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ABSTRACT 

Facing a need to run large scenarios on aviation models 
more quickly than the one to two days currently required, 
the MITRE Corporation undertook an effort to reduce the 
execution time of one such simulation.  Time and cost con-
straints prohibited a major rewrite of the almost one mil-
lion existing lines of code, so only solutions requiring 
minimal changes to the code base were considered. This 
paper describes the approaches taken to increase the speed 
of the original sequential simulation by employing more 
efficient algorithms and parallel processing technology. 
Specifically, an implementation of a new technique for 
parallel proximity detection provided an 80% reduction in 
the time spent checking for conflicts.  In addition, imple-
mentation of a thread pool that enables the movement of 
multiple aircraft in parallel resulted in a 10%-15% reduc-
tion in the overall execution time of the simulation.  In this 
paper we report on the design of these techniques and how 
they were implemented in the simulation. 

1 INTRODUCTION 

The MITRE Corporation’s Center for Advanced Aviation 
Systems Development (CAASD) is streamlining a sequen-
tial air traffic control simulation containing nearly one mil-
lion lines of code.  The main constraint in speeding up this 
simulation is to minimize changes to its architecture. 

One of its main bottleneck algorithms is determining 
whether and when two aircraft are within a specific dis-
tance.  If the model detects a conflict between aircraft 
pairs, then the model can, using built-in conflict resolution 
strategies, vector the aircraft away from one another.  
When conflict detection is enabled by the analyst, it can 
consume up to 50% of the total run time in some scenarios. 
Updating aircraft state and position data dominates the run 
time when conflict detection is not enabled. 

Another major bottleneck in the simulation is aircraft 
navigation, or movement.  During the movement cycle, the 
current position of each aircraft is updated.  The simulation 

 

also maintains a list of future aircraft positions for use with 
conflict detection and resolution that is also updated at this 
time.  All sectors and airports that the aircraft may interact 
with during its flight are notified of these changes.  Those 
sectors and airports may then reschedule the arrival of 
other aircraft that are affected by the original update in or-
der to optimize flow.  This can consume up to 70% of the 
simulation run time when conflict detection and resolution 
are not enabled. 

Regarding proximity detection, most of the existing 
algorithms  require extensive changes to the system, and 
cannot be used. The main concern of any proximity detec-
tion algorithm is efficient filtering of pairs of moving ob-
jects. We have devised a more efficient filter to reduce the 
number of aircraft that need to be checked during each cy-
cle.  This method also allows us to parallelize the remain-
ing conflict checks in a manner that requires virtually no 
change to the underlying software architecture. 

Our method is grid-based, employing a quad tree data 
structure that is normally found in the context of computer 
graphics (Samet 1990), and in conflict-free route planning 
in the field of robotics (Hamada and Hori 1996). The geo-
metric calculations determining proximity should only be 
performed on pairs most likely to be in conflict.  In the ex-
isting simulation, these filters are applied using bounding 
boxes around the aircraft’s intended flight plan.  We have 
replaced that process with a quad tree based algorithm that 
geographically filters the flight pairs in a manner unrelated 
to the aviation logic or flight dynamics in the simulation. 
 Regarding the movement algorithm, the story for par-
allelization resembles that of the conflict detection algo-
rithm.  In fact, much of the implementation of the quad tree 
parallelization was reused for this work.  In general, the 
system works by queuing requests to update a specific air-
craft, and separately allowing a set of worker threads to 
work independently on each aircraft. 
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2 PRIOR WORK 

Parallel proximity detection has been extensively studied 
and reported in open literature.  The available algorithms 
fall into two different categories.  The first category en-
compasses the so-called grid based algorithms, which rely 
on dividing a simulated space into cells that “tile” the 
space.  The grid based algorithms require sophisticated 
protocols for keeping track of objects that are near grid 
boundaries and for controlling the hand off of the objects 
as they move. The second category of algorithms encom-
pass region based algorithms, which define a region in 
which an object declares an interest.  The region based al-
gorithms require common definitions of regions across ob-
jects sharing the same region, and require sophisticated 
geometric calculations in the simulation engine that, if 
done in full generality, can add much overhead to the sys-
tem.  Recently, hybrid algorithms that dynamically size the 
grids or combine the region and grid based approaches 
have emerged (Boukerche, Roy, and Thomas 2000). 

