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ABSTRACT 

This paper outlines the features of an automated Decision 
Support System (DSS) developed to optimize the logistics 
of maritime transportation for a large chemical company. 
The paper focuses on the design and implementation of an 
optimization module to complement a DSS architecture in-
cluding dynamic databases, decision heuristics, and dy-
namic process simulation, for the systematic generation of 
cost-effective fleet configurations capable of meeting the 
company’s production requirements.  

1 INTRODUCTION 

Experiential knowledge plays a key role in the effective 
management of complex industrial processes. The devel-
opment of an automated Decision Support System (DSS) 
involves not only the accurate modeling of the logical steps 
followed by the industry experts, but also the ability to 
capture unspoken criteria of choice among decision alter-
natives, which highly depend upon the particular situation 
at hand. This paper presents the key issues and the major 
steps undertaken as part of an on-going project in transpor-
tation logistics for the automation of an integrated Decision 
Support System (DSS) to optimize the logistics of mari-
time transportation for a large chemical company, which 
runs multiple operations in geographically distributed pro-
duction sites. The DSS, previously developed as part of the 
same project, is an interactive tool capable of generating 
alternative logistic configurations in an expert-assisted way 
and to test their performance through simulation. 
 In the existing architecture, a set of decision heuristics 
provides the general framework for the systematic defini-
tion of a family of logistic configurations. The identifica-
tion of a particular solution within the family depends upon 
the customization of the heuristic algorithms and criteria 
built into the corresponding DSS module. The heuristic 
module contains the algorithms and criteria for flow group-
ing, route definition and vessel selection, to systematically 

 

generate product transportation scenarios once a set of de-
cision parameters has been fixed for the specified case. The 
proposed optimization module uses Artificial Intelligence 
(AI) techniques based on Genetic Algorithms (GAs) to 
suggest specific values for the case-dependant parameters, 
which customize the algorithms and criteria built into the 
decision heuristics to suit the particular situation (problem) 
at hand. Based on such customization, the logical flow of 
the heuristic decision steps automatically generates a tenta-
tive configuration of transportation routes and resource al-
location, which can be tested for actual effectiveness in the 
process simulation environment. The feasibility and effec-
tiveness of each configuration needs then to be tested in the 
real context of the whole product movement strategy. It is 
the simulation module which provides the context for this 
performance test. The outcome of the simulation test is fed 
back to the GAs where it serves as guideline for the gen-
eration of improved sets of customization parameters 
(Bruzzone, Giribone, and Revetria 2002, Giribone, Orsoni, 
and Revetria 2002). The same procedure is iterated until 
the optimal logistic configuration is found. During this it-
erative process, in the search for the optimum solution, the 
impact of each logistic configuration can be tracked over 
time in the dynamic simulation environment to assess their 
long, medium, and short term impact on performance. Per-
formance is here intended as the combined performance of 
the logistic and of the production divisions of the company.  

