
for the expon (1) Distribution

Item Quantile
p 0.25 0.50 0.75 0.90
guantile  0.287682 0.693147 1.38629 2.30258
cover p 100% 100% 100% 100%
coverage 91% 93% 91% 92%
avg. rp  0.004594 0.003241 0.002641 0.002982
stdev rp  0.003691 0.002630 0.002318 0.002186
avg. hw  0.004180 0.007144 0.013503 0.021339
stdev hw 0.001809 0.003672 0.007390 0.011029
avg. sp 41747 41747 41747 41747
stdev sp 6204 6204 6204 6204

half-width. Theavg. sprow lists the average of the sample
size in each independent replication. Ttdev spow lists
the standard deviation of the sample size in each independent

replication.

Table 1 lists the experimental results of th&0, 1) dis-
tribution. Forthe (b quantile estimates, the parameter under

investigationxgs is 0. Sincexps ~ 0, n’ = (%(%)21

D P
will be very large. For example, the sample size in the first
phase is 38416 (36° x 0.5 x 0.5/0.00%), the estimator

A

Xo5 = —0.000146, and;, = f(Xo5) = 0.363357. The re-

quired sample size istheh = T

38416 (
0.36335Z *0.05x0.00014

0.005

2'|>

1.36x 10, It will require several days for common desktop

computers to obtain one estimator. If users know that the
true quantile valuer, ~ 0, then absolute precision can be

used instead of relative precision. To avoid the required long
execution time, we estimated the 0.45 quantile instead. The
CI's coverage of 0.75 quantile is 85%, which is less than the
specified nominal value of 90%. We believe this is caused
by the randomness of the experiment and the half-width
being too small. For example, the absolute value of the

0.25 and 0.75 quantile are the same, however, the average

half-width of the 0.75 quantile estimates is only008920
compares to 10011 of the 0.25 quantile. Furthermore,
the average relative precision of the 0.75 quantile estimators
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0.75 quantile CI's that do not cover the true quantile value
must miss only by a very small amount. All half-widths
of the CI's, are less than|x,|, wherer = 0.05 and are in
general within 30% of|x,|.

Table 2 lists the experimental results of the expon(1)
distribution. The sample sizes are the same for all four
design points because all quantile estimations hdve-
(%(%)21 < n. Since the valug, = f(X,) decreases as
X; increases, sample sizedoes not increase as quantile
value increases whed is sufficiently small and relative
precision is used. On the other hand, if absolute precision
is used, then sample sizes will increase as the quantile
value increase. In this experiment, with relative precision
r = 0.05, the quantile estimator obtained with the first-
phase sample size should satisfy both equations (4) and
(7). Again, all quantile estimators satisfy the precision
requirement of equation (4), and the Cl coverage of these
design points are above the specified 90% confidence level.
Furthermore, all half-widths are less thalx,|. Since the
true p quantile value increases asincreases, the average
half-width increases ap increases. Because we set the
confidence level of the runs-up test of independence to be
90%, independent sequences will not pass the runs-up about
10% of the times. Consequently, the first-phase sample size
for independent sequences will be around 384161 =
42258.

4.2 Correlated Sequences
We tested four correlated sequences:

e Steady-state of thiérst-order moving averagpro-
cess, generated by the recurrence relation

Xi=pu+e +60¢_1 for i=12,...,

wheree; is i.i.d. N(0,1) and 0< 6 < 1. This
process is denoted as MAX)( w is set to O in
our experiments. It can be shown th¥ithas an
asymptotic\/ (0, 1+ 6?) distribution.

» Steady-state of thérst-order auto-regressivpro-
cess, generated by the recurrence relation

Xi=pu+oXia—mw)+¢efori=12...,
whereg; is i.i.d. A/(0, 1), and

o? ifi=j ,

E(ei) =0, E(e€j) = { 0 otherwise

O<gp <1
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This process is denoted as AR)( 1« is setto 0 Table 3: Coverage of 90% Confidence Quantile Estimators
in our experiments. It can be shown théathas an for the M A1(0.75) Process
asymptoticA(0, =) distribution. item Quantile

