
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

UML BASED MODELING OF PERFORMANCE ORIENTED PARALLEL AND DISTRIBUTED APPLICATIONS

Sabri Pllana
Thomas Fahringer

Institute for Software Science
University of Vienna

Vienna, A-1090, AUSTRIA

g
n
e
e
le
t
g
a

lle
ch
a
is

r
c
e
e
d
n
is
n
a

l
le
ly
7
f
m
a

0)
e
r-

ved

f
re

i-
-
ze
nd
e

d

c-
i-
e

be
he

i-
of
he
ns

g
-

-
e,
p-
-
r
-
e
.
to

h
p-
ABSTRACT

In this paper we introduce a novel approach for modelin
performance oriented distributed and parallel applicatio
based on the Unified Modeling Language (UML). We utiliz
the UML extension mechanisms to customize UML for th
domain of performance oriented distributed and paral
computing. A set of UML building blocks is described tha
model some of the most important constructs of messa
passing and shared memory parallel paradigms which c
be used to develop models for large and complex para
and distributed applications. We illustrate our approa
by modeling a parallel many-body physics application th
combines message passing and shared memory parallel

1 INTRODUCTION

Many scientific and engineering problems require high pe
formance computation. The development of performan
oriented distributed and parallel applications is a tim
consuming, error-prone, and tedious process that involv
many cycles of code editing, compiling, executing, an
performance analysis. We believe that a visual modeli
language can substantially alleviate the development of d
tributed/parallel applications and improve the understandi
of the resulting performance behavior on a given target m
chine.

UML is emerging as the de facto standard visual mode
ing language which is general purpose, broadly-applicab
tool-supported, and industry-standardized. UML is wide
used for domains such as telecommunications (Holz 199
transportation industry (Walther et al. 2001), bussines so
ware systems (Hayashi and Hatton 2001), real time syste
(Selic and Rumbaugh 1998), and distributed web applic
tions (Conallen 1999). In addition, in Rossetti et al. (200
the UML is used for the documentation of a software d
sign framework for object-oriented simulation. Furthe
more, XML Metadata Interchange (XMI) (OMG 2002) is a
s

l

e
n
l

t
m.

-
e
-
s

g
-

g
-

-
,

),
t-
s
-

-

standard storage representation for UML diagrams appro
by the Object Management Group (OMG).

The benefits of using UML in the domain o
performance-oriented distributed and parallel computing a
manifold.

• Documentation and visualization of existing appl
cations: UML is extensively used in many informa
tion technology areas to document and to visuali
source codes which alleviates the maintenance a
further development of existing applications. Th
old saying “a picture is worth a thousand words” is
also valid in the domain of parallel and distribute
computing.

• Specification, visualization, construction, and do
umentation of new applications: Software eng
neering technology hasn’t been widely used in th
domain of parallel and distributed computing. A
graphical representation of an application can
very useful to communicate ideas and describe t
design of a complex application at a high level.

• Performance modeling: Based on UML, the appl
cation developer can build a performance model
the application at an early development stage. T
performance can be predicted and design decisio
can still be influenced without time-consumin
modifications of large portions of an already im
plemented application.

• Simulation: Based on a UML model of an ap
plication and a simulator for a target architectur
one can predict the execution behavior of the a
plication model. An UML-based performance pre
diction system is depicted in Figure 1. The use
develops the model for an application by com
posing existing templates (building blocks). Th
application model is enriched with cost functions
Thereafter, the annotated model is transformed
an intermediate form (e.g. XMI) based on whic
the simulator examines the behavior for this a

Pllana and Fahringer

is

l-
n

ec
r-
ac
ize
d
o
s.
l o
fo
ro

ing
ro
ng
o

ms
by
98
96
m

les
or
s
a

lve
nc
M
th
an
th
pt
ns
ar
o
e

r-
s

n
g
ts
e-
al,
se
g
6.

t
ype
of
d
a

d
e

d
on

s
d
n
ific

ns,

-
pe
g-
A

n-
are

s
D,

g
n

ny
in
a

on-
ing
Templates

Internal
Form

UML Modeling

Performance
DB

Simulation

Display
Results

Architecture

Figure 1: Performance Prediction System

plication on a given target machine model that
selected by the user.

