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ABSTRACT 

In support of the order-to-delivery (OTD) business initia-
tive, a simulation framework has been developed at GM 
R&D. The OTD simulation program is aimed at simulating 
the behavior of the OTD supply chain using detailed inputs 
associated with demand, supply, and production processes. 
Customer demand variation is a key source of uncertainty 
in GM’s supply chain. Early capture of customer demand 
fluctuation enables GM to effectively reduce aggregate 
mismatch between production and sales and appropriate 
time series models have been suggested to capture demand 
patterns based on actual data. The vehicle model and op-
tion mix with a given demand variation influences the per-
formance of the OTD supply chain and provides a means 
to establish certain principles determining the extent of 
product offering and the scope of production leveling. 
Analyzing the impact of the model and option mix on pri-
mary supply chain performance measures, such as cus-
tomer wait time, condition mismatch, and parts usage, ca-
pacitates reduction of the mismatch between demand and 
production and stabilizes supply chain operations. 

1 INTRODUCTION 

The order-to-delivery (OTD) is a new initiative of General 
Motors (GM) to deliver vehicles to customers with speed 
and reliability. In Costy and et al. (2000), the vision of the 
OTD is defined as “Personalized vehicles provided with 
zero customer inconvenience”. Its challenge is to transform 
GM to a sense-and-respond enterprise focused on the cus-
tomers. This transformation will have an effect on every 
activity related to GM, including suppliers, dealers, and 
customers. If we produce too many unpopular models, we 
must discount them with rebates or other incentives that 
cost GM a lot of money. Conversely, if we build too few 
hot sellers, we lose out on profit and customer preference. 
Build-to-order production avoids these problems by pulling  
 

 

through only the vehicles that customers want. The key ob-
jectives of the OTD business model are as follows: 
 

• Order-to-delivery lead-time reduction between 
dealer/customer order and vehicle delivery. 

• Order delivery date reliability improvement to 
provide dealer/customer with reliable delivery 
date at time of order. 

• Real time customer experience by providing web 
enabled resources in terms of supply chain visibil-
ity. 

• Supply chain constraints elimination to quickly 
sense and satisfy true market demand. 

 
 Under the OTD environment, customer demand trig-
gers order movement to raw material supplier and manu-
facturer and then, initiates the movement of product to 
back down to the retailer. The customer demand drives 
production schedule and material procurement as well as 
scope and size of resources and capacity of supply and 
production processes. Randomness of customer demand 
patterns involves various behavior associated with eco-
nomic status, new product introduction, competitor’s busi-
ness performance, etc. Accurate estimation of these de-
mand patterns provides a key to disclose a big source of 
uncertainty of the GM supply chain. Model and option mix 
is one of the most critical drivers to affect the customer 
demand because it determines the extent of product choices 
the customers can take. Diversity in the model and option 
mix offers customers more choices, but results in more 
complexity in product development and production plan. 
Thus, the model and option mix steers the customer de-
mand and determines the scale of product offering and the 
capacity of production leveling. 

As mentioned in Winter (1997), customer preference 
for optional parts has been moving from simple electronic 
equipment (e.g., power windows, power mirrors, etc.) to 
more complicated electronically controlled units. Nowa-
days, the high-content vehicles are used as a mobile office 
in which various devices are installed to obtain real-time 
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information, such as cellular phone, fax machine, naviga-
tion system, PDA, entertainment system, etc. It will be 
soon to see the state-of-the-art wireless communication de-
vices mounted inside the vehicle. Drivers will be able to 
access Internet, to link office and home PC for file 
downloading, and to get services like map, direction, traf-
fic congestion, smart highway information, etc. GM cur-
rently affords part of these services via the OnStar system.  

