
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

SIMULATION PROTOTYPING

Ingolf Ståhl

Department of Managerial Economics
Stockholm School of Economics

Box 6501
SE-11383 Stockholm, SWEDEN

ABSTRACT

A simulation model is successful if it leads to policy action,
i.e., if it is implemented. Studies show that for a model to be
implemented, it must have good correspondence with the
mental model of the system held by the user of the model.
The user must feel confident that the simulation model cor-
responds to this mental model. An understanding of how the
model works is required. Simulation models for implementa-
tion must be developed step by step, starting with a simple
model, the simulation prototype. After this has been ex-
plained to the user, a more detailed model can be developed
on the basis of feedback from the user. Software for simula-
tion prototyping is discussed, e.g., with regard to the ease
with which models and output can be explained and the
speed with which small models can be written.

1 THE IMPLEMENTATION ISSUE

Every project, be it a simulation project or some other
kind of management science - decision support project, is
made with the aim leading to success. The important ques-
tion is what constitutes success, when it comes to the use
of a scientifically based system applied to practical situa-
tions. The criteria of success are then usually different
from those of academia, e.g., as used in the evaluation of
doctoral theses, articles in scientific journals or when de-
ciding on tenure.

The criterion for success when it comes to evaluating a
simulation project as applied to a practical problem in busi-
ness is primarily whether or not the results of the simulation
project are really used for supporting decisions. For a simu-
lation model, an additional, but closely linked, criterion is
whether the company not only uses the simulation model
once, but also rather continues to use it on a more permanent
basis, because it really contributed to better decision-
making. The traditional academic criteria when it comes to
evaluating a computer program, of e.g., originality, elegance,
use of the latest available methods, etc., are of less direct
importance. In fact, these criteria matter only to the extent
they in some way influence the success in the form of actual
implementation of the simulation model.

 Our next question is hence what factors improve the
chances of success in the form of implementation. There
has been much research on the factors that have affected
the implementation of different types of management sci-
ence models, which in turn should be relevant for the more
particular field of simulation models. Much of this litera-
ture was written in the 1970’s, when implementation of
models was an issue of focus (see e.g., Bennet and Felton
1974, Churchman 1970, Doktor et al. 1979, Lönnstedt
1971, Mintzberg 1979, Radnor et al. 1970, Schultz and
Slevin 1975).

On the basis of a review of these books and several
others (e.g., Keller et al. 1991), coupled with my own ex-
perience from trying to implement simulation models in
the Swedish construction industry (Ståhl 1981), I have
come to regard certain aspects as fundamental with regard
to the implementation of simulation models.

We can have a situation as shown by Figure 1 below.
We here have a real system, a model builder and a user of
the simulation model.

Figure 1: View of Implementation

With the user we mean a person, or a team of several

persons, that make some decision on the basis of the simu-

l
Ståh

lation model. For the sake of simplicity, we shall below use
the word user, even if it is quite common that one on the
user side has a whole team of persons. Important aspects of
this user role is that the user will be responsible for the
outcome of possible decisions made on basis of the simula-
tion, that the user can decide not only whether or not the
simulation model shall be used, but also how far it shall be
developed. The user is the buyer of the simulation model.
The user, who can be regarded as the “problem owner”,
has special “domain” knowledge about the actual situation.

The model builder, again either a single person or a
team of persons, produces a simulation model, i.e., a com-
puter based simplified representation of this real system.
The role called model builder hence refers to one or several
persons who have special knowledge about simulation
technique, but less knowledge about the problem situation
than the user. The model builder can be an outside consult-
ant or a staff officer, working as an inside consultant.

The implementation of the model must focus on the
perception of the user of the model. In order that the user
shall want to accept this model, the user must think that
this computer model has a good correspondence with the
mental model of the system that the user herself has of the
system. Every person responsible for decisions regarding a
system will in her head have a model or picture of the sys-
tem, where certain simplifications have been made, imply-
ing that some factors in the real system are stressed and
others disregarded. Thus, in business situations certain cus-
tomers or products might be regarded as critical, while oth-
ers are regarded as unimportant. The computer model is
likewise a simplification of the real system, where certain
factors are included, while others are disregarded.

