Proceedings of the 2002 Winter Simulation Conference
E. Ylcesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

UML BASED MODELING OF PERFORMANCE ORIENTED PARALLEL AND DISTRIBUTED APPLICATIONS

Sabri Pllana
Thomas Fahringer

Institute for Software Science
University of Vienna
Vienna, A-1090, AUSTRIA

ABSTRACT standard storage representation for UML diagrams approved
by the Object Management Group (OMG).

In this paper we introduce a novel approach for modeling The benefits of using UML in the domain of

performance oriented distributed and parallel applications performance-oriented distributed and parallel computing are
based on the Unified Modeling Language (UML). We utilize manifold.

the UML extension mechanisms to customize UML for the

domain of performance oriented distributed and parallel
computing. A set of UML building blocks is described that

model some of the most important constructs of message
passing and shared memory parallel paradigms which can
be used to develop models for large and complex parallel
and distributed applications. We illustrate our approach
by modeling a parallel many-body physics application that

combines message passing and shared memory parallelism.

1 INTRODUCTION

Many scientific and engineering problems require high per-
formance computation. The development of performance
oriented distributed and parallel applications is a time-
consuming, error-prone, and tedious process that involves
many cycles of code editing, compiling, executing, and
performance analysis. We believe that a visual modeling
language can substantially alleviate the development of dis-
tributed/parallel applications and improve the understanding
of the resulting performance behavior on a given target ma-
chine.

UML is emerging as the de facto standard visual model-
ing language which is general purpose, broadly-applicable,
tool-supported, and industry-standardized. UML is widely
used for domains such as telecommunications (Holz 1997),
transportation industry (Walther et al. 2001), bussines soft-
ware systems (Hayashi and Hatton 2001), real time systems
(Selic and Rumbaugh 1998), and distributed web applica-
tions (Conallen 1999). In addition, in Rossetti et al. (2000)
the UML is used for the documentation of a software de-
sign framework for object-oriented simulation. Further-
more, XML Metadata Interchange (XMI) (OMG 2002) is a

497

Documentation and visualization of existing appli-
cations: UML is extensively used in many informa-
tion technology areas to document and to visualize
source codes which alleviates the maintenance and
further development of existing applications. The
old saying ‘a picture is worth a thousand worts

also valid in the domain of parallel and distributed
computing.

Specification, visualization, construction, and doc-
umentation of new applications: Software engi-
neering technology hasn’t been widely used in the
domain of parallel and distributed computing. A
graphical representation of an application can be
very useful to communicate ideas and describe the
design of a complex application at a high level.
Performance modeling: Based on UML, the appli-
cation developer can build a performance model of
the application at an early development stage. The
performance can be predicted and design decisions
can still be influenced without time-consuming
modifications of large portions of an already im-
plemented application.

Simulation: Based on a UML model of an ap-
plication and a simulator for a target architecture,
one can predict the execution behavior of the ap-
plication model. An UML-based performance pre-
diction system is depicted in Figure 1. The user
develops the model for an application by com-
posing existing templates (building blocks). The
application model is enriched with cost functions.
Thereafter, the annotated model is transformed to
an intermediate form (e.g. XMI) based on which
the simulator examines the behavior for this ap-

Pllana and Fahringer

UML Modeling 4—(Templates (
Internal » Simulation 4—<Architecture<
Form

e

N
Performance
DB

N~

Display
Results

Figure 1: Performance Prediction System

plication on a given target machine model that is
selected by the user.

UML offers an extensive set of diagrams for model-
ing. However, the semantics of specific diagrams aren’t

always clear so as to decide how to model specific aspects

of parallel and distributed programs. In order to over-

come this deficiency, in this paper we describe an approach

that utilizes the UML extension mechanisms to customize
UML for the domain of performance oriented distributed
and parallel computing. We employ only a small subset of
UML, namely class, activity, and collaboration diagrams.
Class diagrams are used to build the structural model of
distributed and parallel architectures; activity diagrams for

representing computational, communication, and synchro-

nization operations; collaboration diagrams for describing

process topologies and the mapping of applications to pro-

cess topologies. We are describing a set of UML building
blocks that model some of the most important constructs of
message passing and shared memory parallel paradigms.
The building blocks have been largely motivated by
Open Multi Processing (OpenMP) (Dagum and Menon 1998)