2 THE ROLE OF HEURISTICS  
IN THE DECISION PROCESS 

The complex nature of fleet management in maritime lo-
gistics involves highly interdependent decision processes, 
which lead from a list of product transportation require-
ments specified by the Production Division, to a corre-
sponding set of fully configured ship missions capable of 
meeting such transportation requirements in a cost effec-
tive way. In particular, the information pertaining each 
product transportation requirement includes the monthly 
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product quantity and the corresponding ports/plants of ori-
gin and destination. The fully configured ship missions are 
specified in terms of product aggregations, transportation 
routes, resources (ships) allocation and estimated departure 
times (slots) for each of the ports involved in the mission 
(Bruzzone et al. 2002). 
 While several approaches can be pursued for the opti-
mization of the entire product transportation network (e.g. 
Artificial Intelligence techniques, Linear Programming, 
Simulation, etc.) none of them can address the whole prob-
lem alone. The closest problem formulation which finds 
analytical solution is the Vehicle Routing Problem (VRP), 
however, the fleet management problem, as proposed in 
this paper, is far more complicated than the conventional 
VRP (Golden 1991, Toth and Vigo 2001): there is not a 
fixed vessel capacity (ships are only available in a range of 
commercial sizes which vary according to their product 
abilitation), and the quantities of products to be shipped to 
and from the various destinations are known only in terms 
of cumulative monthly (product) flows. In addition, safety 
regulations impose compatibility constraints on the prod-
ucts to be loaded on the same ship. Therefore, a direct ap-
plication of the VRP solving algorithm is not a viable ap-
proach in this case. The computational class of the problem 
is NP-Complete and it can only be optimized using heuris-
tic approaches. Until the most recent past, the company’s 
way to deal with the logistic fleet management problem 
was “expert-centered”, which means that it relied on a 
combination of semi-quantitative techniques and experien-
tial rules in order to ensure the feasibility and effectiveness 
of the solution. In such an approach the judgment of the 
subject matter expert appears to be the most value-adding 
contribution. Building from this experiential knowledge 
base the proposed approach and, particularly, the heuristic 
module provides a formalization of the logical steps actu-
ally followed by the experts in the formulation of a logistic 
fleet configuration. 
 The simulation module performs feasibility (i.e., abil-
ity to complete all the required transportation missions 
within the specified deadlines) tests and cost-effectiveness 
tests on a well defined scenario (Bruzzone and Kerckhoffs 
1996): the proposed logistic configuration. In order to pro-
vide actual support in the decision making process a spe-
cialized module is required for the definition of product 
transportation missions capable of meeting the needs of the 
processing plants. In response to these perceived needs a 
decision heuristic module was designed, as a step by step 
tool, which starting from an exhaustive list of transporta-
tion requirements (representative of the whole company’s 
transportation needs) enables the user to group product 
movement orders into product transportation missions, to 
specify the corresponding transportation routes, and to as-
sociate one or more vessels of given type and size to each 
defined mission. In its original design the heuristic module 
can be used either as an interactive tool, by industry ex-
perts (manual operation mode), or as a semi-automated, 
propositive, tool by less experienced users. When run as an 
interactive support the heuristic module enables the user to 
manually select the product flows which define the indi-
vidual missions and evaluates the effectiveness of each 
mission in terms of navigation distance, percentage utiliza-
tion of vessel capacity, and cost. When run as a semi-
automated tool, the heuristic module lists a number of fea-
sible solutions on a by-mission basis ranking them by 
overall distance, effective use of vessel capacity, and cost. 
Based on such ranking the user may select one or more of 
the proposed plans for further testing through simulation. 
Finally, the resource requirements of the chosen plans are 
spread over a weekly calendar, subject to a reality check on 
the actual availability of such resources, on the current 
status of on-going transportation missions, and on the cur-
rent production/raw materials stock available at the chemi-
cal plants, to ensure the feasibility of each mission. In or-
der to perform such reality checks, the heuristic module 
interacts with dynamic databases which are constantly up-
dated with current information respectively from the simu-
lation module (status of on-going missions) and from the 
production plants (production/raw materials currently in 
stock.) The full automation of the decision process built 
into the heuristic module can only be obtained running it in 
an “optimizer” mode in conjunction with the GAs-based 
optimization module, which links the performance out-
comes of the simulation model, on a selection of proposed 
logistic configurations, to the corresponding settings of the 
case-dependant parameters required for the customization 
of the decision heuristics. The full automation of the deci-
sion process built in the heuristic module entirely depends 
upon the automated choice of such case-dependant pa-
rameters. The specification of such parameters univocally 
determines the outcome of the heuristic module, which is 
bound to produce a deterministic configuration of routes 
definition and resource allocation from the systematic ap-
plication of the built-in criteria and algorithms, at each de-
cision step. While such parameters in the interactive and in 
the semi-automated operation modes are specified by the 
user, leading to logistic configurations which are as good 
as the experience and knowledge of the user, in the auto-
mated optimizer mode they are specified by the GAs, thus 
excluding the need for user intervention. The procedure is 
automatically iterated until no further improvement is 
found in the performance measures.  
 The major advantage of using GAs in the optimization 
process is that the search for the optimum solution begins 
from an entire “population” of scenarios and, thus, from 
multiple points in the space of the possible solutions, 
which highly increases the chances of finding the actual 
optimum, rather than a sub-optimum (Goldberg 1989). In 
addition, GAs are based on stochastic rather than determi-
nistic rules, which further improves the effectiveness of the 
search (Goldberg 1989, Koza 1992). 
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3 THE CASE-SPECIFIC PARAMETERS  
IN THE DECISION PROCESS 