Two important issues arise here. First, a correspon-
dence must exist between the simplifications in the user’s
mental model and the simplifying assumptions of the simu-
lation model. Secondly, the user must be confident that this
correspondence really is at hand. Good correspondence be-
tween the two models is insufficient for implementation, if
the user does not perceive this correspondence, but fears
that the simulation model might be at odds with her own
mental model.

A prerequisite for action is hence that the user under-
stands the main assumptions of the model and feels com-
fortable with them. A situation of false confidence, i.e.,
that a user believes the simulation model to be in line with
her own mental model, when this is not at all the case, is an
unlikely situation, since most users of a model for impor-
tant problems will insist on finding the assumptions of the
model. The question of user confidence or model credibil-
ity is a very important one. When the term user implies a
team of persons, different criteria of what constitutes
credibility can apply. Various formal methods of credibil-
ity assessment are then often suitable (Balci 1998).

For implementation we hence need a simulation model
in which the user can have faith in the sense that it is com-
patible with her own mental model of the studied system. In
order to establish faith in the model, the model builder should
ensure that the user has a basic understanding of how the
model functions and secondly, if the user is not satisfied with
the simulation model, due to discrepancy with the user’s
mental model, adjust the simulation model so that the simula-
tion model comes closer to the mental model of the user.

It is in most cases not efficient with regard to
implementation to try to change the user’s mental model in
case there is a discrepancy. Since, as defined above, the
user of the model is a person with a long experience with
the system at hand, while the simulation model builder’s
expertise lies in the field of simulation technique, the
model will probably not be used, if the developer fails to
adjust it to the mental model of the decision maker. This
does not rule out that the model builder can ask the user
detailed questions to resolve discrepancies between the de-
veloper’s mental model, formalized into the simulation
model, and the user’s mental model. An open discussion
and exchange of ideas is generally productive, but the final
“vote” must be given to the user, since she is the one who
bears the responsibility for the decisions to be made on ba-
sis of the model.

2 CHARACTERISTICS OF THE PROTOTYPE

The question is then first how one can ensure that the user
understands the simulation model and secondly how one
can best adjust the model to correspond to the mental
model of the user. It seems that both tasks are best handled
by a step-by-step approach, implying that one starts with a
very simple model with an easily understood structure. Af-
ter this simple model, the simulation prototype has been
presented and explained to the user, a more detailed model
can be developed on the basis of the feedback obtained
from the user. One can then continue to make the model
more complex, if the user finds this suitable.
 The advantage of starting simple is not only that user’s
understanding of the model is improved, but also that one
can stop the development process at an early stage, if this
is found suitable by the user. The stopping of the develop-
ment process can be done for two reasons:

 1. The user might find that the simulation approach is

unsuitable and it is proper to terminate the whole
development process before too much money has
been wasted. Starting in simulation with a simple
prototype is hence quite a safe strategy compared to
committing oneself already from the beginning to
producing a very complex simulation. It is a strat-
egy that can be recommended especially to corpo-
rations with little experience with simulation and
where one might soon find out that simulation in
some way is incompatible with the normal decision
process in the corporation.

Ståhl

2. The user might find that the prototype model is al-
ready useful enough and that additional complexity
and refinement infers such low marginal utility that
it does not compensate for the marginal costs of
continuing one step further. An important reason
for stopping at an early stage might also be time
pressure. A decision has to be made before a cer-
tain date. Even if a more complicated model might
give more precise answers to the critical questions,
it might be better to act on the basis of less precise
answers than postponing the decision. A quick and
dirty approach to decision making (see e.g., Wool-
sey 1993), using a very simple simulation prototype
model, is in many situations the only practical al-
ternative to not doing any simulation at all.

As regards the question of when to stop, one might of-

ten stop first after the last step of development has proved
to be “a step too far”, i.e., the marginal benefit of the last
step of development was too low. If one had known the
outcome of this last step in advance, one would have
stopped even earlier. The smaller the steps in the develop-
ment process, the less costly the unnecessary last step.
 In many cases the user might, however, not want to
stop the development of the model, having found that
simulation is a very suitable method for investigating the
problem. The user might then want to make the model con-
siderably more complex and “realistic”, containing a great
amount of specific details. We here use the term prototype
for the early smaller model, which contains the essence of
the larger more complex simulation model, and the term
operational simulation model for the larger more complex
model, which serves as a basis for actual decisions, proba-
bly during a longer period of time.
 The dividing line between these two types of model is
not a clear one, since the complexity of the model might
increase gradually. Furthermore, the degree of complexity
does not constitute the only difference between the proto-
type and the operational model. Several other features dis-
tinguish the simulation prototype models from the opera-
tional models; six are listed below.