and the Message Passing Interface (MPI) (Snir et al. 1996)

standards. OpenMP is a specification for a set of com-
piler directives, library routines, and environment variables
that is used to specify shared memory parallelism in For-
tran and C/C++ programs. MPI is a library of routines

that supports message passing programming in Fortran and

C. The mixed mode application development may involve

other programming languages such as High Performance

Fortran (HPF) and POSIX threads, but we focus on OpenMP
and MPI because of their portability, prevalence, and the

fact that they represent industry standards for shared and

distributed memory systems respectively. Note that the
proposed UML building blocks represent generic concepts
whereas OpenMP and MPI are specific implementations.
Moreover, these building blocks can be annotated with ar-
bitrary information, such as performance data. Based on
the UML building blocks we can develop models for large
and complex applications.

498

We illustrate our approach by modeling a mixed par-
allelism many-body physics application which comprises
both message passing and shared memory parallelism.

The paper is organized as follows. The next section
describes the subset of UML which is used for modeling
of distributed and parallel applications. Section 3 depicts
how to model process topologies. The following section de-
scribes how to model some of the most important sequential,
distributed memory and shared memory concepts. A case
study is discussed in Section 5. Finally, some concluding
remarks are made and future work is outlined in Section 6.

2 BACKGROUND

The UML defines nine diagram types, which allow different
aspects of a system to be expressed. Each diagram type
describes a system or parts of it from a certain point of
view. For the purpose of modeling performance-oriented
distributed and parallel applications we concentrate on a
subset of the UML that consists of class, activity and
collaboration diagrams. In this section we present some
background information that will be helpful to understand
the remainder of this paper. A comprehensive discussion
on UML can be found in Rumbaugh et al. (1999).

Our approach relies on the UML extension mechanisms
to customize UML for the domain of performance oriented
parallel and distributed computing. The UML extension
mechanisms (OMG 2001) describe how to customize specific
UML model elements and how to extend them with new
semantics by using stereotypes, constraints, tag definitions,
and tagged values.

Stereotypesre used to define specialized model ele-
ments based on a core UML model element. A stereotype
refers to a base class in the UML metamodel (see Fig-
ure 2.a), which indicates the element to be stereotyped. A
stereotype may introduce additional values, additional con-
straints, and a new graphical representation. Stereotypes are
notated by the stereotype name enclosed in guilleraets
...>> or by a graphic icon. We are employing stereotypes
to define modeling elements for constructs such as SEND,
RECEIVE, PARALLEL, CRITICAL, etc. UML properties
— in form of a list of tag-valuepairs — are introduced to
attach additional information to modeling elements. A tag
represents the name of an arbitrary property with a given
value and may appear at most once in a property list of any
modeling element. It is recommended to define tags within
the context of a stereotype. The notation of tags follows a
specific syntax: {tag = value}, for instance, {time=10}. A
constraintallows to linguistically specify new semantics for
a model element by using expressions in a designated con-
straint language. Constraints are specified as a text string
enclosed in braces { }, for instance, {WaitUntilCompleted
= True}.

Pllana and Fahringer

«metaclass»
ActionState

™
| «stereotype»

|
«stereotype»

action+

Tags
id : Integer
type : String
time : double

{id=1,
type=Sample,
time=10}

«action+»
SampleAction

b)

a)

Figure 2: Definition of Stereotype action+

The usage of UML extension mechanisms is illustrated
in Figure 2. Figure 2.a depicts the definition of the modeling
elementaction+ by stereotyping the base cla&stionState
An ActionStatds used to model a step in the execution of
an algorithm.

The compartment of the stereotypetion+ namedrlags
specifies a list of tag definitions which includdstype and
time Tagid can be used to uniquely identify the modeling
elementaction+; tag type specifies the type o#ction+,
and tagtime the time spent to completaction+. We are
usingaction+ (see example in Figure 2.b) to model various
types of single-entry single-exit code regions, whereas tags
are employed to describe performance relevant information,
such as estimated or measured execution times (cf. Fig-
ure 2.b). The set of the tag definitions is not limited to
those shown in Figure 2.a but can be arbitrarily extended
to suffice a modeling objective.