Other variations are possible.  Tan, Zhang, and Ayani 
(2000) present a hybrid algorithm that combines the best ap-
proached of both the grid and region based filtering in the 
context of the DOD’s HLA.  Steinman and Wieland (1994) 
describe a grid-based algorithm where the grid boundaries 
are extended and overlapped to help minimize problems 
along grid boundaries.  A later version of the algorithm 
(Steinman et.al. 1999) describes a spherical virtual space 
tiled with grid cells of approximately equal size.  Within 
each cell, a 3-way tree is produced to act as an index into the 
x, y, and z positions of an object.  Thus the three-way tree 
serves as a fast indexing mechanism for position. 

Quad trees themselves are not new data structures.  
Prior work that used quad trees for parallelization primarily 
focused upon efficiently scheduling ready processes to 
available hardware; Srisawat and Alexandridis (2000) pre-
sent a good example.   Quad trees have also been used as a 
basis for communication topologies in parallel processors, 
such as quad tree based hypercube communication inter-
connects (Omri 2000).  Collision detection of moving ob-
jects using quad trees, and their three dimensional exten-
sion to oct trees, has also been studied (Kitamura et.al.  
1994) (Tzafestas and Coifffet 1996).  Basch, Guibas, and 
Zhang (1997) describe the problem of using trees in their 
generality for geometric proximity problems.  An overview 
of the general problem of conflict detection and resolution 
in the context of aviation simulation  is presented by Vink 
and Kauppinen (1997). 

Automatic parallelization of sequential simulations 
also has a long history of study.  Some researchers have 
focused upon changing the underlying simulation engine to 
add constructs that allow modelers to exploit parallelism; a 
good example of this can be found in Nicol and Heidelber-
ger (1995) and  Nicol and Heidelberger (1996).  Others 
have focused on the tasks required to explicitly parallelize 
a sequential simulation model (Bajaj, Bagrodia, and Meyer 
1999). A good introduction to the concept of thread pools 
can be found in Nichols, Buttlar, and Farrell (1996). 

The work described above differs from previous stud-
ies in a number of respects.  First, the quad tree approach 
uses a quad tree as the basis for spatially decomposing the 
virtual world into unequal-sized grid cells.  The basis for 
sizing is to maintain a high degree of filtering for potential 
conflicts.  Furthermore, the sizes of the cells dynamically 
change with time as the simulation evolves, and as the spa-
tial density of objects change.  Finally, load balancing in 
both the conflict detection and movement phases is pro-
vided by queuing the work to be performed for processing 
by a separate set of  “worker” threads. 

Finer grained locking may also be a valid approach to 
reducing lock contention, but size of the simulation makes 
this approach difficult.  That approach also conflicts with 
the goal of leaving the existing sequential simulation 
model and architecture undisturbed.  The overhead and 
benefit of this approach would be difficult to judge until it 
is attempted. 

3 CONFLICT DETECTION  
IN THE SIMULATION 

We began by examining the largest bottleneck in the simu-
lation, conflict detection.  A conflict occurs when the geo-
metric distance between any two aircraft in the simulation 
falls below the specified lateral and vertical separation 
thresholds.  These thresholds are set by the analyst, and can 
vary by the air traffic control sector in which the aircraft is 
currently flying. 

The simulation commences execution with the earliest 
scheduled event provided by the scenario’s itineraries.  It 
then  steps through time by discrete intervals.  The analyst 
can vary this interval but it is typically one to six seconds.  
Conflict detection begins at the time an aircraft is introduced 
in the simulation and becomes active.  At that time, the flight 
envelope is computed for that aircraft, and the path of a 
ghost aircraft is projected along the predicted flight track one 
half hour into the future.  The flight envelope is a box that 
encloses all waypoints from its present position to its desti-
nation, including requirements for lateral separation.  That 
flight envelope is compared to the flight envelope of every 
other active aircraft in the simulation.  If two flight enve-
lopes overlap, it is possible that pair of aircraft may come 
into conflict at some time, and the pair is recorded in a can-
didate pairs list for more detailed investigation.  During each 
cycle the list of such aircraft pairs is examined by comparing 
the recorded flight paths of the ghost aircraft to see if they 
actually come into conflict. 