 1. The efforts spent on making the model efficient

from an execution point of view. Since a proto-
type is not likely to be run over a long time with a
great many users, we do not spend efforts on mak-
ing a prototype model efficient, while we might
spend considerable efforts on making an opera-
tional model very efficient to execute. This execu-
tion efficiency might be important when we run
the model many times, to reach statistically sig-
nificant conclusions and/or to find a strategy that
is “optimal” or at least better than many other in-
vestigated alternatives.
 2. While it is often important to give the operational
model, to be used by many unsophisticated users in
particular situations, a specific user interface, the
prototype model will generally rely on a standard
type of user interface.

 3. The more detailed operational model is in many
cases most properly done in a completely differ-
ent simulation system than that of the simple
prototype model. This will be discussed in greater
detail below.

 4. The developer of the prototype and of the opera-
tional model might be completely different per-
sons. Point 3 above implies different requirements
on the model builder, both as regards knowledge
of simulation techniques and time availability. It
should in this connection be stressed that, since
different people might be working with the proto-
type and with the operational model and since the
time between the finish of the prototype and of the
full operational model might be extensive, it is of
great importance that the prototype model is
clearly documented, in particular with regard to
the assumptions on which the model rests and the
basic logic of the model.

 5. While, as discussed above, it is very important
that the user understands the prototype model, it is
not so important that the user understands the op-
erational model. It might be enough for the user to
know that the operational model is a more com-
plex version of the prototype. The prototype can
be used as a check of the validity of the opera-
tional model. If the overall performance of the op-
erational model in some critical aspects produces
results deviating by only a few percent from those
of the prototype model, then the user’s confidence
in the prototype can be transferred to the opera-
tional model, since it basically relies on the same
type of assumptions. It is in this context of impor-
tance to note that it will generally be impossible to
have the user understand the details of a very
complex model, perhaps consisting of thousands
of lines of code in a difficult-to-understand com-
puter language.

6. The development of the prototype model might be
mainly “self-service”, in the sense that a signifi-
cant part of the initial development of the proto-
type is done by the user herself. The task of the
“model builder” might then be more of a teacher,
showing how simple models can be built. Such
self-service has the advantage of greatly facilitat-
ing the understanding of the model by the user
and her confidence in this. Self-service is, how-
ever, generally unthinkable for a large operational
model. A complex model will have to be con-
structed by a simulation expert.

Stå

Summing up, the prototype simulation model will, or
should, have the following characteristics:

a. It is written in a short time.
b. It is fairly small.
c. It is easy to explain the model to the user.
d. It is easy to judge the validity of the model.
e. The model is used for short period of time, in a

“quick and dirty” way, to solve an immediate prob-
lem, or as the base for a more complicated opera-
tional model.

f. There is no stress on efficiency of execution.
g. There is no use of a specific type of user interface.
h. The prototype model can be produced by the user

in a self-service mode, with the model builder as a
teacher.

i. The assumptions and the basic logic of the model
are documented to enable different programmers
to build a more complex model on the basis of the
prototype.

3 SOFTWARE FOR THE PROTOTYPE

We shall against the background of these main characteris-
tics of the simulation prototype discuss what kind of soft-
ware is most suitable for this type of model. It appears suit-
able to start with an overview of the main types of
simulation systems available. Simulation refers here to “dis-
crete events simulation”, i.e., we leave out the area of con-
tinuous simulation. We find it in this context suitable to dis-
tinguish between the following four main groups of systems:

 1. General Purpose Languages (GPL). A large

amount of simulation is still done in a GPL (like
C, C++, Pascal, Java and FORTRAN), usually
without any major use of standard libraries. (For
simulation in a GPL, see Law and Kelton 1991.)