Morgan and Daniels (2001) developed an integer pro-
gramming-based technology adoption decision model that 
integrates the product mix with the technology adoption 
decisions. In their study, product mix and volume were 
recognized as important variables to determine cost effec-
tiveness of new technologies. They considered market 
trend in which customer demand is increasing for sophisti-
cated features of vehicles. The manufacturing firm’s prod-
uct mix is decided both by the set of products offered in the 
marketplace and the technology selected for the products. 
Setup and holding costs also affect the product mix and the 
technology choice decisions that maximize profits.  
 In addition, distribution strategy is influenced by the 
product mix at each plant because the extent of model and 
option combination determines the shipment volume of 
raw materials from suppliers to manufacturing plants and 
the finished vehicles from plants to different customer 
zones through a set of distribution centers. The model and 
option mix is associated with total fixed and variable costs 
subject to constraints imposed on demand, production ca-
pacity, warehouse capacity, raw material supply and re-
quirements, and geography of customer zone outlets.  
 Understanding the impact of model and option mix on 
the supply chain performance brings in several benefits to 
GM. First, GM can align demand with supply by effec-
tively steering customer needs toward product design and 
production plan. Next, GM can enable more stable produc-
tion schedules by shaping necessary demand patterns. 
Also, GM can have operational stability by avoiding over-
times and short times, production shutdowns, and part 
shortages. The objective of this study is to establish fun-
damental guidelines for product offering and production 
leveling in terms of the model and option mix control by 
considering aggregate customer demand. This results in not 
only the enhancement of the customer satisfaction as to the 
extent of product choices, but also the better utilization of 
various resources and the production capacity. Given a par-
ticular demand pattern, we are interested in investigating 
the impact of the model and option mix on important sup-
ply chain performance measures, such as average customer 
wait time from the order placement to the vehicle delivery, 
condition mismatch, i.e., the difference between what the 
customers want and what they actually selected due to the 
unavailability of the desired model and options, and parts 
usage, i.e., the consumption level of optional parts that are 
needed for producing the given number of vehicles. Ana-
lyzing these performance metrics accordingly helps GM to 
better understand the behavior of its supply chain and to 
make appropriate strategic decisions. Because of sophisti-
cated uncertainty in demand, supply, and production, simu-
lation would be an only solution to analyze these perform-
ance measures as well as to answer other questions raised 
by the OTD initiative. Thus, we developed a simulation 
tool to model and analyze the OTD supply chain. The OTD 
supply chain simulation program includes the behavior of 
each supply chain link, namely, inbound logistics, manu-
facturing plants, outbound logistics, and dealers. 
 This paper is organized as follows. In Section 2, a brief 
description is presented for the OTD supply chain simulation 
program. In Section 3, simulation experiments are executed 
and their results are analyzed for three performance meas-
ures mentioned above. Finally, summary and conclusions 
are provided. The data in this study are disguised so as to 
avoid divulging information sensitive to GM. 

2 OTD SUPPLY CHAIN SIMULATION 

As an effort to answer the OTD issues, the OTD simulation 
team was organized, accommodating related cross-
functional experts, to develop a simulation tool to model 
and analyze the OTD supply chain. In the past, there were 
several activities regarding supply chain simulation, such 
as evaluation of custom express delivery (CXD) outbound 
distribution network at GM R&D and strategic simulation 
effort called ASSIST at EDS/AT Kearney Europe. The 
CXD program is to deliver customer orders within 24 to 48 
hours by truck delivery to reduce customer response time 
by holding popularly configured vehicles (PopCons) at re-
gional distribution centers (Krishnan 2001).  
 GM R&D was responsible for developing a simulation 
framework, based on flexible and object-oriented concept, 
to quickly explore and evaluate innovative supply chain 
systems and processes with very detailed input data in sup-
port of OTD. The OTD simulation program processes its 
inputs associated with the uncertainty along customer de-
mand, materials supply, and vehicle production. It is im-
portant to effectively generate the inputs for the simulation, 
which exhibit the best of real business environment. By ad-
justing the input parameters, we would like to identify the 
impact of the input changes on the performance of the 
OTD supply chain.  
 Microsoft (MS) Access is used as a front end user in-
terface and all necessary initial input tables can be made as 
Access table format. Two Access Forms are provided to 
the user to specify the parameters for the simulation inputs 
generation and the simulation run. In the inputs generation 
Form, the user can specify the aggregate time series with 
related demand parameters, the model and option mix, and 
the production schedule. Also, the demand interval can be 
provided. In the simulation Form, the user exports the in-
puts obtained from the inputs generation module, runs the 
simulation, and imports the simulation outputs as Access 
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tables. In addition, using the queries, various performance 
measures are created as Forms. Because of the important 
relationship of the simulation inputs with the model and 
option mix, we have more focus in explanation on the in-
put generation than the simulation engine and the outputs. 

2.1 Simulation Inputs Description 

To simulate realistic behavior of a supply chain, the first 
step is to develop a mechanism providing the simulation 
inputs that mimic actual customer demand, materials sup-
ply, and vehicle production. Customer demand at aggre-
gate level needs to be generated by reflecting past sales re-
cords. Each customer demand should include detailed 
configuration information as a customer places an order 
through a dealer with the requirement of a particular vehi-
cle model and optional parts. On the production side, ac-
tual production schedules should be set up considering all 
shutdown days of a plant and for each valid production 
day, production capacity and parts availability should be 
generated. This section only describes some critical inputs, 
not all the inputs needed for the simulation. All required 
simulation inputs are created by the input generation mod-
ule, written in C++, linked with the MS Access user inter-
face, and stored as Access tables.  