At the end of each interval, the simulation updates the 
current flight envelope for each aircraft to reflect its new 
current position.  As a flight progresses towards its destina-
tion,  its flight envelope will shrink, reducing the possibil-
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ity of conflict with another aircraft. Existing aircraft pairs 
whose flight envelopes no longer intersect are removed 
from the candidate pairs list, as they will not approach each 
other closely enough to ever be in conflict. This reduces 
the amount of conflict checking computation to be done. 

In effect, the process just described acts as a filter to 
reduce the number of computationally expensive conflict 
checks that need to be performed.  The calculations that 
determine flight envelope intersection occupy a substantial 
part of the simulation run time. Several attempts were 
made to reduce this time, including an attempt in which the 
bounding boxes were precomputed at each leg of the flight 
plan and compared to current aircraft positions to deter-
mine potential conflicts.  These earlier optimizations had 
only a minor effect on reducing run time. 

4 QUAD TREE ALGORITHM 

The quad tree software library was designed with two ob-
jectives to decrease run time.  The first is to provide a more 
efficient geographical filter to further reduce  the number 
of candidate aircraft pairs that need detailed examination.  
The second objective is to provide a mechanism to perform 
conflict detection on multiple aircraft pairs in parallel. 

The quad tree is a hierarchical structure that provides 
spatial decomposition of data such as points, lines, or poly-
gons. In this case, aircraft positions are treated as points in 
three-dimensional space.  The quad tree allows us to recur-
sively divide that space into smaller regions.  In this manner, 
aircraft separated by a significant distance are removed from 
conflict comparison in a less computationally intensive 
manner.  The basic quad tree algorithm defines a rectangular 
region that encompasses the entire region in which the simu-
lation takes place. That area then can be divided into four 
equal quadrants.  This process can recurse indefinitely for 
each quadrant. An extension of the quad tree concept, oct 
trees, can take into account all three dimensions. 

This technique is most useful if we limit how far this 
space is divided.  We would like to limit the recursive pro-
cess so that we obtain the smallest area where it is likely 
that all the aircraft contained within are in conflict with one 
another.  If no node’s x or y dimension falls below the 
smallest minimum lateral separation distance the that the 
analyst has specified for the entire simulation, then all 
aircraft in that area will be in conflict, unless they have 
sufficient vertical separation or are located in the extreme 
opposite corners of the region. 

It is possible, however, that two aircraft may be quite 
close to one another and yet be placed into two adjacent, 
but separate nodes in the quad tree.  In order to account for 
this possibility, we introduce the use of exterior regions for 
each node.  Until now, no leaf nodes overlapped one an-
other in space, and the interior regions described so far will 
continue to posses this trait. Exterior regions are areas that 
are within the largest minimum lateral separation that the 
analyst has specified for this scenario from the borders of 
the interior region.  Each leaf node possess two lists of air-
craft – one for aircraft present in the interior region corre-
sponding to that node, and one for aircraft present in the 
exterior region for that node.  Note that a given aircraft can 
only exist on one interior region, but can be present in mul-
tiple exterior regions. 

The root node encompasses the entire space in which 
it is possible that an aircraft will occupy in a given sce-
nario.  No aircraft should ever be added into the exterior 
list of the root node; if this occurs, then the size of the root 
node is not sufficiently large and should be extended to in-
clude the offending object. An object is inserted into the 
quad tree by passing it to the insert method of the root 
node.  The root node first checks to determine whether the 
object falls within its extended boundary, and if so, it will 
pass the object on to its four children.  If no children exist, 
and the division of this node would not result in a node 
smaller than the minimum size established, then the chil-
dren of the node will be created.  If no children exist, and 
the boundary conditions for the quad tree are met, then that 
node is also a leaf node of the tree; otherwise the dividing 
process will repeat until the boundary conditions are met.  
Note that only parts of the tree that contain aircraft are split 
in this manner.  The efficiency of the quad tree comes from 
the fact that large areas without aircraft in them can be 
quickly skipped, while areas that contain aircraft are small 
and thus remove a vast majority of aircraft from conflict 
consideration.  If another aircraft is in the same node, then 
it is highly likely that it is close enough to be in conflict. 

