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ABSTRACT 

This paper presents a novel approach for developing simula-
tion metamodels using Gaussian radial basis functions. This 
approach is based on some recently developed mathematical 
results for radial basis functions.  It is systematic, explicitly 
controls the underfitting and overfitting tradeoff, and uses a 
fast computational algorithm that requires minimal human 
involvement. This approach is illustrated by developing 
metamodels for the M/M/1 queueing system. 
 
1 INTRODUCTION 
 
Kleijnen and Sargent (2000) recently proposed a general 
methodology for fitting and validating simulation meta-
models and identified four general goals: (i) understanding 
the problem entity, (ii) predicting values of the output or 
response variable, (iii) performing optimization, and (iv) 
aiding verification and validation. This paper primarily ad-
dresses goal (ii), the development of suitable predictive 
metamodels. Many types of metamodels have been pro-
posed over the last twenty-five years including polynomial 
regression, neural networks, radial basis functions, and 
splines. Barton (1993) provides a survey and discussion of 
the key properties of several types of metamodels. Poly-
nomial regression is the most common type of metamodel; 
however, in general, such models are not suitable for fit-
ting complex surfaces (Barton 1993). In this paper we pro-
pose a new approach to metamodeling that employs Gaus-
sian Radial Basis Functions (GRBFs).  
 The GRBF model can be viewed as a realization of a 
sequence of two mappings. The first is a nonlinear map-
ping of the input data via the basis functions and the sec-
ond is a linear mapping of the basis function outputs via 
the weights to generate the model output. This feature of 
having both nonlinearity and linearity in the model, which 
can be treated separately, makes this a very versatile mod-
eling technique. However, commonly used algorithms for 
determining GRBF parameters produce irreproducible re-

 
 

sults due to their ad-hoc nature. Recently, Shin and Goel 
(1998, 2000) have developed a new algorithm for Radial 
Basis Function (RBF) modeling that is computationally 
fast and yields reproducible results in a systematic way. 
Furthermore, it provides an explicit control on the tradeoff 
between model underfitting and overfitting. 
 Following this introduction, Section 2 formally defines 
and discusses metamodeling using RBFs, Section 3 de-
scribes the GRBF model, and Section 4 outlines the SG al-
gorithm for developing GRBF metamodels. In Section 5, 
metamodels for an M/M/1 queueing system are developed 
and analyzed. Finally, in Section 6, we present some con-
cluding remarks. 
 
2 PROBLEM DEFINITION 
 
The objective here is to construct a GRBF metamodel that 
approximates an unknown input-output mapping on the ba-
sis of given simulation data. The goal, however, is not to 
provide an exact fit to the data but to develop a metamodel 
that captures the underlying relationship so that it can be 
used to predict the output at some future observation of the 
input. This latter property is called generalization ability, a 
term taken from psychology. 
 Now we state the problem analytically. Suppose we 
are given an n × d input matrix X = (x1,x2,…,xn)

T where 
each of the n input vectors xi, i = 1,…,n, is in a d-
dimensional space. Let y = (y1,y2,…,yn)

T be the target vec-
tor whose elements yi’s are the outputs corresponding to 
the input vectors xi, i = 1,2,…,n. In other words, we are 
given a simulation data set  
 

  n}1,...,iR,y,R:)y,{(D i
d

ii =∈∈= xxi                 (1) 

 
in which both the values of the inputs and the correspond-
ing outputs are made available. The problem we address is 
to construct a metamodel for the above mapping from a d-
dimensional input space to a one-dimensional target value 
based on the simulation data D. In particular, we seek 
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GRBF parameter values that give the smallest fitting error 
and also provide good generalization ability. 
 From a modeling perspective, we seek a parsimonious 
model that also yields a small fitting error. However, a 
model with a very small number of terms will suffer from 
underfitting because it fails to capture the input-output 
mapping and hence provides a poor fit. On the other hand, 
a model that has too many terms would fit the data too well 
to be able to generalize on unseen data and would suffer 
from overfitting. This phenomenon is well known in mod-
eling as the bias and variance dilemma. Figure 1 is an ide-
alized graphical depiction of this phenomenon, which illus-
trates that simple models tend to have high bias and low 
variance, while complex models have low bias and high 
variance. The objective is to develop a metamodel that 
provides an acceptable trade-off between bias and vari-
ance. Conceptually, this is similar to seeking a model with 
just enough complexity that represents an acceptable trade-
off between fitting and generalization errors. 
 