* Steady-state of the M/M/1 delay-in-queue process P 0.25 0.45 0.75 0.90
with the arrival rateX) and the leaving rated = 1). quantile  -0.842737 -0.156726 0.842737 1.60216
This process is denoted as MM)( Let W; denote cover p 100% 100% 100% 100%
the waiting time of thé’" customer ang = A/u be coverage 91% 93% 90% 88%

avg. rp 0.004897  0.010006 0.004437 0.002558
stdev rp 0.003227  0.007751 0.003252 0.001905
avg. hw  0.011336 0.005633 0.010974 0.013519

the traffic intensity. Then, ip < 1, the theoretical
steady-state distribution of this M/M/1 queuing

i — . _ —(u—A)x
process IsF(x) = P(W; < x) — 1 - pe stdev hw  0.005510 0.002892 0.005519 0.006688
asi — oo for all x > 0. Let {A,} denote the avg. sp 80805 326563 80805 80805
interarrival-time i.i.d. sequence anfi,{} denote the stdev sp 6977 42356 6977 6977

service-time i.i.d. sequence. Then the waiting-time
sequence ¥, } is defined by

Table 4: Coverage of 90% Confidence Quantile Estimators

Wigi= Wy + S, — Appn)™ for n>1 for the AR1(0.75) Process
i Item Quantile

wherew™ = maxw, 0). . » 0.25 0.45 0.75 0.90
* Steady-state of the M/M/s delay-in-queue process  guantile  -1.01928 -0.189558  1.01928  1.93779

with the arrival rate X) and the leaving rateu(. cover p 100% 100% 100% 100%

This process is denoted as MM3( We sets = 2, coverage 91% 92% 82% 91%
A = 3, andu = 2. The traffic intensity of this avg. rp  0.003340 0.009194 0.003583 0.001861
process isp = ﬁ = 0.75. stdev rp  0.002279 0.007469 0.002411 0.001473
avg. hw 0.012107 0.005560 0.010085 0.012185
We tested the MA1 model witlh = 0.75, the AR1 stdev hw 0.005923  0.002606 0.005668 0.006173
model with = 0.75, and the M/M/1 and M/M/2 models avg. sp 348067 1424348 348067 348067

stdev sp 54251 344237 54251 54251

with the traffic intensityp = 0.75. In order to eliminate
the initial bias,eg andwg are set to a random variate drawn
from the steady-state distribution. Because the true 0.5
quant”e value for the tested MA1 and AR1 processes is O’ distribution is not continuous at the true quantile value 0.
we estimated the 0.45 quantile to avoid an extremely large Thus, the derivative does not exist a2 quantile. Because
sample size. the distribution function has a jump at this quantile point, the

The summary of our experimental results for MA1(0.75) ~ Procedure often obtains> as an estimate of the derivative
and AR1(0.75) are listed in Tables 3 and 4. All quantile Sincex, = X,1/y in this case. Therefore, we estimate the
estimators satisfy the precision requirement of equation (4). 0-30 quantile instead of the.Z6 quantile. However, the
Most of the CI coverage of these design points] except the procedure can return the quantile estimate obtained in the
coverage of the @5 quantile of the AR1(0.75) process, first phase. Users should then investigate if the distribution
are around the specified 90% confidence level. We believe iS continuous at this particular quantile. Again, all quan-
this is caused by the half-width being too small. For these file estimators satisfy the precision requirement of equation
two processesy = [ ;)21 > n only when estimating (4), and CI coverages are ak_)ove or close to the speC|f|ed

. p e . 90%. The average CI half-width of the 0.90 quantiles of

the 0.45 quantile. The sample sizes are larger than the

ind d b he ldar th | the M/M/1 delay in queue is much larger than the other
Independent cases because t e agr the QI sequence guantiles since the quantile under estimation has a larger
that appears to be independent is larger.

o o2 . value.
If p < 1, the waiting-time distribution function of a

. ) o : The summary of our experimental results of the M/M/2
stationary M/M/1 delay in queue s discontinuou# ) — delay-in-queue process is listed in Table 6.pli< 1, the
1—p, (i.e. x = 0); thus, the quantiles for M/M/1 delay-in-