If the node is a leaf node, and the object falls within its 
inner rectangle, then the object is added to its interior list.  
If the object is not contained in the inner rectangle, then it 
is added to the exterior list.   No aircraft is ever passed to a 
node if it does not fall within the area defined by its exte-
rior node. 

Typically, every six time steps a conflict detection cy-
cle occurs.  At this time, a new quad tree is created  con-
sisting of an empty root node with no children.  The list of 
all active aircraft is traversed, and all aircraft actually in the 
air are inserted into the quad tree.  Then the tree is trav-
ersed to generate candidate aircraft pairs for conflict detec-
tion.  Each leaf node traversed will generate a candidate 
aircraft pair by comparing each aircraft in its interior list 
with all the aircraft subsequent to it on that list.  This pre-
vents each aircraft pair from being nominated twice for 
checking, as an aircraft can only exist in one interior list in 
the entire tree.  Then each aircraft on the interior list is 
paired with the aircraft contained in the exterior list, and 
nominated for conflict detection.  In order to prevent dupli-
cate checking in this case, each aircraft can be given a 
unique number upon insertion into the quad tree.  Only if 
the first aircraft’s number is greater than the second one’s 
should the pair be nominated for conflict detection.  If they 
are not, then when the node containing the second aircraft 
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on its the interior list is encountered, the pair will be nomi-
nated.  Each unique pair of aircraft so identified are the pa-
rameters for the existing conflict detection algorithm. 

As potential conflict pairs are nominated above, they 
are placed in a statically sized circular queue to avoid the 
overhead of repeated allocation and deallocation of a dy-
namic list.  A specified number of worker threads are cre-
ated during simulation initialization, usually one per proc-
essor, and then block until work (the aircraft parameters 
generated above) arrive in the queue.  When work is in-
serted into the queue, the threads are signaled that the 
queue is no longer empty.  The threads then wake and take 
the next aircraft pair off the queue and invoke the existing 
conflict detection function.  The work queue is locked in 
order to prevent race conditions in obtaining work, and in-
sures that no two threads process the same work unit.  The 
main thread of execution continues in parallel with this ac-
tivity until all work units (aircraft pairs) have been gener-
ated from the traversal of the quad tree.  At this point, the 
main thread of execution blocks until all work in the queue 
has been processed.  Should the circular work queue fill 
up, then the main thread will block until the worker threads 
have opened up space in the circular queue by processing 
some work units. The use of a queue as an intermediary be-
tween the traversal of the quad tree and the invocation of 
the conflict detection allows a form of load balancing be-
tween the threads by preventing worker threads from be-
coming idle while work still is in the queue. 

If the user only enables conflict detection, then the 
current position of the aircraft is used to determine where 
the aircraft will be inserted into the quad tree.  The simula-
tion discussed here also offers the user a chance to perform 
automatic conflict resolution.  In that case, the position of 
the ghost aircraft previously mentioned is used as the posi-
tion of an aircraft in the quad tree in order to implement 
look-ahead capability to the simulation.  This provides the 
simulation with the opportunity to detect conflicts early 
enough to invoke automatic conflict avoidance. 

5 QUAD TREE PERFORMANCE 

Two test scenarios were selected for use with this project.  
The first scenario, referred to here as the one-fifth scenario,  
contains approximately 7,000 flights lasting for one-fifth of 
a day.  The second scenario, or whole day scenario, con-
tains approximately 34,000 flights and models an entire 
day of traffic.  Both scenarios are airspace-intensive and 
are a good stress test for the simulation. 

The work described here was performed on a four 
processor, 550 MHz Pentium III Xeon computer using ver-
sion 2.6 of Solaris for Intel.  Profiling the code revealed 
that the two greatest consumers of time in these scenarios 
were conflict detection between aircraft and movement of 
those aircraft.  When conflict detection is enabled in the 
simulation, it can consume almost 50% of the simulation 
time in large simulations.  Updates to the position and state 
of the aircraft in the simulation consumes the majority of 
the remaining time. 