In the remainder of this paper, programming language
constructs will be denoted with capital letters, for instance
non-blocking SEND, and UML modeling elements with
small letters, for instancebsend For the sake of simplicity,
in some examples the properties of a modeling element are
suppressed.

3 MODELING PROCESS TOPOLOGIES

Distributed and parallel architectures can be represented
straightforwardly by a UML deployment diagram which has
been described in Pllana and Fahringer (2002). Commonly,
parallel programs are not directly mapped onto a physical
architecture but first onto a virtual architecture (process
topology) that can be of arbitrary size. The mapping between
virtual and physical architecture is done immediately before
the parallel program is executed on the target architecture.
Commonly, a mapping strategy distributes several processes
of the virtual architecture onto a single physical processor
in order to honor the actual size of a physical architecture.
In this section we outline how to model process topologies
with UML collaboration diagrams.

499

A process topology may be defined as a group of
processes that have a predefined regular interconnection
topology such as éarm, ring, 2D meshor tree The de-
scription of a process topology is machine-independent and
depends only on the application. In order to describe pro-
cess topologies we introduce the stereotppecessingunit
which is used to model processes or threads. In the remain-
der of this paper we will use the terprocessing unitfor
process or thread when appropriate. Figure 3.a illustrates
the definition of the stereotyg@ocessingunibased on the
base clas€lasswhereby thecardinality tag specifies the
number of elements in a set of instances. Figure 3.b shows
the definition of clas®rocesshased on the stereotypeo-
cessingunitwhich is used to model a process. An instance
of classProcesss represented by the objeztProcesysee
Figure 3.c). The set of instances of the clBgscesds mod-
eled by the multiobjectProcess(see Figure 3.d). Figure 4
shows several process topology types which are exemplified
by CollaborationinstanceSetslit comprises &arm which
is a group of processing units without interconnections (see
Figure 4.a), aing which consists of processing units ar-
ranged in an interconnected linear array (see Figure 4.b), a
2D mesh that arranges processing units in a two dimensional
grid (see Figure 4.c), and a binary tree structure topology
(see Figure 4.d).

An alternative representation of a process topology
which is well-suited for large number of processing units is
depicted in Figure 5.a which defines a stereot2demesh
by employing the base cla€ollaboration Figure 5.b illus-
trates a 2D mesh topology with 3 rows and 3 columns. The
mapping of applications to process topologies is described
in Pllana and Fahringer (2002).

4 MODELING APPLICATIONS

In this section we demonstrate how to use UML for modeling

of some of the most important sequential, shared memory,
and message passing concepts. The basic idea is to specify
a set of building blocks (see Figure 6) that represent key
concepts of sequential, shared memory, and message passing

«processingunit»
Process

b)

«processingunit»
a: Process

c)

«metaclass»
Class

I «stereotype»

1
«stereotype»
processingunit

Tags
id : Integer
type : String
cardinality : Integer

«processingunit»

- Process

Ll

a) d)

Figure 3: Modeling Processing Units

Pllana and Fahringer

«processingunit»| |«processingunit»
p 0 g p) 9 «processingunit» DistributedAndParallel
po pl p2 Application
a) ?
| [| 1
«processingunit» «processingunit», «processingunit» Sequential Distriby '
RO pl p2

i T

‘ PointToPoint ‘ ‘ ParallelRegion

b)

CodeRegion

«processingunit»| |«processingunit»| _|«processingunit»
000 01 p02

CollectiveData

ProcedureCall Movement

WorkSharing ‘

CollectiveGlobal
Computation

CombinedParallel
WorkSharing

«processingunit»| |«processingunit»| |«processingunit»
p10 pil pl2

Branch ‘
Loop ‘

Barrier ‘ Synchronization

«processingunit»| |«processingunit»| |«processingunit»
D20 D21 p22

Figure 6: The Overview of Concepts

c)

«processingunit»
D00

of SEQUENTIAL code regions. The propertype of the
stereotypeaction+ indicates that the modeled code region

«processingunit» «processingunit»

pll is executed in sequential mode.
Figure 8 demonstrates how to model a BRANCH in
«processingunit»| |«processingunit» «processingunit»| |«processingunit» COﬂtrOl ﬂOW Based on the Value Of a b00|ean eXpreSSion
9 condition one of the two alternative control flow paths is
selected.