UML offers an extensive set of diagrams for mode
ing. However, the semantics of specific diagrams are
always clear so as to decide how to model specific asp
of parallel and distributed programs. In order to ove
come this deficiency, in this paper we describe an appro
that utilizes the UML extension mechanisms to custom
UML for the domain of performance oriented distribute
and parallel computing. We employ only a small subset
UML, namely class, activity, and collaboration diagram
Class diagrams are used to build the structural mode
distributed and parallel architectures; activity diagrams
representing computational, communication, and synch
nization operations; collaboration diagrams for describ
process topologies and the mapping of applications to p
cess topologies. We are describing a set of UML buildi
blocks that model some of the most important constructs
message passing and shared memory parallel paradig

The building blocks have been largely motivated
Open Multi Processing (OpenMP) (Dagum and Menon 19
and the Message Passing Interface (MPI) (Snir et al. 19
standards. OpenMP is a specification for a set of co
piler directives, library routines, and environment variab
that is used to specify shared memory parallelism in F
tran and C/C++ programs. MPI is a library of routine
that supports message passing programming in Fortran
C. The mixed mode application development may invo
other programming languages such as High Performa
Fortran (HPF) and POSIX threads, but we focus on Open
and MPI because of their portability, prevalence, and
fact that they represent industry standards for shared
distributed memory systems respectively. Note that
proposed UML building blocks represent generic conce
whereas OpenMP and MPI are specific implementatio
Moreover, these building blocks can be annotated with
bitrary information, such as performance data. Based
the UML building blocks we can develop models for larg
and complex applications.
’t
ts

h

f

f
r
-

-

f
.

)
)
-

-

nd

e
P
e
d

e
s
.
-
n

We illustrate our approach by modeling a mixed pa
allelism many-body physics application which comprise
both message passing and shared memory parallelism.

The paper is organized as follows. The next sectio
describes the subset of UML which is used for modelin
of distributed and parallel applications. Section 3 depic
how to model process topologies. The following section d
scribes how to model some of the most important sequenti
distributed memory and shared memory concepts. A ca
study is discussed in Section 5. Finally, some concludin
remarks are made and future work is outlined in Section

2 BACKGROUND

The UML defines nine diagram types, which allow differen
aspects of a system to be expressed. Each diagram t
describes a system or parts of it from a certain point
view. For the purpose of modeling performance-oriente
distributed and parallel applications we concentrate on
subset of the UML that consists of class, activity an
collaboration diagrams. In this section we present som
background information that will be helpful to understan
the remainder of this paper. A comprehensive discussi
on UML can be found in Rumbaugh et al. (1999).

Our approach relies on the UML extension mechanism
to customize UML for the domain of performance oriente
parallel and distributed computing. The UML extensio
mechanisms (OMG 2001) describe how to customize spec
UML model elements and how to extend them with new
semantics by using stereotypes, constraints, tag definitio
and tagged values.

Stereotypesare used to define specialized model ele
ments based on a core UML model element. A stereoty
refers to a base class in the UML metamodel (see Fi
ure 2.a), which indicates the element to be stereotyped.
stereotype may introduce additional values, additional co
straints, and a new graphical representation. Stereotypes
notated by the stereotype name enclosed in guillemets<<

…>> or by a graphic icon. We are employing stereotype
to define modeling elements for constructs such as SEN
RECEIVE, PARALLEL, CRITICAL, etc. UML properties
– in form of a list of tag-valuepairs – are introduced to
attach additional information to modeling elements. A ta
represents the name of an arbitrary property with a give
value and may appear at most once in a property list of a
modeling element. It is recommended to define tags with
the context of a stereotype. The notation of tags follows
specific syntax: {tag = value}, for instance, {time=10}. A
constraintallows to linguistically specify new semantics for
a model element by using expressions in a designated c
straint language. Constraints are specified as a text str
enclosed in braces { }, for instance, {WaitUntilCompleted
= True}.

Pllana and Fahringer

d
g

f

g

s
gs
n,
ig-
o
ed

ge
e

are

ted
s
ly,
al

ss
en
re
re
se
or
re.
es

of
ion

nd
o-

in-

tes

ws

e

ed

ee
-
, a
nal
gy

y
is

e
ed

g
ry,
cify

ey
sing
«metaclass»
ActionState

id : Integer
type : String
time : double

«stereotype»
action+

«stereotype»

Tags

SampleAction
{id=1,
type=Sample,
time=10}

«action+»

a) b)

Figure 2: Definition of Stereotype action+

The usage of UML extension mechanisms is illustrate
in Figure 2. Figure 2.a depicts the definition of the modelin
elementaction+ by stereotyping the base classActionState.
An ActionStateis used to model a step in the execution o
an algorithm.