Figures 1 and 2 show the performance of the algorithm 
for the one-fifth and whole day scenario.  In both figures, 
the upper dashed line represents the performance of the 
simulation with the original conflict detection algorithm 
enabled.  The lower dashed line represents the simulation 
performance with conflict detection disabled.  The differ-
ence between the two lines is the actual processing time the 
simulation consumes while performing conflict detection; 
this time does not vary against the x axis because it reflects 
the performance of the original sequential simulation. 
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Figure 1:  Performance for the one-fifth scenario.  The 
upper dashed line is the run time of the baseline case 
with conflict detection enabled; the bottom dashed line 
is the baseline with conflict detection disabled. 
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Figure 2:  Performance for the whole day scenario.  The 
upper dashed line is the run time of the baseline case 
with conflict detection enabled; the bottom dashed line 
is the baseline with conflict detection disabled. 
 
The solid line in both figures represents the measured 

processing time of the simulation when utilizing the quad 
tree algorithm.  The x axis depicts the number of worker 
threads available to process the conflict pairs. For the one-
fifth scenario, the single threaded quad tree algorithm re-
duces the run time to 46% of the original run time (a 
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speedup factor of 2.8), and the whole day scenario reduces 
run time to 64% of the original (a speedup factor of 1.56).  
The time savings reflects the more efficient filtering pro-
vided by the quad tree algorithm as compared to the origi-
nal envelope based technique.  Because of the improved 
filtering, time was saved because fewer non-conflicting 
aircraft pairs were passed to the conflict detection code as 
possible conflicts. 

The improvement due to parallel processing of conflict 
pairs seems less impressive in figures 1 and 2 in part be-
cause of the large vertical scale.  Figures 3 and 4 better il-
lustrate the parallel speedup obtained.  In these figures, run 
time as reduced via parallelization is displayed as a per-
centage of the theoretical maximum speedup possible.  The 
results show that we are obtaining up to 30% of the maxi-
mum possible speedup available to us.  It is encouraging 
that the larger scenario has slightly greater parallel effi-
ciency (27.8% versus 26.9%), indicating that this algorithm 
scales well and the overhead for this technique does not 
markedly increase relative to the problem set size, even in 
a simulation that was not designed from the ground up with 
parallel processing in mind. 

Overall, we see a speedup factor of 2.4 for the one-
fifth scenario and 1.6 for the whole-day scenario.  Compar-
ing our total run time reduction to the maximum we could 
have achieved, the one-fifth scenario achieved 75% of the 
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Figure 3:  Parallel Efficiency for the One-Fifth 
Scenario 
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Figure 4:  Parallel Efficiency for the Whole Day Sce-
nario 
maximum speedup while the whole day scenario achieved 
nearly 80% of the maximum. 

6 AIRCRAFT MOVEMENT  
IN THE SIMULATION 

In the context of the simulation, aircraft movement is the 
calculation of an updated aircraft position and state as a 
function of time.  The simulation maintains a list of all air-
craft that are active in the simulation at a given instant.  
This list is traversed and each aircraft is processed one at a 
time.  Each aircraft is not independent of the others, how-
ever.  The simulation takes into account the location of air-
craft around the current one, expected congestion in the 
airspace and airports in its flight plan, as well as other fac-
tors, when performing aircraft movement. 

Unfortunately, much of the information described 
above is shared among all the aircraft in the simulation.  
Updating an aircraft position necessarily updates the in-
formation about the scenario environment, so that the next 
plane to be updated reflects the most recent information.  
Race conditions can arise when a single data item, not di-
rectly related to the aircraft itself, is needed to process mul-
tiple aircraft.  Only when all aircraft have been updated, 
the simulation clock can advance to the next time step. 

7 MOVEMENT PARALLELIZATION 

The goal of this project phase is to speed up the simula-
tion’s execution time by performing the processing of these 
aircraft in parallel for a given time step.  The approach 
taken parallelizes the calls that perform the movement and 
state updates for each aircraft.  This was accomplished by 
extending the work queue described above to record re-
quests to update each aircraft.  Then multiple worker 
threads would take the parameters from this queue and per-
form the updates in parallel. 