In Figure 9.a we introduce the stereotyqgactivity+
in order to represent a PROCEDURE CALL. The property
typeof the stereotypsubactivity+indicates that the modeled
code region is a procedure call.

Figure 4: Examples of Process Topologies

«metaclass»
Collaboration

‘ 4.2 Distributed Memory Concepts

| «stereotype»
|
«stereotype» T = ; i
2d-mesh e cedmesty TS The most commonly used programming method for dis-
| Tags [samplezpmesn Y tributed memory architectures is dominated by the message
id : Integer /
row - Infoger N f0e1, rows3, col3)_/ passing model. Multiple processing units with a unique
col : Integer S~ - identifier are created. Interaction among processing units
2 b) is implied by sending and receiving messages to and from

named processing units. Processing units can engaoy-
Figure 5: 2D-Mesh (3x3) Process Topology Represented by to-point communication operations to send messages from

the 2d-Mesh Stereotype
«action+» {id=1,
t)l/pe:SequentiaI,
time=15}
constructs and thus allow to model basically arbitrary large
and complex applications when grouped together. Figure 7: Modeling a SEQUENTIAL Code Region

4.1 Sequential Concepts

A sequential construct is used to model the unit of work that
is executed by a single processing unit (process or thread).
In what follows, we describe a few sequential concepts in
order to outline our modeling approach.

The stereotypesction+ and subactivity+are used to
model various types of single-entry single-exit code regions.
The UML modeling elements ActionState (see Figure 2.a)
and SubactivityState (see Figure 9.a) have been stereotyped Figure 8: Modeling a BRANCH Control Flow
in order to add properties that are relevant, for instance, for
performance modeling. Figure 7 illustrates the modeling

500

[condilion]
«action+»
SampleActionl

«action+»
SampleAction2

Pllana and Fahringer

«metaclass» «signal» <<metag|_ass>>
SubctivityState p2op Transition
| |
stereotype
| «stereotype» source : Integer L yper
‘ destination : Integer «stereotype»
<<S‘bef991ype» messageSize : Integer nbsend
subactivity+ messagelD : Integer Tags
Tags comDomain : String e tg
" id : Integer
id : Integer - {id=1 X
el «subactivity+») time : double
type : String SampleSubactivity | type=Procedure call, a)
time : double time=20} \V b)
a) b) «nbsend»] «processingunit>
p2p b : Process

Figure 9: Modeling a PROCEDURE CALL v
©)
one named processing unit to another. A group of process- Figure 10: Modeling Nonblocking SEND
ing units can useollective communication operations to
perform global operations among processing units.
In our approach th&eommunication evenholds the

information about the pattern of communication (for ex- ‘
ample point-to-point), the communication size (number of | «stereotype»
processes), and the communication domain (process group). «stereotype»
A communication event is associated with a transition in ‘
an activity diagram. For instance, a communication event
RECEIVE invokes a transition into an action state.

«metaclass»
Transition

brecv

«brecv» «processingunit» Tags
p2p a: Process id : Integer

\V time : double

a) b)

4.2.1 Point-to-point Communication (P2P) Figure 11: Modeling Blocking RECEIVE
Exchanging messages via SEND and RECEIVE is the basic
mechanism for point-to-point communication which can be 4.3 Shared Memory Concepts
classified into blocking and non-blocking operations. A
non-blocking SEND initiates the send operation without
being blocked at the sender. As soon as the send of a
message is initiated, the sender proceeds with the execution
of the program. The signal event P2P is modeled by a
UML stereotypesignal (see Figure 10.a) and its attributes:
source destinationmessageSizetc. Figure 10.b illustrates
the definition of the stereotypebsendbased on the base
classTransition An example usage ofbsendis presented
in Figure 10.c where a sign®2P is sent to the processing
unit b:Process

A blocking RECEIVE waits until the receive buffer
contains the message received which is modeled as a new
stereotype nameldrecv. Figure 11.b shows the definition
of the stereotypdrecvbased on the base clabsansition
Figure 11.a. depicts the receiving of a sigR&P from the
processing unit:Process