 2. GPL Based Simulation Languages (GPLBSL).
These are languages that in their core have a GPL,
possibly slightly modified. Some examples are
Simula (based on Algol 60), SIMSCRIPT (based
on FORTRAN), MODSIM (based on Modula),
CSIM19 (based on C++; see Schwetman 2001) and
Silk (based on Java; see Kilgore 2000). Since they
have a GPL, often object oriented, in the core, they
can be used for writing in principle any kind of
program, doing this in a very structured fashion.

 3. Block Based Simulation Languages (BBSL). These
are general-purpose simulation languages, in the
sense that they are applicable to a great variety of
simulation problems. The simulation model can be
represented not only as code, but also as a block
diagram. Examples of such languages are GPSS,
SLAM and SIMAN. They constitute today often
hl

the core of a more extensive system; e.g., ARENA
is built on SIMAN and Awesim on SLAM.

 4. Animation Oriented Simulators (AOS), like
WITNESS, ProModel and TAYLOR, most often
used for the simulation of production system. The
model is usually started by drawing a layout of the
system to be modeled, fitting closely to the anima-
tion that will later be done.

Besides these four kind of systems, simulation can be

done also in other types of systems, such as e.g., spread-
sheets like Excel, packages based on group 2 type of sys-
tems (like DEMOS, based on Simula), simulators based on
program generators with a menu (like CAPS and Draft),
corporation specific simulators (see e.g., Savén 1995), etc.
Many surveys of usage of simulation software, like the in-
vestigation made by McHaney (1996), represented in Table
1 below, provide, however, strong evidence that the bulk of
simulation is done in the four systems presented below.
Hence we shall concentrate on these four systems.

It should here be stressed that animation can be done by
many BBSL. The distinction between a BBSL and an AOS
does not lie in whether animation is possible or not, but
whether the system is transaction or server oriented. The
main implication of this difference, to be discussed further
below, is that in a BBSL a specific server can be repre-
sented in several places, while it in an AOS can be repre-
sented in only one place.

Table 1: Software Used in Simulation Projects

 1. BBSL: GPSS (12.2%), SIMAN, SLAM 30.9 %
 2. AOS: AutoMod, ProModel, WITNESS, etc. 22.0 %
 3. GPLBSL: SIMSCIPT, MODSIM, Simula 10.5 %
 4. GPL: C/C++, FORTRAN, ADA, BASIC 21.3 %
 5. Remaining systems, incl. Excel 15.3 %

4 ARE GPL AND GPLBSL SUITABLE

FOR THE SIMULATION PROTOTYPE?

We first argue that in the context of simulating a project in
a corporation, the GPL is almost always an inferior alterna-
tive, irrespective of whether it is used in the introductory
prototyping phase or the more advanced operational phase.
The GPL seems to be almost completely dominated by the
GPLBSL. The only reasons for using a GPL seems to be
that the GPL that the programmer knows does not have a
corresponding GPLSBL and/or that one wants to avoid the
extra cost of buying the GPLSBL. These factors appear to
be of minor importance. The time of learning the syntax of
a new language is generally outweighed by the great time
reductions in programming gained when having access to
routines for queue handling, statistics collection and analy-
sis, etc. The additional costs of a GPLSBL are generally
also small.

åhl
St

The reported fairly high frequency of e.g., FORTRAN
usage for discrete events simulation must rather reflect
great conservatism and inertia or a preference for spending
many hours programming in a language one is accustomed
to. This choice might be in line with “individual rational-
ity”, but is rarely efficient from a corporate point of view.

Next comparing the three remaining types of systems,
we argue that, while the GPLBSLs have an important role
to play in the operational phase of the simulation project,
they are of less interest in the prototyping phase of the pro-
ject. The reason for this difference is as follows: The main
strength of GPLBSLs is that they allow for any kind of
programming constructs and for very well structured pro-
grams, thanks to many possible hierarchical level (subrou-
tines within subroutines) and object oriented programming
(with inheritance and “detail hiding”). This makes them
very powerful when it comes to very long programs and to
programs, in which many details are modeled at a high
level of precision.

These advantages are, however, not so interesting
when it comes to prototype models that are short and for
which the precision in the modeling is not so important and
when the operational model is not likely to be a direct ex-
tension of the simulation prototype. If one from the begin-
ning knows that one shall produce the operational model
by such a direct extension of the prototype, GPLBLS fea-
tures, such as inheritance, would be of greater interest than
in the case when the operational model is rebuilt from
scratch in another system than the prototype.