The logical flow of decision steps required to define the set 
of ship missions capable of meeting the production re-
quirements specified by the production division is repre-
sented in Figure 1. 
 

 
 

Figure 1: Logical Flow of Decision Steps 
 
 Specifically, the first step involves the formulation of a 
first attempt solution, by simple aggregation of the product 
flows into tactical missions. Product flows are monthly 
transportation requirements specified in terms of total 
amount (tons), ports of origin and destination. Tactical Mis-
sions are entities, which identify the lists of ports to be 
reached, their sequence, and the amounts of the different 
products to be loaded and unloaded in each port. Flow 
grouping, Time Grouping, and Sequencing are the corre-
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sponding heuristics sub-modules which lead to the definition 
of Tactical Missions. The Flow Grouping heuristic requires 
the specification of two decision parameters for product ag-
gregation purposes: the first one is the “distance coefficient” 
which constrains the area of the search for compatible flows 
to the one which makes the aggregation cost efficient in 
terms of added navigation distance. Product aggregation into 
missions starts from the maximum product flow in the list of 
transportation requirements (i.e., the current maximum not 
yet aggregated into a mission) and expresses the extension 
of the cost-efficient aggregation area in terms of distance 
from the segment (OD)max. The length of  (OD)max represents 
the distance between the ports of origin and destination for 
the identified maximum flow. The maximum distance from 
such segment for a port to be included in the mission’s se-
quence can be expressed as the product of the distance coef-
ficient and the length of (OD)max. The second decision pa-
rameter to be set for Flow Grouping purposes is the 
“coefficient of unused capacity” which measures the toler-
ance on capacity utilization as a percentage of the capacity 
already committed (i.e., the maximum capacity committed 
as a result of prior aggregations within the same mission) on 
each leg of the mission’s route (a leg is the portion of a route 
between two subsequent ports). This parameter is used to 
assess the convenience of flow aggregation based on its im-
pact on overall capacity utilization.  
 The Time Grouping heuristic enables to allocate 
monthly ship capacities to each group of product flows pre-
viously defined. Each flow is analyzed in terms of monthly 
fluctuations from the average on the temporal horizon of in-
terest: the “uniformity level” parameter discriminates which 
portion of the flow can be allocated a fixed monthly capacity 
(corresponding to either Time Charter or COA contracts), 
and which portion needs to be treated as contingency and 
thus dealt with through occasional ship hires (corresponding 
to Spot contracts). The uniformity level expresses the per-
centage of the monthly average which is accepted as toler-
ance on the monthly fluctuations for the purposes of allocat-
ing a fixed ship capacity. Once the uniformity level is 
specified, each product flow can be split into a “uniform” 
and a “residual” component, which are separately handled in 
the subsequent decision steps. The Sequencing heuristic 
completes the definition of the Tactical Missions by specify-
ing the most effective order in which the ports involved in 
each mission need to be reached. Each Tactical Mission 
needs to be further specified in terms of its constitutive Ship 
Missions: in other words it is necessary to allocate commer-
cial ship types and capacities to handle the cumulative 
monthly capacities previously committed as part of the Flow 
Grouping and Time Grouping decision steps. The ship class 
(i.e., vessel type and capacity) is assigned according to the 
nature of the product(s) to be shipped and according to pro-
duction sustainability considerations (e.g. plants’ storage ca-
pacity and production/consumption rates). In particular two 
decision parameters need to be specified in order to make 
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flow sustainability assessments in relation to the number of 
ships allocated and their types. These assessments involve 
stock-out and over-stock risk analyses on the storage capaci-
ties available at the production sites. A first decision pa-
rameter is the “Impact Factor” which is used to adjust the 
impact of location and facility-specific factors affecting the 
ship’s cycle time on a mission. Each Port and Terminal for 
instance are characterized by a Port/Terminal Factor which 