2.1.1 Aggregate Demand Generation 

Aggregate customer demand can be produced using a time 
series model based on the past sales data. From another 
study (Yee 2002), it was found that GM’s past sales data 
contain non-stationary behavior and seasonal patterns. The 
non-stationary behavior means that the time series exhibits 
wandering behavior with no fixed mean. The seasonal pat-
tern indicates that similar effects repeat in a periodic manner. 
Two non-stationary models were recommended for repre-
senting aggregate demand; one is the integrated moving av-
erage (IMA) model of order (1,1) and the other is the sea-
sonal IMA(1,1) model with year-to-year trend. Either model 
can be useful for producing the aggregate demand patterns 
with a small number of parameters (say, two or three).  

2.1.2 Detailed Vehicle Configuration Generation 

When a customer places an order, a particular vehicle type 
and a group of preferred optional parts are determined. One 
merchandizing model may contain ABS brakes with red 
exterior color, and the other merchandizing model may 
have ABS brakes and a sunroof with white exterior color 
and leather seat cover. When a wide variety of optional 
parts is given to the customer, the customer selection be-
comes extensive and product complexity increases a great 
deal accordingly. Currently, a single plant produces vehi-
cles with a couple of hundred thousand configurations an-
nually. There exists one tradeoff between the selection ex-
tent of optional parts and the product complexity. In 
addition, it is difficult to predict which optional parts the 
customer may select. The question is how to propose the 
model and option mix that is similar to actual selection of 
customers while satisfying their preference for the parts. 
This is very crucial because it determines how the plant 
enables to reduce product complexity with an appropriate 
model and option mix, levels the production schedule and 
capacity, and absorbs the customer’s portfolio.  

2.1.3 Production Schedule and Capacity Setup 

In real production, constraints are primarily associated with 
production processes, material supply, and manpower. The 
production processes include manufacturing facility and 
equipment from individual machines, through production 
lines, to shop floor. The material needed to build a vehicle 
is supplied to the plant by suppliers. The availability of the 
parts, subassemblies, and assemblies is a crucial prerequi-
site for successful manufacturing. The work force actually 
controls and operates the plant utilizing these resources. 
The working hours with overtime and short time are estab-
lished based on sales record, economic trend, etc. In this 
study, a production calendar is created taking into account 
three main production constraints mentioned above. It in-
cludes daily production capacity, part availability, and 
daily working hours. All shutdown days are reflected be-
cause no production happens during these dates. Even 
though daily production capacity might be the same, over-
time and short time can be introduced to react to actual 
market demand. Whatever dates are given for the start and 
end of production, the production calendar is generated 
considering all shutdown days, including the weekends and 
holidays. 
 
2.2  Simulation Engine Description 
 
The simulation engine, written in C++, enables detailed 
and realistic analysis of complex OTD issues. It simulates 
production, distribution, and logistics systems and proc-
esses. The simulation objects consist of three types: struc-
tural objects, control objects, and event objects. The struc-
tural objects correspond to physical entities, such as 
supplier, manufacturer (plant), distributor (distribution cen-
ter), retailer (dealership). Second, control objects represent 
control policies concerning supply, demand, and material 
flow. Last, event objects are related to the dynamic event 
occurrences of supply, demand, and material during the 
simulation. The simulation logic starts from getting a cus-
tomer order and assigning it to the related location, i.e., 
dealership. The dealer sees if the ordered vehicle is deliv-
erable in terms of the model and option mix. If the order is 
deliverable, then the dealer delivers the vehicle to the cus-
tomer. Otherwise, the dealer looks for the ordered vehicle 
upstream and certain compromise may happen between the 
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customer’s desired configuration and the available configu-
ration. If the customer compromises to purchase the best-
matched vehicle moving between the plants and the dealer-
ship, the vehicle will be delivered to the customer. Other-
wise, the dealer needs to place an order to the plant. From 
the plant perspective, based on the daily order from the 
dealerships, the plant sequences the customer orders con-
sidering the daily production capacity and schedules the 
material needed. The finished vehicles are transported 
through the logistic network to the dealerships. The 
simulation engine is linked with the MS Access simulation 
run Form that is used as an interface to feed the simulation 
inputs to the engine and to return the simulation outputs to 
the Access tables.  
 