On the other hand, the GPLBSLs are inferior to the
two other types of system (BBSL and AOS), when it
comes to the factors that we in the discussion above found
to be important for the prototype models. The main factor
is the ability of the system to facilitate the demonstration
of the basic assumptions of the prototype in a simple man-
ner to the user. GPLBSLs have no standardized way of rep-
resenting the model structure. Possible graphical represen-
tation methods like flow charts seem to be seldom used,
since they do not convey information much better than the
actual code. A big problem is that the code is usually much
longer than the code in e.g., a BBSL, often at least three
times longer, due, among other things, to the need for
many declarations of different types. The code is often also
less self-documenting than that of a BBSL.

For these reasons we rule out also the GPLBSLs when
it comes to the prototype phase of simulation. However,
when it comes to switching from the prototype phase to a
detailed modeling in an operational phase, the GPLBSLs
have a very important role to play. One can start with a
prototype in a BBSL and, after “selling” the ideas to the
user, continue in a GPLBSL, like in the Swedish icebreak-
ing case (Jennergren et. al 1996).
5 COMPARISONS BETWEEN BBSL AND AOS

The remaining comparison is between the BBSL and the
AOS as regards to their suitability in the prototype phase. It
here appears that one must clearly take into account to
what type of situation the prototype model refers. There are
certain situations in which the AOS are very strong with
regard to conveying the “gist” of the simulation. This re-
fers mainly to manufacturing situations, where the anima-
tion of all processes can be carried out in proportional time.

This concept of proportional time must be more
clearly explained. Proportional time implies that the time
compression ratio (time-in-reality/time-on-the-screen) is
constant during at least a substantial part of the simulation.
If, for example, one process takes 5 minutes in reality and
5 seconds on the screen, then a process taking 30 seconds
in reality should in the case of proportional time take 0.5
seconds on the screen.

For many animations this is not true, since one must
“fake” the times in order to make a “pretty” simulation.
Time faking is frequent in animation of service processes.
Take, for example, the classic barbershop, where a haircut in
reality takes 20 minutes, while it takes 10 seconds to move
from the waiting chair to the barber’s chair. If a haircut in
the animation takes 6 seconds, i.e., we have a time compres-
sion ratio of 1200/6=200, then moving between the chairs
should take only 10/200=0.05 seconds on the screen. This is
too short a time for the human eye to recognize as anything
else but a sudden jump. Hence in order to have a “neat”
animation, one might allow, for example, 2 seconds for this
movement, implying a time compression ratio of 5, i.e., 40
times smaller than that used for the haircut.

In situations where one can make a nice animation of
physical processes with the same time compression ratio for
all processes, the AOS have a great value in conveying im-
portant information about the prototype model. However, in
situations where one is forced to choose between the three
evils of either 1. running a boring animation for a long time
without much happening, 2. distorting reality by having dif-
ferent time compression ratios or 3. having the animation
very jumpy, animation systems are not helpful in conveying
the main idea of the model to the user. In these situations
one might often do just as well without animation.

Animation might furthermore not be very informative,
when the simulation mainly deals with “invisible processes”
such as message flows, cash flows and other accounting fea-
tures, e.g., costs and profits. One must then choose symbols
that often do not lead to much better model understanding
than one could obtain by presenting graphs and text. This is
often just as easily done in a BBSL.
 Even if the animation-based system can provide signifi-
cant benefits, like for manufacturing system with constant
time compression, one might in some cases still prefer the
BBSL. One reason for this is that the model logic of the AOS
would be much more complicated than that of the BBSL.

Ståh

 As mentioned briefly above, in an AOS each perma-
nent server is in principle only represented once, since it in
the animation workspace, representing e.g., the factory
floor, must be in only one place. In a BBSL a permanent
server can be represented in many different places, since
we here follow the temporary entities and, if different enti-
ties use the same server, this usage of the server can take
place in different parts of the program.

This difference is important when it comes to establish-
ing what kind of models a user will be able to write on their
own after a short amount of learning time. When using an
AOS, only certain simple systems are very easy to model,
namely when each server only serves one type of temporary
entity and only does so once. Hence, a system where each
product has its own machines, each visited once, is easy to
model. You just place the machines in the work area and
draw the paths from the entry source through the machines
to the exit. For each machine you just input the processing
times. This is exemplified in Figure 2.