The compartment of the stereotypeaction+namedTags
specifies a list of tag definitions which includesid, type, and
time. Tag id can be used to uniquely identify the modelin
elementaction+; tag type specifies the type ofaction+,
and tagtime the time spent to completeaction+. We are
usingaction+ (see example in Figure 2.b) to model variou
types of single-entry single-exit code regions, whereas ta
are employed to describe performance relevant informatio
such as estimated or measured execution times (cf. F
ure 2.b). The set of the tag definitions is not limited t
those shown in Figure 2.a but can be arbitrarily extend
to suffice a modeling objective.

In the remainder of this paper, programming langua
constructs will be denoted with capital letters, for instanc
non-blocking SEND, and UML modeling elements with
small letters, for instancenbsend. For the sake of simplicity,
in some examples the properties of a modeling element
suppressed.

3 MODELING PROCESS TOPOLOGIES

Distributed and parallel architectures can be represen
straightforwardly by a UML deployment diagram which ha
been described in Pllana and Fahringer (2002). Common
parallel programs are not directly mapped onto a physic
architecture but first onto a virtual architecture (proce
topology) that can be of arbitrary size. The mapping betwe
virtual and physical architecture is done immediately befo
the parallel program is executed on the target architectu
Commonly, a mapping strategy distributes several proces
of the virtual architecture onto a single physical process
in order to honor the actual size of a physical architectu
In this section we outline how to model process topologi
with UML collaboration diagrams.
.
s

A process topology may be defined as a group
processes that have a predefined regular interconnect
topology such as afarm, ring, 2D meshor tree. The de-
scription of a process topology is machine-independent a
depends only on the application. In order to describe pr
cess topologies we introduce the stereotypeprocessingunit
which is used to model processes or threads. In the rema
der of this paper we will use the termprocessing unitfor
process or thread when appropriate. Figure 3.a illustra
the definition of the stereotypeprocessingunitbased on the
base classClasswhereby thecardinality tag specifies the
number of elements in a set of instances. Figure 3.b sho
the definition of classProcessbased on the stereotypepro-
cessingunit, which is used to model a process. An instanc
of classProcessis represented by the objecta:Process(see
Figure 3.c). The set of instances of the classProcessis mod-
eled by the multiobject:Process(see Figure 3.d). Figure 4
shows several process topology types which are exemplifi
by CollaborationInstanceSets. It comprises afarm which
is a group of processing units without interconnections (s
Figure 4.a), aring which consists of processing units ar
ranged in an interconnected linear array (see Figure 4.b)
2D mesh that arranges processing units in a two dimensio
grid (see Figure 4.c), and a binary tree structure topolo
(see Figure 4.d).

An alternative representation of a process topolog
which is well-suited for large number of processing units
depicted in Figure 5.a which defines a stereotype2d-mesh
by employing the base classCollaboration. Figure 5.b illus-
trates a 2D mesh topology with 3 rows and 3 columns. Th
mapping of applications to process topologies is describ
in Pllana and Fahringer (2002).

4 MODELING APPLICATIONS

In this section we demonstrate how to use UML for modelin
of some of the most important sequential, shared memo
and message passing concepts. The basic idea is to spe
a set of building blocks (see Figure 6) that represent k
concepts of sequential, shared memory, and message pas

«metaclass»
Class

id : Integer
type : String
cardinality : Integer

«stereotype»
processingunit

«stereotype»

«processingunit»
Process

«processingunit»
: Process

«processingunit»
a : Process

b)

a)

c)

d)

Tags

Figure 3: Modeling Processing Units

Pllana and Fahringer

by

rge

hat
ad)
in

ns.
.a)
ype
for

ing

n

in
on
s

ty

is-
age
e
its

om

om
a)

«processingunit»
p0

«processingunit»
p1

«processingunit»
p2

b)

«processingunit»
p0

«processingunit»
p1

«processingunit»
p2

«processingunit»
p00

«processingunit»
p01

«processingunit»
p02

«processingunit»
p10

«processingunit»
p11

«processingunit»
p12

«processingunit»
p20

«processingunit»
p21

«processingunit»
p22

c)

d)

«processingunit»
p00

«processingunit»
p10

«processingunit»
p23

«processingunit»
p11

«processingunit»
p20

«processingunit»
p21

«processingunit»
p22

Figure 4: Examples of Process Topologies

«metaclass»
Collaboration

id : Integer
row : Integer
col : Integer

«stereotype»
2d-mesh

Tags

«stereotype»

«2d-mesh»

Sample2Dmesh

{id=1, row=3, col=3}

a) b)

Figure 5: 2D-Mesh (3x3) Process Topology Represented
the 2d-Mesh Stereotype

constructs and thus allow to model basically arbitrary la
and complex applications when grouped together.