Other point-to-point communication primitives such as A new stereotype namaghrallelregionis introduced in

blocking SEND and non-blockil_"lg RECEIVE operations order to model PARALLEL regions. Figure 12.a depicts the
are modeled analogously by defining adequate Stereotypes. yofinition of the stereotypearallelregionbased on the base

Communication that |nvolve§ a group of processing units is classSubactivityState Figure 12.b illustrates an example

commonly known as collective communication which can usage of the stereotyparallelregion The " symbol in the

be modeled by a set of stereotypes (Pllana and Fahnngerupper right corner of a state denotimamic concurrency

2002). which means that the actions of an action state or the activity
graph of a subactivity state may be executed more than once
concurrently, for instance, by multiple threads.

In the shared memory programming model, processing units
share a common address space which they read and write
asynchronously. Various mechanisms suchlacks and
semaphoresnay be used to control access to the shared
memory. Work-sharingconstructs may be used to divide
the execution of a code region among the processing units.

To illustrate our approach, in the sequel we will show
how to model some of the most important shared memory
concepts by using fragments of activity diagrams.

4.3.1 Parallel Region
A PARALLEL region is a code region that is to be executed
by multiple threads in parallel. The code enclosed within

the PARALLEL region is duplicated and all threads will
execute it.

501

Pllana and Fahringer

«metaclass»
SubactivityState

|
| «stereotype»
Il

«stereotype»
parallelregion

Tags
id : Integer
nrThreads : Integer
time : double

{id=1,
nrThreads=4,
time=3}

«parallelregion»

SampIeSubactlvng

b)

a)

Figure 12: Modeling the PARALLEL Region

4.3.2 Work-Sharing

A work-sharingconstruct (must be enclosed within a parallel
region) divides the execution of the enclosed code region

among the members of the set of threads that encounter it.

There is no implied barrier upon entry toveork-sharing
construct.Work-sharingconstructs must be encountered by
all threads in a set or by none at all. Successiak-
sharing constructs must be encountered in the same order
by all members of a set. Work-sharing constructs do not
launch new threads.

The DO work-sharing construct specifies that the itera-
tions of the immediately followindo loopmust be executed
in parallel. The iterations of thelo loop are distributed
across threads that already exists in a parallel region.

We define a new stereotypmoworksharingin order
to specify DO work-sharing constructs (see Figure 13.a).
The tagscheduleTypéndicates how the loop iterations are
distributed onto a set of threads. An example is given in
Figure 13.b. Figure 13.c shows the content of subactivity
SampleSubactivitwhich represents a loop with a sample
action in its body.

/ «doworksharing» \

SampleSubactivity

«metaclass»
SubactivityState

T
| «stereotype»

«action+»
SampleAction

I
«stereotype»
doworksharing

Tags
id : Integer
scheduleType : String
noWait : Boolean
time : double

«doworksharing»
Samplesubacuvn%

b)

Figure 13: Modeling the DO Work-Sharing Construct

a)

4.3.3 Combined Parallel Work-Sharing

The combined parallel work-sharing constructs are shortcuts
for specifying a parallel region that contains only one work-
sharing construct. The PARALLEL DO construct provides
a shortcut form for specifying a PARALLEL region that

502

contains a single DO construct. A new stereotype named
paralleldo is defined in order to model the PARALLEL
DO construct. Figure 14.a depicts the definition of the
stereotypeparalleldo by using the base clasubactivityS-
tate An example of theparalleldo stereotype is outlined

in Figure 14.b.

«metaclass»
SubactivityState

|
| «stereotype»
|

1
«stereotype»
paralleldo

Tags
id : Integer
nrThreads
scheduleType : String
time : double

«paralleldo» %
SampleSubactivit;
O
O

b)

a)

Figure 14: Modeling the PARALLEL DO Construct

4.3.4 Synchronization

The shared memory synchronization construct controls how
the execution of each thread proceeds relative to other threads
in a team of threads.

The CRITICAL construct restricts access tothe enclosed
code to only one thread at any given time. A thread waits
at the beginning of a critical section until no other thread is
executing a critical section with the samame Figure 15.a
depicts the definition of the stereotypetical based on the
base classSubactivityStatewhich is used to model the
CRITICAL construct. The taghamespecifies the name of
the critical region. An example usage of stereotggécal
is given in Figure 15.b.