A source
A1-time A2-time

A sink

B source B1-time B2-time
B sink

Figure 2: Each Product has its Own Machines

If one machine, however, processes more than one

product, modeling becomes considerably more compli-
cated. You must then have rules for determining which
processing time applies to which product, as exemplified in
Figure 3, and which path, leading from the machine, each
product should take, as exemplified in Figure 4.

B source

A + B
sink

A source

IF A: A1-time

IF B: B1-time

IF A: A2-time

IF B: B2-time

Figure 3: Two Products Use the Same Machines

 While the user has to write code that is complicated
for the beginner, inside the dialog of the servers in the
AOS, the logic is just as simple is the two second examples
as in the first one in the BBSL. The simple logic structure
of figure 2 applies in all three cases for the BBSL, since
e.g., the same machine can in one place have one time and
in another place another time.
l

Figure 4: The Products Also Choose Paths

The logic in the AOS becomes even more complicated
if a transaction comes to the same server several times. This
is illustrated by “the Boris vodka shop problem”, where we
instead of machines have humans and instead of products
have customers: “At a store, run by Boris and Naina, cus-
tomers arrive at rate of 7 + 3 minutes. A customer first goes
to Boris and chooses his bottle. This takes between 3 and 7
minutes. Next he goes to Naina to pay for the bottle. This
also takes 3 to 7 minutes. Finally, he returns to Boris to pick
up his bottle. This takes between 1 and 3 minutes. He then
leaves the store. There is one waiting line in front of Boris
and one in front of Naina. A customer returning to Boris to
pick up his bottle has to start at the end of this line again.
The store is closed after eight hours”.

This example has been used in two “pseudo-
experiments” for comparisons between AOS and BBSL.
The first experiment was carried out in September 1996
with a class of Latvian students with no prior experience of
simulation at the Riga Technical University. Half of them
had four hours of an AOS (WITNESS), the other half four
hours of a BBSL (GPSS). At the end of each of these ses-
sions, the students were asked to model the Boris problem.
While none of the AOS students could do this, all the
BBSL students could do so. The second “pseudo-
experiment” was carried out with vendors at the Winter
Simulation Conferences in the late 90s. The vendors of dif-
ferent systems were asked to solve the Boris problem using
their own system. While the BBSL vendors could solve
this problem in less than five minutes, all of the AOS ven-
dors required more than 30 minutes. Figure 5 shows the
complicated logic in an AOS.

A source

IF 1st time

IF 1st time: A1-time

IF 2nd time: A2-time

IF 2nd time

A3-time

2nd time

A sink

1st time

Figure 5: The Boris Model in an AOS

A source

 B
 source

A sink

 A
source IF A:

 IF B:

 IF A: A1-time

IF B: B1-time

A2-time

B sink B2-time

Ståh

The logic in the BBSL is much simpler. This can be
exemplified by Figure 6, showing the block diagram of the
whole program in one GPSS dialect (micro-GPSS, Stahl,
1990).

The reason for the difference in complexity is that an
AOS requires Boris to be located at one spot and the pro-
gram must then for each customer keep track of whether he
comes to Boris for the first or the second time. In the
BBSL, Boris is “seized” in two different places.

Another factor speaking for using a BBSL rather than
an AOS for the prototype is the possibility of good docu-
mentation. This is very important for the user of the proto-
type when trying to understand the logic of the prototype
program. As regards documentation, some BBSLs have the
advantage of providing both a compact and readable text
version of the program as well as an easy-to-read, but de-
tailed, block diagram presenting the logic of the model (see
e.g., Figure 6). One can start by looking at the main struc-
ture of the block diagram, before looking at the details of
the program syntax. In some AOS there is no unified, easy-
to-read, listing of all the code involved, but the understand-
able code parts are scattered over a set of input dialogs. In
other types of AOS, the documentation provided automati-
cally is not clearly coupled to the way in which the model
was originally constructed in dialogs and hence more diffi-
cult to understand.