4.1 Sequential Concepts

A sequential construct is used to model the unit of work t
is executed by a single processing unit (process or thre
In what follows, we describe a few sequential concepts
order to outline our modeling approach.

The stereotypesaction+ and subactivity+are used to
model various types of single-entry single-exit code regio
The UML modeling elements ActionState (see Figure 2
and SubactivityState (see Figure 9.a) have been stereot
in order to add properties that are relevant, for instance,
performance modeling. Figure 7 illustrates the model
.

d

DistributedAndParallel
Application

SharedMemoryDistributedMemorySequential

WorkSharing

ParallelRegion

Synchronization

PointToPoint

CollectiveData
Movement

CodeRegion

ProcedureCall

Loop

Branch
CollectiveGlobal

Computation

Barrier

CombinedParallel
WorkSharing

.

Figure 6: The Overview of Concepts

of SEQUENTIAL code regions. The propertytype of the
stereotypeaction+ indicates that the modeled code regio
is executed in sequential mode.

Figure 8 demonstrates how to model a BRANCH
control flow. Based on the value of a boolean expressi
condition, one of the two alternative control flow paths i
selected.

In Figure 9.a we introduce the stereotypesubactivity+
in order to represent a PROCEDURE CALL. The proper
typeof the stereotypesubactivity+indicates that the modeled
code region is a procedure call.

4.2 Distributed Memory Concepts

The most commonly used programming method for d
tributed memory architectures is dominated by the mess
passing model. Multiple processing units with a uniqu
identifier are created. Interaction among processing un
is implied by sending and receiving messages to and fr
named processing units. Processing units can employpoint-
to-point communication operations to send messages fr

SampleAction
{id=1,
type=Sequential,
time=15}

«action+»

Figure 7: Modeling a SEQUENTIAL Code Region

SampleAction1
«action+»

SampleAction2
«action+»

[condition] [else]

Figure 8: Modeling a BRANCH Control Flow

Pllana and Fahringer

s-

-
f
p)
n
nt

ic
e

t
a

io
a

:

ew

s

es
is
n
e

its
rite

ed

its.
w
ry

d
in
ll

e

ity
«metaclass»
SubctivityState

id : Integer
type : String
time : double

«stereotype»
subactivity+

Tags

«stereotype»

{id=1,
type=Procedure call,
time=20}

SampleSubactivity
«subactivity+»

a) b)

Figure 9: Modeling a PROCEDURE CALL

one named processing unit to another. A group of proces
ing units can usecollective communication operations to
perform global operations among processing units.

In our approach thecommunication eventholds the
information about the pattern of communication (for ex
ample point-to-point), the communication size (number o
processes), and the communication domain (process grou
A communication event is associated with a transition i
an activity diagram. For instance, a communication eve
RECEIVE invokes a transition into an action state.

4.2.1 Point-to-point Communication (P2P)

Exchanging messages via SEND and RECEIVE is the bas
mechanism for point-to-point communication which can b
classified into blocking and non-blocking operations. A
non-blocking SEND initiates the send operation withou
being blocked at the sender. As soon as the send of
message is initiated, the sender proceeds with the execut
of the program. The signal event P2P is modeled by
UML stereotypesignal (see Figure 10.a) and its attributes
source, destination, messageSize, etc. Figure 10.b illustrates
the definition of the stereotypenbsendbased on the base
classTransition. An example usage ofnbsendis presented
in Figure 10.c where a signalP2P is sent to the processing
unit b:Process.

A blocking RECEIVE waits until the receive buffer
contains the message received which is modeled as a n
stereotype namedbrecv. Figure 11.b shows the definition
of the stereotypebrecvbased on the base classTransition.
Figure 11.a. depicts the receiving of a signalP2P from the
processing unita:Process.