2.3  Simulation Outputs Description 
 
Given a set of the simulation inputs, the simulation engine 
generates various outputs into Access tables, such as vehi-
cle flow history, order flow history, and production history. 
From these output tables, using the queries, we provide 
several performance measures as Access Forms, namely, 
customer wait time, condition mismatch, parts usage 
counts, vehicle inventory, daily demand, daily sales, transit 
time, etc. Each performance measure is displayed as distri-
bution and/or time series pattern. Similar to the simulation 
inputs, the simulation outputs are stored as the Access ta-
bles and necessary performance measures can be obtained 
using the queries. 

3 SIMULATION EXPERIMENTS 

One of the most important factors determining supply chain 
complexity is the number of merchandizing models and op-
tional parts that indicate the scope and level of demand and 
production. The aim of simulation experiments is to identify 
the impact of the merchandizing model and optional part 
mix on supply chain performance. Among various perform-
ance measures, we focus on customer wait time, condition 
mismatch, and parts usage level. Because the top priority of 
the OTD is to reduce the OTD lead-time, we want to see 
what impact the model and option mix brings forth on the 
customer wait time. The condition mismatch implies the 
customer compromise that explains the change of custom-
ers’ decision in the model and option mix of their order. The 
parts usage represents a good measure of the customer pref-
erence and enables to make the material replenishment plan 
ahead of time. Analyzing these performance measures men-
tioned above provides fundamental principles to offer prod-
uct choices to the customer, to facilitate overall production 
leveling, and to reduce product complexity. In this sense, 
this analysis affords an opportunity to shape more profitable 
and appropriate vehicle model and option mix.  
 For the experiment purpose, the demand is generated 
for one year from Sept. 14, 1998 to Sept. 13, 1999. The 
IMA parameters generating the monthly demand include 
average daily units, white noise standard deviation, and 
moving average coefficient. In particular, the moving aver-
age coefficient acts as a drifting factor. It is known that in-
dustrial time series usually have moving average coeffi-
cient values between 0.6 to 0.8 and stock market has more 
volatility with much smaller values between 0.2 and 0.4 
(Box and Luceno 1997). Figures 1 and 2 show the input 
demand generated by the moving average coefficient val-
ues of 0.7 and 0.3, respectively. Obviously, we can see that 
Figure 2 is more volatile than Figure 1. Both time series 
display non-stationary behavior and Figure 2 shows larger 
drift and amplitude than Figure 1.    

Figure 1: Aggregate Demand with Mov. 
Avg. Coef. 0.7 

 

Figure 2: Aggregate Demand with Mov. 
Avg. Coef. 0.3 

 
 In the simulation experiments, a plant produces the 
vehicles from July 19, 1998 to July 3, 1999 for almost one 
year and relevant shutdown days are provided by consider-
ing all weekends and holidays. The production starts ap-
proximately two months earlier than demand onset. This 
intends to prepare some vehicle units (push portion) for al-
locating them to the dealers. After this initial period of 
production, actual customer order comes into the simula-
tion process. The OTD simulation includes both push and 
pull production mechanism. When the daily demand is less 
than the daily production capacity, the plant push the rest 
of the capacity and assign the produced vehicles to certain 
dealers. If the daily demand is greater than the daily capac-
ity, the remaining orders exceeding the capacity will be se-
quenced in the next available production day.  
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3.1 Customer Wait Time 

By intuition, we can expect that the larger the number of 
merchandizing models is, the more complex the supply 
chain becomes and the longer the customer wait time is. 
We may want to see if a certain relationship exists between 
the number of merchandizing models and the average cus-
tomer wait time for the given daily demand, daily produc-
tion capacity, number of optional parts, etc. In this study, 
for the purpose of offering basic principles to construct the 
model and option mix plan, the number of merchandizing 
models and optional parts ranges from 1 to 64 and from 9 
to 15, respectively. The number of merchandizing models 
was categorized into seven cases, such as, 1, 2, 4, 8, 16, 32, 
and 64. The eight-merchandizing model case was used as a 
baseline category with twelve optional parts. When a plant 
produces only one model, it is inflexible. When a plant 
produces sixty-four models, it has very high manufacturing 
flexibility. The total number of configurations is main-
tained as 32,768 units for each category. Making the num-
ber of merchandizing models twice decreases the number 
of optional parts by one.  