. . g theoretical steady-state distribution of this M/M/2 queuing
gueue are applicable only when the e;u_mated guantiles are process isF(x) — 1 — 9¢~* /14 (Hillier and Lieberman,
larger than or egual tO—lp'. T'herefo.re, it is useful to knowl 2001), wherex > 0. Therefore, for this M/M/2 process
whether a desired quantile is attainable before conducting quantiles less than 5/14 are not attainable, we estimated

an informative experiment. 0.40 quantile instead. All estimators satisfy the probability

del Th_e summary of our.expenmer)taldr(_aSI_Jrltiloféh?NM/Mll coverage requirements. Moreover, the percentages of the
elay-in-queue process IS summarized in fable 5. We €Xpe- o that cover the true guantiles are close to the specified

rienced some problems when estimating th250quantile nominal value of 90%. The sample size determined by the
of the M/M/1 queuing process with = 0.75, because the
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Table 5: Coverage of 90% Confidence Quantile Estimators
for the M /M /1 Delay-in-queue Process wih= 0.75

Item Quantile

p 0.30 0.50 0.75 0.90
quantile  0.275972 1.62186  4.39445  8.05961
cover p 100% 100% 100% 100%
coverage 90% 91% 92% 90%
avg. rp  0.005469 0.004432 0.003583 0.003919
stdev rp  0.004258 0.003228 0.002532 0.002947
avg. hw 0.005576 0.021964 0.051527 0.105334
stdev hw 0.003185 0.012968 0.029221 0.058994
avg. sp 5491879 1363070 1363070 1363070
stdev sp 1541480 297519 297519 297519

Table 6: Coverage of 90% Confidence Quantile Estimators
for the M /M /2 Delay-in-queue Process wih= 0.75

Precision

Traffic Intensity

0.75

p 0.40 0.50 0.75 0.90
guantile  0.068993 0.251314 0.944462 1.86075
cover p 100% 100% 100% 100%
coverage 89% 90% 88% 84%
avg. rp  0.006573 0.002424 0.004137 0.004463
stdev rp  0.005017 0.001859 0.002950 0.003152
avg. hw 0.001627 0.002265 0.012300 0.024968
stdev hw 0.000828 0.001122 0.006728 0.014283
avg. sp 7925708 1326701 1326701 1326701
stdev sp 2921767 285481 285481 285481

QI procedure is roughly the same for the waiting-time of
M/M/2 and the M/M/1 delay in queue with the same traffic
intensity of p = 0.75. However, the CI coverage of M/M/2
delay in queue is not as good as M/M/1. Again, we believe
this is caused by the half-width being too small.

5 CONCLUSIONS

We have presented an algorithm for estimating the histogram
and quantilex, of a stationary process. Some quantile
estimates require more observations than others before the
asymptotics necessary for quantile estimates become valid.
Our proposed quasi-independent algorithm works well in
determining the required simulation run length for a valid
asymptotic approximation. The results from our empirical
experiments show that the procedure is excellentin achieving
the pre-specified accuracy. However, the variance of the
simulation run length from our sequential procedure is large
when estimating highly correlated sequences. This is not

only because of the randomness of the output sequence, but

also because we double the lag lenigéivery two iterations.
Because the sample size grows rapidly at later iterations,
further research is needed to develop new algorithms that
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slows the rate of growth of simulation run lengths at later
iterations.

The histogram approximation algorithm computes quan-
tiles only at grid points and uses Lagrange interpolation to
estimate the quantile. The algorithm also generates an em-
pirical distribution (histogram) of the output sequence, which
can provide valuable insights to the underlying stochastic
process. The first-phase of the procedure computes quantile
estimates that satisfy a proportional half-width requirement.
Based on the results determined in the first-phase, the proce-
dure estimates the derivative at thejuantile and computes
the required sample size for the second phase. The quantile
estimates from the second phase satisfy absolute or relative
precision requirements.

Our approach has the desirable properties of having
a sequential procedure and not requiring users to laave
priori knowledge of values that the data might assume. This
allows the user to apply the two-phase quantile estimation
procedure without having to execute a separate pilot run to
determine the range of values to be expected or to guess and
risk having to re-run the simulation. Both of these options
represent potentially large costs to the user because many
realistic simulations are time-consuming to run. The main
advantage of our approach is that by using a straightforward
runs-up test to determine the simulation run length and obtain
guantiles at grid points, we can apply classical statistical
techniques directly instead of advanced statistical theory,
making it easy to understand, simple to implement, and fast
to run.

In an effort to reduce the variance in simulation run
length determined by the QI sequence, we have experimented
with combining runs-up and runs-down tests together to
check whether a sequence appears to be independent. Our
preliminary results show that combining runs-up and runs-
down tests has little effect on i.i.d. sequences. However, it
generally results in a longer simulation run length for highly
correlated sequences with no improvement in the variance
of simulation run length.
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