Other point-to-point communication primitives such a
blocking SEND and non-blocking RECEIVE operations
are modeled analogously by defining adequate stereotyp
Communication that involves a group of processing units
commonly known as collective communication which ca
be modeled by a set of stereotypes (Pllana and Fahring
2002).
nce
.

n

.

r

P2P
«nbsend» «processingunit»

b : Process

«metaclass»
Transition

id : Integer
time : double

«stereotype»
nbsend

«stereotype»

Tags

b)

a)

c)

source : Integer
destination : Integer
messageSize : Integer
messageID : Integer
comDomain : String

«signal»
P2P

Figure 10: Modeling Nonblocking SEND

P2P
«brecv» «processingunit»

a : Process

«metaclass»
Transition

id : Integer
time : double

«stereotype»
brecv

«stereotype»

Tags

b)a)

Figure 11: Modeling Blocking RECEIVE

4.3 Shared Memory Concepts

In the shared memory programming model, processing un
share a common address space which they read and w
asynchronously. Various mechanisms such aslocks and
semaphoresmay be used to control access to the shar
memory. Work-sharingconstructs may be used to divide
the execution of a code region among the processing un

To illustrate our approach, in the sequel we will sho
how to model some of the most important shared memo
concepts by using fragments of activity diagrams.

4.3.1 Parallel Region

A PARALLEL region is a code region that is to be execute
by multiple threads in parallel. The code enclosed with
the PARALLEL region is duplicated and all threads wi
execute it.

A new stereotype namedparallelregionis introduced in
order to model PARALLEL regions. Figure 12.a depicts th
definition of the stereotypeparallelregionbased on the base
classSubactivityState. Figure 12.b illustrates an example
usage of the stereotypeparallelregion. The ’*’ symbol in the
upper right corner of a state denotesdynamic concurrency,
which means that the actions of an action state or the activ
graph of a subactivity state may be executed more than o
concurrently, for instance, by multiple threads.

d Fahringer

e
io
r

y

d
o

ra

a
e
i
it
le

u
k
s
t

d

e

w
ds

d
ts
s

d
e
ad
ds
.
t.
Pllana an

«metaclass»
SubactivityState

id : Integer
nrThreads : Integer
time : double

«stereotype»
parallelregion

Tags

SampleSubactivity
«parallelregion» *

{id=1,
nrThreads=4,
time=3}

«stereotype»

a) b)

Figure 12: Modeling the PARALLEL Region

4.3.2 Work-Sharing

A work-sharingconstruct (must be enclosed within a parall
region) divides the execution of the enclosed code reg
among the members of the set of threads that encounte
There is no implied barrier upon entry to awork-sharing
construct.Work-sharingconstructs must be encountered b
all threads in a set or by none at all. Successivework-
sharingconstructs must be encountered in the same or
by all members of a set. Work-sharing constructs do n
launch new threads.

The DO work-sharing construct specifies that the ite
tions of the immediately followingdo loopmust be executed
in parallel. The iterations of thedo loop are distributed
across threads that already exists in a parallel region.

We define a new stereotypedoworksharingin order
to specify DO work-sharing constructs (see Figure 13.
The tagscheduleTypeindicates how the loop iterations ar
distributed onto a set of threads. An example is given
Figure 13.b. Figure 13.c shows the content of subactiv
SampleSubactivitywhich represents a loop with a samp
action in its body.

«metaclass»
SubactivityState

id : Integer
scheduleType : String
noWait : Boolean
time : double

«stereotype»
doworksharing

«stereotype»

Tags

SampleSubactivity
«doworksharing»

SampleAction
«action+»

SampleSubactivity

[IterationCondition]

«doworksharing»

b)a) c)

Figure 13: Modeling the DO Work-Sharing Construct

4.3.3 Combined Parallel Work-Sharing

The combined parallel work-sharing constructs are shortc
for specifying a parallel region that contains only one wor
sharing construct. The PARALLEL DO construct provide
a shortcut form for specifying a PARALLEL region tha
l
n
it.

er
t

-

).

n
y

ts
-

contains a single DO construct. A new stereotype name
paralleldo is defined in order to model the PARALLEL
DO construct. Figure 14.a depicts the definition of th
stereotypeparalleldo by using the base classSubactivityS-
tate. An example of theparalleldo stereotype is outlined
in Figure 14.b.

«metaclass»
SubactivityState

id : Integer
nrThreads
scheduleType : String
time : double

«stereotype»
paralleldo

«stereotype»

Tags

SampleSubactivity
«paralleldo»

b)a)

*

Figure 14: Modeling the PARALLEL DO Construct

4.3.4 Synchronization

The shared memory synchronization construct controls ho
the execution of each thread proceeds relative to other threa
in a team of threads.