Figure 1:  Idealized Depiction of Bias-Variance and  Fit-
ting-Generalization Errors 

 
2.1 Metamodel Evaluation 
 
The performance of a metamodel can be evaluated accord-
ing to the following criteria (Mehrotra, Mohan, and Ranka 
1997). 
 

• Quality of results: gauged in terms of an error 
function, e.g., mean squared error as discussed 
below. 

• Generalizability: measured on some validation 
data different from the data used for developing 
the metamodel; also measured in terms of an error 
function. 

• Computational resources: generally measured in 
terms of metamodeling resources and resources 

Error High Bias 
(underfit) 

High Variance 
(overfit) 

Fitting Error 

    Ideal Metamodel Metamodel  
Complexity 

Generalization 
Error 
for model implementation such as CPU time and 
memory requirements. 

• Model complexity: a measure of the size of the 
metamodel. For a GRBF metamodel the complex-
ity is proportional to the number of terms in the 
model. 

 
2.2 Error Functions 
 
A metamodel produces estimates output iŷ ‘s that could de-

viate from the observed (simulated) values yi’s. Therefore 
some measure is required to assess the degree of this devia-
tion. Such measures are usually termed error functions. In 
general, any differentiable function that is minimized upon 
setting iŷ  = yi could be used as an error function. Each 

measure has its strengths and weaknesses (Mehrotra, 
Mohan, and Ranka 1997) and hence some are preferred 
over others in a given situation. In this paper we employ 
the mean squared error (MSE) defined as follows: 
 

   2
ii

n

1i
)ŷ(yΣ

n

1
MSE −=

=
.                     (2) 

 
3 GRBF MODEL 
 
The RBF model is a special type of neural network consist-
ing of three layers. The first layer (input layer) distributes 
input vectors to each of the receptive field units in the sec-
ond layer (hidden layer) without any multiplicative factors. 
The hidden layer has m receptive field units (or hidden 
units), each of which represents a nonlinear transfer func-
tion called a basis function. The hidden units play a role in 
simultaneously receiving the input vector and nonlinearly 
transforming the input vector into an m-dimensional vector. 
The outputs from the m-hidden units are then linearly 
combined with weights to produce the network output at 
the output layer. Thus, the typical RBF model is described 
by specifying the number of basis functions (i.e., hidden 
units), basis function parameters, and the weights of the 
basis function outputs to produce the network output. 
 Formally, for a mapping RRf d →: , the RBF net-

work model can be described mathematically as 
 

   )/σ(φwΣ)(φwΣ)f( jjj

m

1j
jj

m

1j
µxxx −==

==
,                (3) 

 
where x ∈ Rd is the input vector, µµµµj ∈ Rd is the jth basis 
function center, ⋅  denotes the Euclidean distance, wj’s are 

weights, and σj’s are basis function widths. The basis func-
tion )(⋅φ  here plays the role of transfer functions in tradi-
tional neural networks. Yet, the basis functions have the 
unique feature that their responses to the input vectors are 
not only radially symmetric but also monotonically de-
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creasing or increasing with distance from the center. In 
practice, several forms of φ are used for RBF models. 
Amongst these, the Gaussian is probably the most popular 
basis function because it has attractive mathematical prop-
erties of universal and best approximation and its hill-like 
shape is easy to control with the parameter σ. For a Gaus-
sian RBF (GRBF), equation (3) becomes 
  

  )/2σexp(wΣ)f( 2
j

2
j

m

1j
jµxx −−=

=
.                          (4)    