3.1.1 Equally Probable Merchandizing  
Models and Optional Parts 

As a starting point, we consider the simplistic case in which 
each merchandizing model is equally probable with regard 
to demand and production. In addition, all optional parts are 
equally probable in which each part has the same penetration 
0.5. This may not be happening in a realistic market, but it 
will provide us with a baseline to investigate the relationship 
between the number of merchandizing models and the cus-
tomer wait time. When we have eight merchandizing mod-
els, each model has the same penetration 0.125 both in de-
mand and production parameter setup. For all the seven 
categories, we performed sufficient replications and ob-
tained the corresponding average customer wait times.  
 Figure 3 shows the relationship between the number of 
merchandizing models and the customer wait time for the 
aggregate demand pattern with the moving average coeffi-
cient 0.7. In Figure 3, the stock sales represent the vehicles 
that are already in the dealers’ lot when the customers 
make transactions. Smaller moving average coefficient 0.3 
produced higher average wait time and its standard devia-
tion due to larger volatility. For the eight-merchandizing 
model case, the stock sales took 78 percent.  
 A relationship exists between the number of merchan-
dizing models and the wait time. Varying the number of 
models from one to eight does not cause a vivid difference. 
The eight-merchandizing model case can be considered as 
a threshold because after that, the wait time increases very 
quickly. With the stock sales, the customer waits about 5 to 
6 days to get the vehicle for the model range from one to 
eight. As the number of models goes beyond eight, the av-
erage wait time increases about five to six times because 
 
 

0

50

100

150

200

1 2 4 8 16 32 64

Number of Models

W
ai

t 
T

im
e 

(D
ay

s) Avg. w/ stock
sales

StandDev w/
stock sales

Avg. w/o stock
sales

StandDev w/o
stock sales

 
Figure 3: Number of Merchandizing Models vs. 
Customer Wait Time (with Moving Average Coef-
ficient 0.7) 
 

every customer placed the customized order based on the 
configuration preference. Without the stock sales, the aver-
age wait time is thirty days up to the model range of eight, 
but it increases four to five times when the number of 
models exceeds eight. It is concluded that the demand fluc-
tuation did not seem to be a driver of the impact on the 
wait time and the number of models determines the time 
delay the customer needs to wait.  

3.1.2 Unequally Probable Merchandizing Models  
and Equally Probable Optional Parts 

In a realistic market, the customer preference is biased to 
some merchandizing models. For example, much difference 
in sales can be found between high runners and low runners. 
The bias associated with the model preference can be real-
ized by skewing certain percentage of the demand penetra-
tion to some of merchandizing models. In this section, we 
maintain the penetration of the optional parts as the same, 
that is, equally probable. Skewness is, in this study, given by 
the following rule. Skewness 1, 2, and 3 provide eighty per-
cent of the total penetration to the half, the quarter, and the 
two-third of the merchandizing models, respectively. Table 
1 shows three types of exponential skewness on the eight-
merchandizing model category. The PDF and CDF in Table 
1 denote probability density function and cumulative distri-
bution function, respectively. For the skewness 1, 79.85 per-
cent was actually given to the first half of the models. Skew-
ness 2 assigns 80.21 percent on the first quarter of the 
models. Skewness 3 distributes 80.90 percent penetration to 
the first two-third of the models.  
 The skewnesses on merchandizing models did not af-
fect the customer wait time. We can see that the customer 
wait time depends on the number of merchandizing mod-
els, not the model skewness.  
 

3.1.3 Unequally Probable Merchandizing  
Models and Optional Parts 

We are also interested in the impact of the optional parts 
skewness on the correlation between the number of mer-
chandizing models and the wait time. The skewness for the 
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optional parts can be considered with or without the skew-
ness of the models. Table 2 shows the skewness given to 
the optional parts. For the eight-merchandizing model case, 
skewness 1 (FS1) assigns the penetration 0.9 to the first 
half of the twelve optional parts, 0.5 to the next quarter of 
the parts, and 0.1 to the rest of the parts. Skewness 2 (FS2) 
allocates the penetration 0.9, 0.5, and 0.1 to the first quar-
ter, the next half, and the remaining quarter of the optional 
parts, respectively. Skewness 3 (FS3) gives the penetration 
0.9, 0.5, and 0.1 to the first three-fourth, the next 16.7%, 
and 8.8% of the optional parts, respectively. When the 
penetration becomes large for a particular part, the corre-
sponding merchandizing model may have high probability 
to contain that part.  
 
Table 1: Skewness of the Eight-merchandizing Model Case 

   Skewness     

Model No. 