The CRITICAL construct restricts access to the enclose
code to only one thread at any given time. A thread wai
at the beginning of a critical section until no other thread i
executing a critical section with the samename. Figure 15.a
depicts the definition of the stereotypecritical based on the
base classSubactivityStatewhich is used to model the
CRITICAL construct. The tagnamespecifies the name of
the critical region. An example usage of stereotypecritical
is given in Figure 15.b.

«metaclass»
SubactivityState

id : Integer
name : String
time : double

«stereotype»
critical

«stereotype»

Tags

SampleSubactivity
«critical» {id=1,

name=Block1,
time=2}

b)a)

Figure 15: Modeling the CRITICAL Construct

The ORDERED construct specifies that the enclose
code is executed in the order in which iterations would b
executed in a sequential execution of the loop. One thre
at a time is allowed to enter an ordered section. Threa
enter in the section in the order of the loop iterations
Figure 16 outlines how to model an ORDERED construc
The value of the tagtypespecifies that the stereotypeaction+
represents an orderedActionState.

Fahringer

S

a

d
-

r-

o
ts
s
a
i

l

in

f
t

a
d
m

d
d

t

v
h

s
e
e
r

he
n

-
y

ity

of

to
er
ed

ms
l

e
on
ta

s

d

-
n
es
a

ss

ch
-
f

ts
ms
-

h
-

Pllana and

{id=1,
type=Ordered,
time=10}

SampleAction
«action+»

Figure 16: Modeling the ORDERED Construct

Other shared memory concepts, such as SECTION
are modeled analogously (Pllana and Fahringer 2002).

5 CASE STUDY: CASINO

The understanding of the nature and properties of real m
terials is substantially improved by theoretic study and pre
diction of electronic properties of atoms, molecules an
solids. The CASINO (Needs et al. 2000) application pro
vides an accurate description of the many-body physics b
using Quantum Monte Carlo (QMC) methods. The QMC
code carries out diffusion Monte Carlo (DMC) calculations
which are computationally intensive and require high pe
formance computing facilities in order to study realistic
systems. These calculations involve a stochastic simulati
where the configuration space is sampled by many poin
each of which undergoes a random walk. CASINO ha
been encoded as a Fortran mixed OpenMP/MPI code th
uses both shared memory and message passing parallel
and comprises 132 file modules.

In the following we demonstrate how to model the
CASINO application by using the UML constructs intro-
duced in this paper. Due to space limitations, we wil
concentrate on those application parts that are most inte
esting in terms of shared memory and message pass
parallelism.

Figure 17.a visualizes a high-level activity diagram o
the CASINO application. Each subactivity state represen
a portion of the existing Fortran code. The subactivity state
can be further decomposed in order to provide a hierarchic
view of the entire application. Subactivities can be zoome
in and viewed as a separate more detailed activity diagra

Figure 17.b elucidates the subactivityMonte Carlo
in more detail. Based on values of parameters IRUN an
LBUF one of the three alternative QMC methods is selecte
Diffusion Monte Carlo (DMC), Diffusion Monte Carlo with
buffering (DMC buf), or Variational Monte Carlo (VMC).
Each of these methods is represented by a subactivity sta

The MPI parallelization of DMC employs a master-slave
model, in which a master process sends work to the sla
processes who complete the required work and return t
results back to the master (see Figure 17.c). The numeric
optimization routine runs on the master process and the s
of electron configurations is divided amongst the slave
The master process broadcasts the results to the slav
Each of the slaves evaluates various quantities depend
on its subset of configurations. The resulting quantities a
,

-
-

y

n
,

t
sm

r-
g

s
s
l

.

:

e.

e
e
al
et
.
s.
nt
e

sent back to the master which determines new values of t
optimization parameters. This cyclic process stops whe
the optimization parameter values converge.

The OpenMP PARALLELDO construct is used to par
allelize two main loops of DMC, which are represented b
subactivitiesInitialize an ensemble of walkersandExplore
the configuration spacein Figure 17.d. This is again a high
level model, because the loop represented by the subactiv
Explore the configuration spacecontains about 500 lines of
code and more than 30 procedure calls. A key advantage
UML is its ability to represent applications at the desired
level of abstraction and detail. The subactivityExplore the
configuration spaceis represented in more detail in Fig-
ure 17.e. The OpenMP ORDERED construct is used
ensure that the configurations are copied in the same ord
as in the sequential version of the code, which is represent
by action stateCopy the configuration.