«metaclass»
SubactivityState

|
| «stereotype»

1
«stereotype»
critical

Tags

id: 1 y

Ir?amzlgg?rrin «critical» {id=1,

X i 9 SampleSubactivit name=Block1,
time : double m"% time=2}

a) b)

Figure 15: Modeling the CRITICAL Construct

The ORDERED construct specifies that the enclosed
code is executed in the order in which iterations would be
executed in a sequential execution of the loop. One thread
at a time is allowed to enter an ordered section. Threads
enter in the section in the order of the loop iterations.
Figure 16 outlines how to model an ORDERED construct.
The value of the tatypespecifies that the stereotyaetion+
represents an ordergkttionState

Pllana and Fahringer

/ «action+» \ {id=1,
(SampleAction) type=Ordered,
N 52 time=10)

Figure 16: Modeling the ORDERED Construct

Other shared memory concepts, such as SECTIONS,
are modeled analogously (Pllana and Fahringer 2002).

5 CASE STUDY: CASINO

The understanding of the nature and properties of real ma-
terials is substantially improved by theoretic study and pre-
diction of electronic properties of atoms, molecules and
solids. The CASINO (Needs et al. 2000) application pro-
vides an accurate description of the many-body physics by
using Quantum Monte Carlo (QMC) methods. The QMC
code carries out diffusion Monte Carlo (DMC) calculations
which are computationally intensive and require high per-
formance computing facilities in order to study realistic
systems. These calculations involve a stochastic simulation
where the configuration space is sampled by many points,
each of which undergoes a random walk. CASINO has

been encoded as a Fortran mixed OpenMP/MPI code that
uses both shared memory and message passing parallelism

and comprises 132 file modules.

In the following we demonstrate how to model the
CASINO application by using the UML constructs intro-
duced in this paper. Due to space limitations, we will
concentrate on those application parts that are most inter-

esting in terms of shared memory and message passing

parallelism.

Figure 17.a visualizes a high-level activity diagram of
the CASINO application. Each subactivity state represents
a portion of the existing Fortran code. The subactivity states
can be further decomposed in order to provide a hierarchical
view of the entire application. Subactivities can be zoomed
in and viewed as a separate more detailed activity diagram.

Figure 17.b elucidates the subactivijonte Carlo
in more detail. Based on values of parameters IRUN and
LBUF one of the three alternative QMC methods is selected:
Diffusion Monte Carlo (DMC), Diffusion Monte Carlo with
buffering (DMC buf), or Variational Monte Carlo (VMC).

Each of these methods is represented by a subactivity state.

The MPI parallelization of DMC employs a master-slave
model, in which a master process sends work to the slave
processes who complete the required work and return the

results back to the master (see Figure 17.c). The numerical
optimization routine runs on the master process and the set

of electron configurations is divided amongst the slaves.

The master process broadcasts the results to the slaves
Each of the slaves evaluates various quantities dependent

on its subset of configurations. The resulting quantities are

503

sent back to the master which determines new values of the
optimization parameters. This cyclic process stops when
the optimization parameter values converge.

The OpenMP PARALLELDO construct is used to par-
allelize two main loops of DMC, which are represented by
subactivitiesinitialize an ensemble of walkeend Explore
the configuration space Figure 17.d. This is again a high
level model, because the loop represented by the subactivity
Explore the configuration spa@®ntains about 500 lines of
code and more than 30 procedure calls. A key advantage of
UML is its ability to represent applications at the desired
level of abstraction and detail. The subactiviiyplore the
configuration spaces represented in more detail in Fig-
ure 17.e. The OpenMP ORDERED construct is used to
ensure that the configurations are copied in the same order
as in the sequential version of the code, which is represented
by action stateCopy the configuration

MPI calls are made from within serial regions of the
code in order to ensure that the code is portable to systems
without thread-safe MPIl implementations. Inside of parallel
regions the MPI calls have been placed within a CRITICAL
region. By doing so, it is guaranteed that MPI calls are
processed sequentially while ensuring that every thread on
every process has a copy of the electron configuration data
(Figure 17.1).