 
4 SG ALGORITHM FOR GRBF METAMODEL 
 
The GRBF model is completely defined by the parameters 

( , , , )P m= σ μ wσ μ wσ μ wσ μ w . Here m is the number of basis functions 

with widths 1 2( , ,..., )mσ σ σ=σσσσ , basis function centers µµµµ = 

(µ1, µ2, …, µm), and weights from the basis functions to the 
output are ),...,,( 21 mwww=wwww . Therefore the GRBF design 

problem is that of determining its 3m parameters, namely, 
m centers, m widths and m weights. It is quite common in 
many applications to use a global width σ = σi, i = 1,…,m, 
and we do so in this paper. Then the number of parameters 
to be determined reduces to (2m+1).  
 Next we summarize the SG algorithm that is based on 
a new mathematical framework for radial basis functions 
developed in Shin and Goel (1998, 2000). In this algorithm 
the modeling problem is formulated as a three-step process 
as illustrated in Figure 2. In step 1, the algorithm selects m 
for a given σ and a specified value of δ, a parameter used 
to control the degree of fit as discussed below. For a se-
lected (m,σ) pair, the centers are determined in step 2. This 
completes the hidden layer design, i.e., the nonlinear pa-
rameters of the GRBF model. In step 3, the linear parame-
ters (weights) are determined by the least squares method. 
 Now we briefly describe δ which is discussed at length 
in Shin and Goel (1998) along with its mathematical un-
derpinnings. In step 1, for given σ, we wish to know how 
many basis functions are needed to provide adequate repre-
sentation of the input space when we know that 100% cov-
erage would require m to be equal to n, the number of data 
points. This corresponds to δ = 100%. Shin and Goel (1998, 
2000) and Shin and Park (2000) show that GRBF models 
with values of δ less than 100% provide adequate coverage 
and yield m values much less than n which results in sim-
pler, yet good models. A heuristic suggestion for the range 

of σ values is 2/01.0 d≤≤ σ  where d is the number of 

input variables  (Shin and Goel 1998, 2000). 
 For fixed width σ, larger values of δ, in general, re-
quire larger m. However, the interdependencies among δ, 
σ, and m and the other model parameters are completely 
dictated by the data for which the metamodel is to be de-
veloped. These interdependencies determine the exact 
shapes of the fitting and generalization error curves in Fig-
ure 1. In other words, determining the right tradeoff be-
tween the two errors in Figure 1 is equivalent to determin-
ing an appropriate combination of δ and σ values that are 
employed by the SG algorithm to find the most appropriate 
model. Determining the right tradeoff is an important ob-
jective of developing a good GRBF metamodel. A very 
important feature of the SG algorithm is that it provides the 
mathematical and computational machinery for evaluating 
and controlling this trade-off.  

5 SINGLE SERVER QUEUEING METAMODEL 
 
In this section we illustrate the GRBF metamodeling proc-
ess for the M/M/1 queue with FIFO queue discipline. The 
performance measure (output variable) of interest is the 
expected steady-state sojourn time, W, in the system (i.e., 
waiting time plus service time). Let λ be the arrival rate 
and η be the service rate. The true response W is well 
known to be 
 
         )(/1 λη −=W .                                (5) 

 
 We prepared two data sets for this example with λ = 
1.0 and η in the range 1.1 to 10.0. For the first data set, 
DS1, η was set at twenty equally spaced values in the 
above range. The corresponding W values were computed 
from equation (5). The objective here is to develop a 
metamodel for data set DS1. Note that the generalization 
error in Figure 1 cannot be computed, as it requires knowl-
edge of the true model. In practice, error on an independent 
data set, called test error, is employed as an indicator of 

   Input Output Data 
      σ, δ  

          Step 1  
      Determine m 

          Step 2  
      Determine µµµµ 

          Step 3  
      Determine w 

            GRBF  
         Metamodel 

Figure 2:  Steps in GRBF Metamodeling 
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generalization error. For this purpose, a second data set, 
DS2, was prepared for 21 values of η; 19 equally spaced 
values between 1.25 and 9.75 and two additional values at 
1.0 and 10.0. Again, the corresponding values of W for λ = 
1.0 were computed from equation (5). 
 
5.1 Metamodeling Process 
 
We now illustrate the GRBF metamodeling process for the 
above system. First, we choose δ to be 99.5% and select a 
set of seven σ values as (0.05, 0.10, 0.15, 0.20, 0.30, 0.40, 
0.50). Then the SG algorithm yields exactly one metamodel 
for each σ.  Each model obtained by this algorithm has the 
property that it not only provides at least 99.5% coverage of 
the input space, but also has the smallest value of m.  In 
other words, each metamodel is the most parsimonious for 
given σ while satisfying the δ requirement. For each model, 
the fitted MSE is computed based on DS1 and the test MSE 
is computed from DS2. A summary of the seven resulting 
metamodels (A to G) is given in Table 1. 
 