Unfortunately, the simulation architecture does not 
permit updating each aircraft independently.  The simula-
tion must take into account the environment in which the 
aircraft is flying.  An example might be an aircraft that 
needs to slow down in order to avoid a congested sector 
ahead.  Likewise, in order for the model to accurately 
simulate the approach to an airport, that airport needs an 
updated prediction of the time in which aircraft will reach 
it, in order to more efficiently schedule all incoming traf-
fic.  Since this data is used by all aircraft approaching a 
given airport, any parallelization will require simultaneous 
access and updates to this shared data.  To mitigate these 
race conditions, a means to regulate this interaction needed 
to be devised, however care was exercised so as not to add 
excessive overhead when implementing this protection.  
Every airport has a lock added to protect airport data, in-
cluding information about all aircraft that are on the 
ground at each airport.  Locks were also needed to protect 
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memory allocation, the list library, fuel burn and cost ac-
cumulations, sectors, and waypoints.  Some global vari-
ables, such as the time step, that were temporarily changed 
during an aircraft update, were “deglobalized” so that each 
thread had its own copy while executing. 

8 MOVEMENT PERFORMANCE 

Many movement cycles only involved updating one or 
fewer aircraft. These cycles present no opportunity for par-
allel processing, since synchronization must occur at the 
end of each movement cycle and that prevents us from 
processing the next aircraft in parallel with the current one.  
However, measurements made by inserting timing code 
utilizing the Solaris high-resolution clock showed that 
most of the time spent in the movement cycle was still 
available for parallelization. 

The initial implementation of the thread pool paralleli-
zation spent a large time waiting to acquire the airport 
lock.  Before an aircraft can be processed, the lock for the 
airport that may be affected must be obtained in order to 
prevent corruption of this data.  However, not only did the 
large delays encountered while waiting to obtain locks take 
time that could be spent processing aircraft in parallel, 
waiting for these locks serialized the processing and 
robbed the simulation of  the benefit of parallelism. 
 In order to prevent this loss of parallelism, we as-
signed the processing of all aircraft that needed a particular  
airport lock to the same thread.  For the vast majority of its 
flight, an aircraft only needs to access data at its arrival 
airport.  Before it takes off, it predominately uses data from 
its departure airport.  However we could not remove the 
airport lock at this time even though predominately one 
thread would be handling aircraft needing the data at a 
given airport. At several points during a flight, such as 
when it lifts off, an aircraft needs to remove itself from the 
departure airport data structures and update its information 
at the arrival airport. 
 Grouping processing involving an specific airport to a 
particular thread greatly reduced the waiting for the airport 
lock, in one typical case the time each thread spent waiting 
to acquire the airport lock dropped from an average of 294 
seconds per thread to 52 seconds per thread.  However, a 
few airports have a disproportionate amount of activity at 
them (such as JFK Airport in New York), and this unbal-
ances the distribution of work units. Certain threads must 
handle significantly greater amounts of work, and some 
threads are left idle while those threads finish handling their 
flights.  This effect can be mitigated, but not eliminated, by 
insuring that the busiest airports  are distributed across the 
threads and that one thread is not processing most of the 
busiest airports. The particular airports that require such at-
tention will differ from scenario to scenario. We took no 
specific steps to insure that one thread would not be exces-
sively unbalanced for the result presented here.  An analysis 
of the execution of these scenarios revealed, however, that 
the load was already distributed fairly evenly. 

9 CONCLUSION 

We have shown that it is possible to speed up an existing 
sequential simulation via a combination of more efficient 
algorithms as well as parallel processing techniques.  We 
have also demonstrated that this can be accomplished with 
minimal changes to the underlying simulation architecture.  
The quad tree algorithm provides a means to more effi-
ciently prevent unnecessary conflict checking, and pro-
vides a basis for further speed gains through the use of par-
allel processing. 

The key to parallel speedup is to call the sequential 
function in separate threads, provided that the work that it 
does is independent of the work being done by other 
threads.  In the simulation discussed here, it was important 
to identify functions that could be geographically sepa-
rated.  This allowed parallel evaluation of the operations, 
while minimizing the amount of locking that was needed to 
ensure a correct result.  Improper or absent locking can 
lead to system instabilities and crashes.  Excessive locking 
leads to serialization of the system and little, if any, reduc-
tion in execution time.  Striking the proper balance can re-
sult in notable speed increases. 
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