The CASINO application is mapped onto a process
topology (see Figure 17.c) by following the Single Program
Multiple Data approach which is described in (Pllana and
Fahringer 2002). The activity diagram of CASINO appli-
cation is associated with a single claBscessby using
swimlanes An activity diagram may be divided visually
into swimlanes, each separated from neighboring swim-
lanes by vertical solid lines on both sides. Each action
is assigned to one swimlane. In our approach swimlanes
are incorporated to assign the execution of an action or a
subactivity to specific processes. Instances of the &ass
cessare mapped onto processing units of the given process
topology as shown in Figure 17.c.

6 CONCLUSIONS

The emerging of the Unified Modeling Language (UML)
as the de facto standard visual modeling language which
is widely used for modeling object oriented sequential ap-
plications, has unclosed new opportunities for modeling of
parallel and distributed systems.

In this paper, we have described a set of UML building
blocks that model some of the most important constructs
of message passing and shared memory parallel paradigms
which can be used to develop models for large and com-
plex parallel and distributed applications. Moreover, UML
models can be annotated with arbitrary information such
as performance and control flow information which is im-

Pllana and Fahringer

«subactivity+»
Monte Carlo

subactivity+»

Setup the stage for C

[IRUN.NE.4]

«subactivity+»
Initialize MPI environment
@)
O
«subactivity+»
Monte Carlo
O
O
«subactivity+»
Finalize MPI environment
@)
O

[NOT.LBUF]

C BC > CDMCb@ C e

«processingunit»
pO:Process

«processingunit»
p3:Process

«processingunit»
p2:Process

«processingunit»
1:Process

(a) High-Level UML (b) Quantum Monte Carlo (c) Process Topology for 4 Processes
Model of CASINO

/ «critical» \

Broadcast WFDET_SETUP data

——

«subactivity+» I
DMC

«subactivity+»
Setup the stage for DC
-

«broadcast» :)
> «processingunits

Process

Ikcalc

—

«broadcast»

. «processingunit»
Ikpair — >

:Process

«broadcast»
Ikb_real_
phase

«paralleldo»

. . _ «processingunit»
Explore the configuration space >

:Process

E—

«broadcast»
Ikb_cmplx_
phase

«subactivity+» «broadcast»
Move the configuration lkb_occ_sa
o) _0ce_
(@] me_phase
«subactivity+»
Check for acceptance of the move
«broadcast»

iprom_repl_
\V idx

«paralleldo»
Initialize an ensemble of \A(/z:/lgrs

—

«paralleldo»

Explore the configuratior;i%ce
«subactivity+»
Redistribute the rests

(@

7> «processingunit»
:Process

E—

N «processingunit»
:Process

E—

> «processingunit»
:Process

«subactivity+» -
[For each move] Accumulate weighted averages E—
coroadcast processingunit:
«| >
iadd_idx - :Process
«subactivity+» «aclion+_»]
Update the trial energy Copy the conflguran !
o ! —
«broadeasty rocessingunit:
« »
[For each block] [For each walker] isub_idx —> P 'Procesgs

J \ /o J

(d) Diffusion Monte Carlo (e) Explore the Configuration Space (f) MPI Broadcasts within a Critical Region
Figure 17: UML Model for the CASINO Application

504

Pllana and Fahringer

portant for a subsequent performance analysis that usesPllana, S., and T. Fahringer. 2002. On Customizing the

annotated UML models.

We conclude that UML provides a rich set of modeling
concepts, notations, and mechanisms to substantially allevi-
ate the understanding, documentation, and visualization of
the structure and dynamic behavior of distributed and parallel
applications. UML is a widely used standard and, therefore,

offers a substantial advantage compared to approaches that

use ad-hoc or self-defined model representations.

Currently we are in the process to develop a UML based
performance estimation tool named Performance Prophet -
(Fahringer and Pllana 2002). We are building a simulator
that determines the performance behavior of parallel and
distributed applications based on UML models enriched with
performance information for a range of cluster architectures.
The objective is to provide the user with performance in-
formation at an early development stage of an application
without the need to encode full applications.