is a function of the nationality of the port and of its average 
traffic level (Fleming 1997). Such factors affect the duration 
of the wait times and operation times of the ship in that par-
ticular port (Frankler 1987). The second decision parameter 
is a boolean variable which abilitates either an optimistic or 
a pessimistic “sustainability hypothesis” regarding the stor-
age capacity of the origin/destination plants for a given 
product. The optimistic hypothesis allocates the entire stor-
age capacity to the flow for risk analysis purposes, whereas 
the pessimistic hypothesis allocates to the flow a fraction of 
the whole capacity proportional to the corresponding per-
centage of the total flows insisting on the same storage facil-
ity. Once flow sustainability has been verified for a given set 
of ship classes, the Ship Mission is defined and specific re-
sources need to be assigned choosing the corresponding ship 
contracts and fixing their estimated arrival/departure time 
slots to/from each of the mission’s specified ports. The se-
lection of a particular type of contract, either Time Charter, 
COA or Spot, for a given ship mission is based upon Cost 
Factors which are contract-specific and reflect the current 
market trends in terms of daily cost of hire per unit capacity 
(ton) as well as the number and types of ships already hired 
by the company. Knowing the due dates (i.e., acceptable 
time slots) of each product flow, the speed of each allocated 
ship and the types of operations that they need to perform in 
each port, it is possible to determine the estimated arri-
val/departure times of each ship to/from each port, and thus 
check for possible dock/facility accessibility conflicts when 
spreading the different Ship Missions over a timetable. A set 
of four decision parameters need to be specified in order to 
enable Conflict Resolution, in case of overlapping time slots. 
In the first place it is necessary to specify the Priority Factor 
for each of the flows present on board, which is a function of 
the potential production losses caused by the late arrival of 
the ship. The second and third decision parameters are the 
Ship’s Cost Factor and the Penalties Weight Factor which 
directly depend upon the daily cost of the ship, as specified 
by the contract, when used within the terms of the contract 
and beyond the terms of the contract, respectively. The last 
decision parameter for conflict resolution purposes is the 
Time-Frame Factor which accounts for the nearest due date 
(time slot) of each of the flows on board. As explained in the 
following, the decision parameters identified in this section 
will be the objects of GAs-based optimization for the pur-
poses of generating feasible and cost-effective fleet configu-
rations. The decision heuristics module performs prelimi-
nary feasibility tests at each decision step to ensure that the 
applicable process constraints are not violated in the pro-
posed solution: once a product flow is chosen for aggrega-
tion on a tactical mission, the tool verifies the compatibility 
among the products on board of the same ship, the ship clas-
sification (oil, gas, chemical) and the availability of arri-
val/departure docking facilities and equipment (Nevins et. al 
1998, Thiers and Janssens 1998). If one or more constraints 
are violated a warning is flagged, otherwise a first attempt 
solution is created. Further iterations of the procedure will 
try to improve the quality of the solution by optimizing ship 
and dock utilization using real-time information (estimated 
arrival time, estimated departure time, docks schedule, re-
source schedule, etc.). The output configuration is tested 
through simulation in order to evaluate its performance and 
its robustness: the heuristic results are obtained under a set 
of assumptions, which may be far from realistic because 
each step of the actual process is strongly influenced by the 
effects of stochastic variables. Simulation allows the users to 
estimate not only the performance of a particular solution, 
like an analytical model, but also the corresponding confi-
dence level. The robustness of the simulation results will be 
a measure of the effectiveness of the proposed solution. 
 The output of the simulation model is fed back either 
to the expert or to the genetic algorithm (depending on 
whether the system is run in interactive or automated 
mode) for further improvement of  the proposed solution; 
in the automated mode the mechanism of solution im-
provement is of key importance towards the optimization 
process because the whole system is run in closed loop.  