MPI calls are made from within serial regions of the
code in order to ensure that the code is portable to syste
without thread-safe MPI implementations. Inside of paralle
regions the MPI calls have been placed within a CRITICAL
region. By doing so, it is guaranteed that MPI calls ar
processed sequentially while ensuring that every thread
every process has a copy of the electron configuration da
(Figure 17.f).

The CASINO application is mapped onto a proces
topology (see Figure 17.c) by following the Single Program
Multiple Data approach which is described in (Pllana an
Fahringer 2002). The activity diagram of CASINO appli-
cation is associated with a single classProcessby using
swimlanes. An activity diagram may be divided visually
into swimlanes, each separated from neighboring swim
lanes by vertical solid lines on both sides. Each actio
is assigned to one swimlane. In our approach swimlan
are incorporated to assign the execution of an action or
subactivity to specific processes. Instances of the classPro-
cessare mapped onto processing units of the given proce
topology as shown in Figure 17.c.

6 CONCLUSIONS

The emerging of the Unified Modeling Language (UML)
as the de facto standard visual modeling language whi
is widely used for modeling object oriented sequential ap
plications, has unclosed new opportunities for modeling o
parallel and distributed systems.

In this paper, we have described a set of UML building
blocks that model some of the most important construc
of message passing and shared memory parallel paradig
which can be used to develop models for large and com
plex parallel and distributed applications. Moreover, UML
models can be annotated with arbitrary information suc
as performance and control flow information which is im

Pllana and Fahringer

Initialize MPI environment

Monte Carlo

Finalize MPI environment
«subactivity+»

«subactivity+»

«subactivity+»

(a) High-Level UML
Model of CASINO

Setup the stage for MC
«subactivity+»

DMC
«subactivity+»

DMC buf VMC
«subactivity+» «subactivity+»

[IRUN.NE.4][Else]

[.NOT.LBUF] [Else]

«subactivity+»
Monte Carlo

(b) Quantum Monte Carlo

«processingunit»
p0:Process

«processingunit»
p3:Process

«processingunit»
p2:Process

«processingunit»
p1:Process

(c) Process Topology for 4 Processes

Setup the stage for DMC

Initialize an ensemble of walkers

Explore the configuration space

Update the trial energy

[For each block]

[For each move]

«subactivity+»

«paralleldo»

«paralleldo»

«subactivity+»

«subactivity+»
DMC

Redistribute the results
«subactivity+»

(d) Diffusion Monte Carlo

Move the configuration

Check for acceptance of the move

Accumulate weighted averages

[For each walker]

«subactivity+»

«paralleldo»
Explore the configuration space

Copy the configuration

«subactivity+»

«subactivity+»

«action+»

(e) Explore the Configuration Space

«processingunit»
:Process

«broadcast»

lkcalc

«processingunit»
:Process

«processingunit»
:Process

«processingunit»
:Process

«processingunit»
:Process

«processingunit»
:Process

«processingunit»
:Process

«processingunit»
:Process

«broadcast»

lkpair

«broadcast»

lkb_real_
phase

«broadcast»

lkb_cmplx_
phase

«broadcast»
lkb_occ_sa
me_phase

«broadcast»

iprom_repl_
idx

«broadcast»

iadd_idx

«broadcast»

isub_idx

«critical»

Broadcast WFDET_SETUP data

(f) MPI Broadcasts within a Critical Region

Figure 17: UML Model for the CASINO Application

Pllana and Fahringer

se

vi-
of
lel
e,
tha

d
t -

or
nd
th
s.
-
n

s-
ct

s

-

In
-

of

d

.

-

he
.

d

s.
c-

-
e

r,

,
n-

l-

te
e
ity
ce
il

-
ity

a
al
a
n-

for
of
ms
is
portant for a subsequent performance analysis that u
annotated UML models.

We conclude that UML provides a rich set of modeling
concepts, notations, and mechanisms to substantially alle
ate the understanding, documentation, and visualization
the structure and dynamic behavior of distributed and paral
applications. UML is a widely used standard and, therefor
offers a substantial advantage compared to approaches
use ad-hoc or self-defined model representations.

Currently we are in the process to develop a UML base
performance estimation tool named Performance Prophe
(Fahringer and Pllana 2002). We are building a simulat
that determines the performance behavior of parallel a
distributed applications based on UML models enriched wi
performance information for a range of cluster architecture
The objective is to provide the user with performance in
formation at an early development stage of an applicatio
without the need to encode full applications.