S1  

PDF 

 

CDF 

S2  

PDF 

 

CDF 

S3  

PDF 

 

CDF 

1 0.3330 0.3330 0.5176 0.5176 0.1602 0.1602 
2 0.2201 0.5531 0.2844 0.8021 0.1496 0.3098 
3 0.1406 0.6937 0.1364 0.9385 0.1400 0.4498 
4 0.1047 0.7985 0.0405 0.9791 0.1300 0.5799 
5 0.0808 0.8793 0.0137 0.9929 0.1199 0.6999 
6 0.0592 0.9385 0.0052 0.9981 0.1091 0.8090 
7 0.0385 0.9771 0.0016 0.9997 0.0985 0.9076 
8 0.0228 1 0.0002 1 0.0923 1 

 
Table 2: Skewness of Optional Parts 

         Skewness 

Part No. 

FS1 FS2 FS3 

1 0.9 0.9 0.9 
2 0.9 0.9 0.9 
3 0.9 0.9 0.9 
4 0.9 0.5 0.9 
5 0.9 0.5 0.9 
6 0.9 0.5 0.9 
7 0.5 0.5 0.9 
8 0.5 0.5 0.9 
9 0.5 0.5 0.9 
10 0.1 0.1 0.5 
11 0.1 0.1 0.5 
12 0.1 0.1 0.1 

 
 For the eight-merchandizing model case, Figure 4 il-
lustrates the relationship between the skewness and the 
customer wait time. For the purpose of comparing the re-
sults, the fifteen skewnesses are presented in Figure 4 with 
the equally probable case mentioned in section A. The cus-
tomer wait time is pretty smooth for various skewnesses, 
but the equally probable case EQ and the merchandizing 
skewnesses S1, S2, and S3 result in higher wait time with 
the stock sales. The average wait time of these four cases is 
6.36 days. For the rest of skewness cases, the average wait 
time is 3.70 days. Intuitively, we can guess that EQ may 
result in higher wait time because it takes more delay in 
production setup and process. S3 generates highest wait 
time (6.73 days) since it is close to equally probable case in 
terms of penetration distribution as shown in Table 1. Rela-
tively, S2 has the smallest wait time among these four 
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cases because its skewness is biased to a few models. The 
average wait time difference of 4.16 days exists between 
the maximum (6.73 for S3) and the minimum (2.57 for 
S2FS3). Similarly, the standard deviation difference of 
4.19 days is found between the maximum (13.63 for S3) 
and the minimum (9.44 for S2FS3). An interesting thing is 
that the standard deviation and the average have the same 
pattern. Without the stock sales, the average wait time in-
creases about five to ten times the stock sales case because 
all orders are customized. FS3 drives the increase of the 
wait time in all the combined skewness cases, such as 
S1FS3, S2FS3, and S3FS3. Because high penetration 0.9 is 
assigned to the three-fourth of the whole parts, more time 
may be needed in the assembly process.    

3.2 Condition Mismatch 

When a customer orders a vehicle in a dealer, the customer 
may have a preferred configuration with respect to the 
merchandizing model and the optional parts. The customer 
may or may not find a perfect match both in the model and 
the parts. The dealer makes an effort to locate the perfectly 
matched vehicle through the logistic network. In contrast, 
if the preferred vehicle is not available, the customer may 
compromise by eliminating or adding one or more optional 
parts to the configuration. Moreover, the customer may 
change the merchandizing model to another one. If the cus-
tomer does not want to compromise, the dealer needs to 
place an order to the plant based on the required configura-
tion. It would be meaningful to investigate the existence of 
a relationship between the number of merchandizing mod-
els and the condition mismatch with and without skewness 
on the models and the parts. The condition mismatch in a 
customer order can be represented by the number of condi-
tions not matched with the preferred configuration.  
 

3.2.1 Equally Probable Merchandizing  
Models and Optional Parts 

With equally probable demand assumption for the mer-
chandizing models and the optional parts, Figure 5 shows 
the relationship between the number of merchandizing 
models and the condition mismatches, given the moving 
average coefficient 0.7. The eight-merchandizing model 
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case appears as a threshold again. After that, the mismatch 
increases a lot, in particular, in the case of without-sold-
orders. The sold orders mean the customized orders that 
are directly ordered to the plant. With sold orders, the con-
dition mismatch decreases in every merchandizing model 
category because the customer preference is absorbed in 
the customized orders and there is less chance of mis-
match. For the eight-merchandizing model case, the sold 
orders were 22 percent. Even in higher number of mer-
chandizing models, such as thirty-two and sixty-four, the 
average mismatches are not quite bigger than those of 
fewer models. Up to the eight-merchandizing model, the 
mismatch difference between the with-sold-orders case and 
the without-sold-orders case is less than one. However, as 
the number of models is greater than eight, the mismatch 
difference becomes approximately three conditions. With 
the moving average coefficient 0.3, the average condition 
mismatch increases a little bit as we expected, but it is not 
significant. Hence, we would say that the demand fluctua-
tion does not affect this correlation.     