Figure 6: The Boris Model in one BBSL

It should, however, be noted that for many manufac-

turing situations with proportional time representation,
these two disadvantages of AOS are small compared to the
great benefits that the visual representation has in convey-
ing the main modeling ideas of the simulation to the user.
l

The conclusion is hence that the relative merits of
AOS and BBSL are really quite dependent on the actual
system to be simulated. There is clearly no type of system
that is better for all types of prototype models. The choice
of software to be used for the prototype, an AOS or a
BBSL, must be determined on the basis of what type of
situation is to be modeled.

REFERENCES

Balci, O. (1998) Verification, Validation, and Testing. In

J. Banks (ed.) Handbook of Simulation. Wiley, N.Y.
Bennett, J. and E.L. Felton, Jr. (1974) Managerial Deci-

sion Making: Case Problems in Formulation and Im-
plementation. Grid Inc., Columbus.

Churchman, C.W. (1970) Managerial Acceptance of Scien-
tific Recommendations. In A. Rappaport (ed.) Infor-
mation for Decision Making. Prentice Hall, Engle-
wood Cliffs.

Doktor, R., R. L. Schultz and D. P. Slevin (eds.) (1979)
The Implementation of Management Science. Studies
in the Management Sciences, Vol. 13. North-Holland,
Amsterdam.

Jennergren, L.P. , L. Lundh, U. Törnqvist and S. Wandel.
(1995) Icebreaking Operations in the Northern Baltic.
In H. J. Miser (ed.) Handbook of Systems Analysis:
Cases. Wiley, Chichester, U.K.

Keller, L., C. Harell and J. Leavy (1991) The Three Reasons
Why Simulation Fails. Industrial Engineering, April.

Kilgore, R. (2000) Silk, Java and Object-Oriented Simula-
tion. In J. Jones, R. Barton, K. Kang and P. Fishwick
(eds.) Proceedings of the 2000 Winter Simulation Con-
ference, 246-252. SCS, Orlando.

Law, A. M. and D. Kelton (1991) Simulation Modeling and
Analysis. McGraw-Hill, NY.

Lönnstedt, L. (1971) OR in corporations listed on the stock
exchange - A problem of innovation and adjustment
for the individual and the organization. (In Swedish)
Bonniers, Stockholm.

McHaney, R. 1996. Simulation project success and failure:
Some survey findings. Working paper, Deparment of
Management, Kansas State University, Manhattan.

Mintzberg, H. (1979) Beyond Implementation - An
Analysis of the Resistance to Policy Analysis. In Ha-
ley (ed) Operations Research ‘78. North-Holland.,
Amsterdam.

Radnor, M., A. Rubinstein and D. Transik (1970) Imple-
mentation in Operations Research and R&D in Gov-
ernment and Business Organizations. Operations Re-
search. Vol 18, 967-991.

Schwetman, H. (2001) CSIM19: A Powerful Tool for
Building System Models. In B. Peters, J. Smith, D.
Medeiros and M. Rohrer (eds.) Proceedings of the
2001 Winter Simulation Conference, 250-255. SCS,
Arlington, VA.

Ståhl

Schultz, R.L. and D.P. Slevin.(eds.) (1975) Implementing

Operations Research/Management Science. American
Elsevier, New York.

Savén, B. Business modeling for decision support and
learning: A study of discrete production simulation at
ASEA/ABB 1968-1993. (In Swedish) Linköping Stud-
ies in Science and Technology. Dissertation No. 371.

Ståhl, I. (1981). Budget simulation within the construction
industry EFI Working Paper, Stockholm.

Ståhl, I. (1990) Introduction to Simulation with GPSS - on
the PC, Macintosh and VAX. Prentice Hall, Hemel
Hempstead, UK.

Woolsey, G. (1993) Where we were, where we are, where
we are going, and who cares? Interfaces TIMS. Vol.
23, 5: 40-46.

AUTHOR BIOGRAPHY

INGOLF STÅHL is a Professor at the Stockholm School
of Economics, Stockholm, and has a chair in Computer
Based Applications of Economic Theory. He has taught
GPSS for 25 years at universities and colleges in Sweden
and the USA. Based on this experience, he has led the de-
velopment of the micro-GPSS and WebGPSS systems. His
email address is <ingolf.stahl@hhs.se>. His
simulation web-address is <www.webgpss.com>.

mailto:ingolf.stahl@hhs.se

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 572
	02: 573
	03: 574
	04: 575
	05: 576
	06: 577
	07: 578
	08: 579