Table 1:  GRBF Metamodels 
Metamodel σ No. of  

Parameters 
Fitting 
MSE 

Test 
MSE 

A 
B 
C 

0.50 
0.40 
0.30 

7 
9 

11 

2.72 
1.96 
1.45 

2.66 
1.87 
1.43 

D 
E 
F 
G 

0.20 
0.15 
0.10 
0.05 

15 
17 
25 
41 

0.76 
0.65 
0.15 
0.00 

0.96 
0.90 
0.61 
0.70 

 
 Next, we study metamodels A to G in Table 1 in the 
context of idealized complexity and error relationships de-
picted in Figure 1. We note that the number of basis func-
tions increases from 3 to 20, for metamodels A to G, while 
the number of corresponding model parameters increases 
from 7 to 41. The fitting MSE decreases from 2.72 to 0.00 
with increasing model complexity. However, test MSE 
first decreases from metamodels A to F and then shows a 
slight increase for metamodel G. These fitting and test er-
ror behaviors with respect to model complexity are consis-
tent with the idealized behavior indicated in Figure 1. 
 It should, however, be noted that for the GRBF model, 
both m and σ play an important role in determining the 
quality of the metamodel. Thus, it is also necessary to look 
at both the fitting and test MSE’s with respect to m and σ.  
These error curves are plotted in Figure 3 in the (m,σ) 
plane. The errors with respect to m alone are shown in Fig-
ure 4. From these Figures we note that fitting MSE curve 
monotonically decreases from left to right (metamodel A to 
metamodel G) and the test MSE first decreases and then 
increases. This seems to indicate that metamodels A to D 
are too simple and represent underfitting while metamodel 
G is too complex and represents overfitting. 
 

Figure 3:  Fitting and Test Error Plots Based on Data in 
Table 1 

 

 

Figure 4: Error Curves versus m 
 
5.2 Metamodel Selection 
 
The real question we face is which metamodel is the best.  
There is no unique answer to this question since the choice 
of a metamodel is governed by many application specific 
considerations.  Among other things, choosing a model in-
volves trade-offs between model complexity, fitting MSE, 
and test MSE. From the MSE perspective alone metamodel 
F may be the best. However, if model complexity is of 
primary concern, metamodel E seems to be a more 
appropriate choice.  
 In the above discussion we have argued about the un-
derfitting and overfitting tradeoff in metamodeling using 
model complexity, fitting error, and test error. Now we 
graphically evaluate four representative models from Table 
1 with respect to the true underlying model of equation (5). 
We select metamodel B to show underfit, metamodel G to 
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show overfit and metamodels E and F as representatives of 
good compromise metamodels.  
 Plots of mean time in system from equation (5), and 
from metamodels B and G are given in Figure 5. Note that 
the plot of metamodel B is simple but its fit is unsatisfac-
tory, i.e., it represents underfit. Metamodel G is an overfit-
ted model with maximum possible complexity and it seems 
to capture the underlying relationship of the true model. 
This is possibly due to the output relationship of the true 
model being deterministic and smooth. Finally, in Figure 6, 
metamodels E and F seem to be good representatives of the 
true model. Yet, they have different error rates and meta-
model  F is  much more complex than metamodel E as 
seen from the data in Table 1. 
 

 

Figure 5:  Plots of B, G, and True Models 
 

 

Figure 6:  Plots of E, F, and True Models 
 
 In summary, the analyses presented above demonstrate 
that the approach developed here can be employed to ob-
jectively distinguish among the metamodels in terms of 
their fitting and test errors and model complexity.   
 
6 CONCLUDING REMARKS 
 
We introduced a new approach for simulation metamodel-
ing based on GRBFs. A systematic methodology using the 
SG algorithm for model development and evaluation was 
described. We illustrated the use of this new approach by 
developing a set of metamodels for a deterministic simula-
tion, namely, the expected time in an M/M/1 system, and 
discussed the trade-offs among these metamodels. We be-
lieve GRBFs to be a promising alternative to the com-
monly used polynomial regression for predictive meta-
models. This approach also could be used to investigate 
some of the metamodeling issues discussed in Sargent 
(1991) and Kleijnen and Sargent (2000). 
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