3.2.2 Unequally Probable Merchandizing Models  
and Equally Probable Optional Parts 

With the skewnesses of Table 1 on the merchandizing mod-
els, the condition mismatch produced very similar pattern 
regardless of the presence of a skewness. The differences in 
the average mismatch values are negligibly small. We con-
clude that the skewness on the merchandizing models does 
not have any impact on the condition mismatch. 

3.2.3 Unequally Probable Merchandizing  
Models and Optional Parts 

In this section, the skewness is given both for the mer-
chandizing models and the optional parts as mentioned in 
Tables 1 and 2. Figure 6 displays the relation between the 
skewness and the condition mismatch for the baseline case, 
i.e., the eight-merchandizing model with twelve optional 
parts. Intuitively, as we can guess that the sold orders ab-
sorb some extent of the mismatch, with-sold-orders case 
results in less average mismatch than without-sold-orders 
case. Both curves present pretty much the same pattern, but 
the standard deviation with sold orders has more variation 
than that of the without-sold-orders case. The equally 
probable case results in a very high average mismatch as 
we expected. In addition, the skewnesses on the models, 
namely, S1, S2, and S3, generate higher mismatch than the 
remaining skewed cases. With the sold orders, the average 
mismatch of these four cases, including EQ, is 3.08 condi-
tions. For the rest of skewnesses, the average mismatch is 
2.09 conditions. Without the sold orders, the average mis-
matches for higher and lower group are 3.88 and 2.38 con-
ditions, respectively. The skewness S3 and S2FS3 result in 
the maximum and minimum average and standard devia-
tion, respectively. The difference in the average mismatch  
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Figure 5: Number of Merchandizing Models vs. Con-
dition Mismatch  (Moving Average Coefficient 0.7) 
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Figure 6: Skewness vs. Condition Mismatch 

 
between these two extreme skewnesses is 1.58 conditions 
in the case of including sold orders. For no sold orders 
case, the average difference is 2.35. Similar to the analysis 
result of the customer wait time, among three merchandiz-
ing skewnesses S1, S2, and S3, S2 generates the lowest 
mismatch because it skewed high penetration to the first 
quarter merchandizing models. In other words, we have 
less chance of mismatch since the customers are exposed 
to smaller number of choices of the models. In the same 
sense, as we can expect, S3 has a slightly higher value of 
the mismatch than S2 because it assigns high penetration to 
the first two-third of the merchandizing models. For the 
skewness of the optional parts, FS2 showed the largest 
mismatch because high penetration 0.9 is given only to the 
first quarter of the parts. In other words, because FS2 dis-
tributes the medium penetration 0.5 to the half of the op-
tional parts, it has higher chance of mismatch. Conversely, 
it makes sense that FS3 has the smallest mismatch since it 
assigned the penetration 0.9 to the first three-fourth of the 
optional parts. When the skewness is considered both for 
the models and the parts, the skewness portion on the parts 
leads the overall mismatch. When the model skewness is 
combined with the part skewness, FS2 always results in the 
maximum mismatch regardless of any combination with 
the model skewness. Likewise, FS3 consistently causes the 
minimum mismatch in any group of combined skewness. 
Moreover, among three combined skewness groups, the 
second group (S2FS1, S2FS2, S2FS3) shows the smallest 
mismatch due to the influence of S2 that plays a role to re-
duce the mismatch. And in conclusion, the skewness on the 
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merchandizing models is more critical to the condition 
mismatch than that on the optional parts.  

3.3 Optional Parts Usage 

Parts usage is a crucial enabler for establishing production 
and supply planning. Understanding the variation of the 
usage for each optional part drives the design of part buffer 
and the replenishment of each part. Keeping insufficient 
amount of parts in the plant may cause delay in production 
lead-time. Contrarily, sustaining too many parts may in-
crease the inventory holding cost. Nowadays, many indus-
tries try to pursue the match of part demand-supply using 
certain types of visibility tools. Making the part usage visi-
ble from the plant workstation level to the suppliers may 
bring about the reduction of the customer wait time and the 
increase of productivity. Then, investigating the impact of 
the number of merchandizing models and the skewness on 
the part usage offers an opportunity to improve the part 
buffer design and to reduce the production lead-time.  