 
4 THE GA-BASED OPTIMIZATION MODULE 

The automated  optimization of the route definition and re-
source allocation process is based upon heuristic algo-
rithms which enable the formulation of a complete product 
movement scenario, once a set of  scenario-specific pa-
rameters have been fixed. Such parameters, highly depend-
ent upon the particular situation at hand, for instance the 
geographic area of interest, the temporal horizon of inter-
est, the monthly distribution of product flows and any con-
tingent need that may arise, which in the current company 
practice, are typically estimated by operations managers 
based on their experiential knowledge about the process 
and based on their personal judgment. Variations in the 
choice of such parameters significantly impact the out-
comes of the heuristic algorithms and thereby the logistic 
scenario suggested by the system. For instance, for the 
purposes of product flows aggregation in tactical missions, 
the choice of a particular distance coefficient, limiting the 
maximum distance of a port to be included in the mission, 
highly influences the number of product flows which can 
be considered for aggregation and also the overall length/ 
duration of the mission. These constraints, in turn, drive 
the number and the capacity of the ships required to per-
form the specified mission, and thereby influence the 
choice of the corresponding types of contracts. If the dis-
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tance coefficient was arbitrarily set to a default value not 
entirely supported by specific knowledge about the process 
for the particular case to be addressed, it would lead to the 
definition of a logistic configuration of routes and resource 
allocation which could be sub-optimal in terms of overall 
service costs. Another interesting example of case-specific 
parameter is the uniformity level in the context of the Time 
Grouping heuristic algorithm (Section 3). A high flow uni-
formity level, and thus a very tight tolerance on the 
monthly fluctuations of each product flow leads to a high 
utilization of the ship capacity allocated to the uniform 
component of the flow, however it may generate an excess 
of monthly residual flow components to be managed as 
contingencies. Such situation may lead to a logistic con-
figuration far from optimal, depending on the contingent 
price of the capacity unit (ton) for the ship type and capac-
ity class required. The setting of the uniformity level needs 
to be chosen considering simultaneously all the company 
transportation requirements and cannot be fixed to a de-
fault value, for an efficient utilization of the fleet. 
 In order to minimize the problems associated to bad 
parameter settings, this research proposes the development 
of an optimization module based upon GAs. The main 
function of the GAs-based optimization module is to sup-
port the choice of such parameters settings considering the 
particular type and amounts of product flows and the pre-
sent performance objectives, in relation to the vessels al-
ready available (under contract), and the current costs of 
new hires, by contract type and capacity class. 