ACKNOWLEDGMENTS

The work described in this paper is supported by the Au
trian Science Fund as part of Aurora Project under contra
SFBF1104.

REFERENCES

Conallen, J. 1999. Modeling Web Application Architecture
with UML. Communications of the ACM42 (10): 63–
70.

Dagum, L., and R. Menon. 1998. OpenMP: An industry
standard API for shared-memory programming.IEEE
Computational Science and Engineering5 (1): 46–55.

Fahringer, T., and S. Pllana. 2002. Performance Prophet.
stitute for Software Science, University ofVienna.Avail
able online via<http://www.par.univie.ac.
at/project/prophet> [accessed May 15, 2002].

Hayashi, L., and J. Hatton. 2001. Combining UML, XML
and Relational Database Technologies. The Best
All Worlds For Robust Linguistic Databases. InIRCS
Workshop on Linguistic Databases, 115–124. University
of Pennsylvania, Philadelphia, USA.

Holz, E. 1997. Application of UML within the Scope of new
Telecommunication Architectures. InGROOM Work-
shop on UML. Mannheim: PhysicaVerlag.

Needs, R., G. Rajagopal, M. Towler, P. Kent, an
A. Williamson. 2000.CASINO version 1.0 User’s Man-
ual. Cambridge: University of Cambridge.

OMG 2001. Unified Modeling Language Specification
Available online via<http://www.omg.org> [ac-
cessed May 15, 2002].

OMG 2002. OMG XML Metadata Interchange (XMI) Spec
ification. Available online via<http://www.omg.
org> [accessed May 15, 2002].
s

t

-

Pllana, S., and T. Fahringer. 2002. On Customizing t
UML for Modeling Performance-OrientedApplications
In <<UML>> 2002, "Model Engineering, Concepts
and Tools", Springer-Verlag. Dresden, Germany.

Rossetti, M., B. Aylor, R. Jacoby, A. Prorock, an
A. White. 2000, December 10-13. SIMFONE’: An
Object-Oriented Simulation Framework. InProceed-
ings of the 2000 Winter Simulation Conference, J.A.
Joines, R.R. Barton, K. Kang, and P.A. Fishwick, ed
1855–1864. Piscataway, New Jersey: Institute of Ele
trical and Electronics Engineers.

Rumbaugh, J., I. Jacobson, and G. Booch. 1999.The Unified
Modeling Language User Guide. Addison-Wesley.

Selic, B., and J. Rumbaugh. 1998. Using UML for Mod
eling Complex Real-Time Systems. Available onlin
via <http://www.rational.com/products/
whitepapers/100230.jsp> [accessed May 15,
2002].

Snir, M., S. W. Otto, S. Huss-Lederman, D. W. Walke
and J. Dongarra. 1996.MPI: the complete reference.
Cambridge, MA, USA: MIT Press.

Walther, M., J. Schirmer, P. T. Flores, A. Lapp, T. Bertram
and J. Petersen. 2001. Integration of the ordering co
cept for vehicle control systems CARTRONIC® into
the software development process using UML mode
ing methods. InSAE 2001 World Congress. Detroit,
Michigan, USA.

AUTHOR BIOGRAPHIES

SABRI PLLANA is a Research Assistant at the Institu
for Software Science, University of Vienna. He received th
Masters degree in Computer Science in 1997 from Univers
of Zagreb, Croatia. His research focuses on performan
prediction of computing systems by simulation. His ema
and web addresses are<pllana@par.univie.ac.at>
and<www.par.univie.ac.at/˜pllana> .

THOMAS FAHRINGER is anAssociate Professor of Com
puter Science at the Institute for Software Science, Univers
of Vienna. He received a Masters degree in 1988 and
Ph.D. in 1993, all in Computer Science from the Technic
University of Vienna, Austria. From 1988 - 1990 he was
visiting scientist at the Engineering Design Research Ce
ter at Carnegie Mellon University in Pittsburgh, PA. From
1990 - 1998 he was Assistant Professor at the Institute
Software Technology and Parallel Systems, University
Vienna. His research focuses on programming paradig
and software tools for distributed and parallel systems. H
email and web addresses are<tf@par.univie.ac.at>
and<www.par.univie.ac.at/˜tf> .

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 497
	02: 498
	03: 499
	04: 500
	05: 501
	06: 502
	07: 503
	08: 504
	09: 505