ACKNOWLEDGMENTS

The work described in this paper is supported by the Aus-
trian Science Fund as part of Aurora Project under contract
SFBF1104.

REFERENCES

Conallen, J. 1999. Modeling Web Application Architectures
with UML. Communications of the ACM2 (10): 63—
70.

Dagum, L., and R. Menon. 1998. OpenMP: An industry-
standard API for shared-memory programmifigEE
Computational Science and Engineeridgl): 46-55.

Fahringer, T., and S. Pllana. 2002. Performance Prophet. In-
stitute for Software Science, University of Vienna. Avail-
able online via<http://www.par.univie.ac.
at/project/prophet> [accessed May 15, 2002].

Hayashi, L., and J. Hatton. 2001. Combining UML, XML
and Relational Database Technologies. The Best of
All Worlds For Robust Linguistic Databases. IRCS
Workshop on Linguistic Databaselsl 5-124. University
of Pennsylvania, Philadelphia, USA.

Holz, E. 1997. Application of UML within the Scope of new
Telecommunication Architectures. IBROOM Work-
shop on UML Mannheim: PhysicaVerlag.

Needs, R., G. Rajagopal, M. Towler, P. Kent, and
A. Williamson. 2000CASINO version 1.0 User’s Man-
ual. Cambridge: University of Cambridge.

OMG 2001. Unified Modeling Language Specification.
Available online via<http://www.omg.org> [ac-
cessed May 15, 2002].

OMG 2002. OMG XML Metadata Interchange (XMI) Spec-
ification. Available online via<http://www.omg.
org> [accessed May 15, 2002].

505

UML for Modeling Performance-Oriented Applications.
In <<UML>> 2002, "Model Engineering, Concepts
and Tools", Springer-Verlag. Dresden, Germany.

Rossetti, M., B. Aylor, R. Jacoby, A. Prorock, and

A. White. 2000, December 10-13. SIMFONE": An

Object-Oriented Simulation Framework. Proceed-

ings of the 2000 Winter Simulation ConferendeA.

Joines, R.R. Barton, K. Kang, and P.A. Fishwick, eds.

1855-1864. Piscataway, New Jersey: Institute of Elec-

trical and Electronics Engineers.

Rumbaugh, J., I. Jacobson, and G. Booch. 1988.Unified
Modeling Language User Guidéddison-Wesley.

Selic, B., and J. Rumbaugh. 1998. Using UML for Mod-
eling Complex Real-Time Systems. Available online
via <http://www.rational.com/products/
whitepapers/100230.jsp> [accessed May 15,
2002].

Snir, M., S. W. Otto, S. Huss-Lederman, D. W. Walker,
and J. Dongarra. 1998PI: the complete reference
Cambridge, MA, USA: MIT Press.

Walther, M., J. Schirmer, P. T. Flores, A. Lapp, T. Bertram,
and J. Petersen. 2001. Integration of the ordering con-
cept for vehicle control systems CARTRONIC® into
the software development process using UML model-
ing methods. INSAE 2001 World Congres®etroit,
Michigan, USA.

AUTHOR BIOGRAPHIES

SABRI PLLANA is a Research Assistant at the Institute
for Software Science, University of Vienna. He received the
Masters degree in Computer Science in 1997 from University
of Zagreb, Croatia. His research focuses on performance
prediction of computing systems by simulation. His email
and web addresses arpllana@par.univie.ac.at>

and <www.par.univie.ac.at/"pllana>

THOMAS FAHRINGER is an Associate Professor of Com-
puter Science at the Institute for Software Science, University
of Vienna. He received a Masters degree in 1988 and a
Ph.D. in 1993, all in Computer Science from the Technical
University of Vienna, Austria. From 1988 - 1990 he was a
visiting scientist at the Engineering Design Research Cen-
ter at Carnegie Mellon University in Pittsburgh, PA. From
1990 - 1998 he was Assistant Professor at the Institute for
Software Technology and Parallel Systems, University of
Vienna. His research focuses on programming paradigms
and software tools for distributed and parallel systems. His
email and web addresses até@par.univie.ac.at>

and <www.par.univie.ac.at/"tf>

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 497
	02: 498
	03: 499
	04: 500
	05: 501
	06: 502
	07: 503
	08: 504
	09: 505