5 INTERACTIONS AMONG GAS,  
HEURISTICS, AND SIMULATION 

The interactive use of AI techniques and simulation consti-
tutes a hybrid approach, which the authors have extensively 
applied to address complex decision making issues in supply 
chain management. The approach has successfully supported 
the development of DSSs typically combining either artifi-
cial neural networks (ANNs) or genetic algorithms (GAs) 
with simulation in a variety of industrial contexts (Giribone 
and Bruzzone 1997, Bruzzone and Signorile 1998). The 
choice among the possible AI techniques highly depends on 
experiential knowledge in the area of application and on the 
specific optimization problem within such a context. GAs 
are capable of handling relatively complex combinatorial 
problems and to manage large numbers of process variables 
without any training on historical data. 
 Each iteration can be seen as an evolutionary step in 
which the least efficient solutions are discarded. The next 
iteration is an attempt to improve the remaining solutions 
through mutation and cross-over techniques. 
 Although both ANNs and GAs show a good optimiza-
tion potential in their combination with simulation, the logis-
tics of fleet management seems to be better addressed using 
GAs, given the lack of historical data relevant to the specific 
optimization areas and the large number influencing factors 
which affect the choice of the decision parameters. 
 GAs present several advantages in their application to 
optimization problems: their search for the optimum begins 
from an entire population of solutions, and thus from mul-
tiple points in the space of the possible solutions, thereby 
increasing the chances of finding the actual optimum rather 
than a local sub-optimum. Moreover, GAs base their 
search on stochastic rather than deterministic rules, which 
further increases the effectiveness of the search. 
 In the proposed DSS architecture the GAs-based opti-
mization module is interfaced to the simulation module 
through a heuristic module which contains all the criteria 
and algorithms required for the specification of the logis-
tic configuration. The heuristic module consists of multiple 
sub-modules which represent the logical steps that logistics 
managers would follow to determine the means and the re-
sources required to satisfy the plants production require-
ments. Each sub-module has built in constraints and re-
quirements which are typical of the real system. 
  Specifically, these are compatibility constraints (i.e., 
among products for aggregation, between product and ship, 
between product and dock equipment, capacity constraints, 
and dock accessibility constraints (space-wise and time-
wise). The need for this intermediate structure is determined 
by the complexity of the problem which, as mentioned be-
fore, recalls a complex version of a nested VRP, in which 
neither the size of the vessel, nor the route, nor the type of 
product is fixed. Such problem complexity leads to the need 
to narrow the areas of optimization, while searching for a 
global optimum across the entire set of product flows. While 
each decision step is taken simultaneously for the whole set 
of product flows, the outcomes of each step necessarily in-
fluence the decisions taken in the following step, creating a 
chance for sub-optimization in an application context in 
which decisions are so highly interdependent. It is in such 
respect that verification of the logistic strategies through 
simulation becomes of vital importance to test the perform-
ance of the individual choices not just from the perspective 
of the single ship mission, but from the perspective of the 
whole product movement plan. These interactions among 
the different DSS modules are shown in Figure 2. 
 The optimization module consists of a set of GA-based 
modules, which are fed with specific data characterizing the 
optimization context and return a first attempt set of deci-
sion parameters. Once the settings of such parameters have 
been finalized, the heuristic module univocally generates a 
routes configuration and resources allocation plan, which is 
then tested for feasibility and cost effectiveness through 
simulation. The overall cost of the first at tempt solution, 
as calculated by the simulator, will be used as guideline in 
the GAs-based optimization module for a new iteration. 
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Figure 2: Logical Flow of the Optimization Process 

6 STRUCTURE OF THE GA-BASED MODULE 

As mentioned in the previous section, GAs search for the 
optimal configuration starting from a population of first at-
tempt solutions. This population consists of individuals 
(e.g. strings of characters) whose chromosomes represent a 
potential solution of the optimization problem (e.g. a logis-
tic configuration). The genes of such chromosomes, in-
stead, define the set of optimization parameters described 
in Section 3 of this paper. The encoding proposed for the 
implementation of GAs in this particular application con-
text involves the following genetic coding of the chromo-
somes, explained in Table 1 (A1, A2, A3, A4, A5, A6, A7, 
A8, B1, B2, B3, B4). 
 Any individual of this kind contains the complete set of 
information for the customization of the heuristic algo-
rithms. This information, along with the specification of a 
particular scenario, enables the automatic generation of a 
consistent logistic configuration of routes and resource allo-
cation. The target function evaluated by the simulation for 
such a logistic solution measures the individual’s “fitness” 
and constitutes a starting point for GAs-based optimization. 
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Table 1: Genetic Encoding of Optimization Parameters 

A1  Distance Coefficient (Flow Grouping) 
Float 1.0 ! 2.5, step 0.2 (8 combinations) 

A2 Unused Capacity Coefficient (Flow Grouping) 
Float 0.0 ! 127.0, step 16 (8 combinations) 

A3 Uniformity Level (Time Grouping) 
Float 0.0 ! 127.0, step 16 (8 combinations) 

A4 Impact Factor Coefficient (Ship Selection) 
Float 0.5 ! 2.0, step 0.1 (16 combinations) 

A5 Sustainability  Hypothesis: Optimistic [0] versus 
Conservative [1]  (Ship Selection) 
Boolean 0/1 (2 combinations) 

A6 Cost Factor for Time Charter (Contract Selection) 
Float 1.0 ! 1.3, step 0.1 (4 combinations) 

A7 Cost Factor for COA (Contract Selection) 
Float 1.0 ! 1.3, step 0.1 (4 combinations) 

A8 Cost Factor for Spot (Contract Selection) 
Float 1.0 ! 1.3, step 0.1 (4 combinations) 

B1 Flow’s Priority Factor (Conflict Resolution) 
Float 1 ! 1280, step 80 (16 combinations) 

B2 Ship’s Cost Factor (Conflict Resolution) 
Float 1 ! 1280, step 80 (16 combinations) 

B3 Penalties’Weight Factor (Conflict Resolution) 
Float 1 ! 1280, step 80 (16 combinations) 

B4 Time-Frame Factor (Conflict Resolution) 
Float 1 ! 1280, step 80 (16 combinations) 

 
 The initial structure of a genetic program is the initial 
population of strings. Each string in the initial structure is 
randomly chosen out of a uniform probability distribution. 
A specified target function serves the purposes of system-
atically measuring the “fitness” of each individual in the 
initial structure as well as the fitness of all the successive 
generations proposed by the GAs.  
 For the purposes of this study the target function is de-
fined as a multi-objective function combining in a weighed 
sum the following performance measures: 

 
• Total Product Movement Costs 
• Total Fleet Costs (extended to all ships’ hire and 

operation costs) 
• Total Costs of Unmet Performance Targets (pen-

alties associated to unmet delivery/pick-up dates 
and production losses related to stock-out and 
over-stock conditions at the processing sites) 

• Percentage Utilization of Time Charter Ships Ca-
pacity (Average Utilized Capacity versus Avail-
able Capacity) 

 
It was chosen not to specify the actual weights associated 
to each component of the target function since different us-
ers and different situations may privilege some measures of 
performance over others. Simulation-based testing on a 
population associates a value of fitness to each individual 
through the specified target function. The individuals are 
then ranked according to their fitness. Only the best fit in-
dividuals are allowed to reproduce according to a repro-
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duction  rate (i.e., percentage of the population which “sur-
vives” the fitness test) which is specified in the GAs. The 
mechanism of GAs reproduction is shown in Figure 3. The 
individuals selected for reproduction are randomly paired 
and a cross-over is performed on each pair exchanging 
randomly selected portions of the respective genetic heri-
tage at randomly selected points.  
 

 
 

Figure 3: GAs Reproduction Mechanism 
 
 Once a new generation is obtained through reproduc-
tion another genetic operator takes care of individual muta-
tion according to a specified mutation rate. As represented 
in Figure 4, mutation consists of performing random 
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changes on a random number of genes of the selected ind
viduals. This way the new generation is complete and 
can be tested through simulation in order to get their fitnes
assessed prior to their joining the remaining of the previou
population. For the purposes of this work the populatio
size was set to be equal to 20 (e.g. 20 individuals in the in
tial structure), the total number of generation was set t
200, fixing a reproduction rate of 50% and a mutation ra
of 5%. These preliminary settings represent reasonable fir
attempt values, however they are expected to be fine-tune
with use and experience. 
 

 
 

Figure 4: GAs Mutation Mechanism 
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7 CONCLUSION 

This paper introduced a GA-based optimization module to 
automate an interactive DSS for the logistic management 
of maritime transportation in the chemical industry. The 
paper focused especially on the functional requirements of 
the optimization module, on the structure of the corre-
sponding GAs, and on the issues related to its implementa-
tion in the DSS. Specifically, the paper addressed the inter-
actions between the optimization module and the decision 
heuristics for the purposes of automated scenario genera-
tion and optimization. In the proposed architecture the de-
cision heuristics provide a general framework to systemati-
cally generate a family of logistic solutions. Case-specific 
customization of the heuristic algorithms and criteria par-
ticularize the solution to address a specific problem. A GA-
based module was introduced to expedite the optimization 
process by automating the choice of the case-specific pa-
rameters. While this optimization approach has been out-
lined with respect to a specific industrial context, the con-
cept of using GAs in combination with heuristic 
approaches can easily be generalized to address the optimi-
zation of interdependent decision processes under multiple 
levels of uncertainty.  
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