3.3.1 Parts Usage Variation with  
Number of Models 

The number of merchandizing models may have an influ-
ence on parts usage under a given model skewness. Figure 
7 demonstrates the part usage level by the number of mer-
chandizing models with the skewness 1, while preserving 
the equal propensity of the optional parts. One particular 
observation is that as the number of models becomes 
greater, the part usage average decreases a little bit because 
the use of the parts disperses through all the models. How-
ever, the fluctuation increases due to the potential random 
bias coming from the bigger model space. In particular, the 
biggest variation is found in the sixty-four model case. The 
other skewnesses on the merchandizing models have re-
sulted similar patterns in part usage (not shown).    
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Figure 7: Part Usage Avg. Given Skewness 1 

3.3.2 Parts Usage Variation  
with Various Skewnesses  

For the eight-merchandizing model case, several skew-
nesses are tested to investigate their impact on parts usage. 
Figure 8 displays the difference in the part usage average  
for different model skewnesses, while conserving the equal 
propensity of the parts. Obviously, we can see that giving  
some skewness on the models, whatever it is, results in less 
usage average than the equally probable case. We can eas-
ily guess that, in the equally probable case, every mer-
chandizing model may consume the parts indifferently and 
then, the overall usage grows. Then, it generates higher us-
age average than any skewed case. However, among three 
skewness cases on the models, the skewness does not cause 
a big influence on the part usage, even though there exists 
slight difference. S1 has largest fluctuation in its average 
and standard deviation because it may provide the biggest 
room for random variation by assigning the penetration 0.8 
to the first half models.   
 

245

250

255

260

1 2 3 4 5 6 7 8 9 10 11 12

Part Number

P
ar

t 
U

sa
g

e 
(U

n
it

s)

EQ

S1

S2

S3

 
Figure 8: Part Usage Avg. with Different Model 
Skewnesses     

 
 Figure 9 shows the part usage outline with different 
skewnesses on the optional parts only. In this experiment, 
the model skewness is not considered, i.e., equally prob-
able. The part usage curves in Figure 9 exactly remind us 
of the skewness assigned on the optional parts. Recall Ta-
ble 2 that specifies each skewness for the optional parts. 
For example, FS1 has high consumption for the first half 
parts. Then, for the next quarter of the parts, the consump-
tion takes the medium quantities. Last, for the last quarter 
of the parts, the consumption is low. Similarly, the usage 
patterns for the other two cases FS2 and FS3 are compati-
ble to the input skewnesses of Table 2.  
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Figure 9: Part Usage Avg. with Different Part 
Skewnesses 
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 Figure 10 shows the parts usage average, provided the 
combined skewness both on the models and the parts.  
Looking at Figure 10, it confirms the conclusion made just 
before about the impact of the model skewness on the part 
usage. In other words, the part usage patterns are pretty 
much the same whether the model skewness is added or 
not. For the other model skewness 2 and 3, very similar 
patterns are obtained (not shown). It is concluded that no 
clear evidence is found to explain the distinction based on 
the combined effect of the skewness. 
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Figure 10: Part Usage Avg. with Combined 
Model Skewness 1 

4 SUMMARY AND CONCLUSIONS 

Using the OTD supply chain simulation program, simula-
tion experiments have been performed to analyze the im-
pact of the model and option mix on three important supply 
chain performance measures, namely, customer wait time, 
condition mismatch, and optional parts usage. The demand 
variation does not result in significant difference in the av-
erage wait time. The wait time increases quite a bit as the 
number of models is greater than eight. A threshold exists 
regarding the number of models, given a demand-
production setup, including daily demand level, daily pro-
duction capacity, number of models, and number of op-
tional parts. Various skewnesses on the models and parts 
do not show any significant difference in the wait time. 
Condition mismatch has been analyzed to investigate the 
impact of demand fluctuation, number of models, and 
skewness. Similar to the customer wait time case, demand 
variation is not a driver to cause the mismatch. Without 
sold orders, the condition mismatch is higher than the with-
sold-orders case because the customers just pick up the 
available vehicle in the dealer’s lot and increases quickly 
when the number of models is larger than eight. The skew-
ness on the models produces more mismatches in condition 
than that on the parts. As the number of models increases, 
the average of part usage decreases a little bit, but its fluc-
tuation becomes bigger due to greater chance of discrep-
ancy in optional parts distribution. Equally probable case 
generates higher usage average than any skewed one. 
When the skewness is given both on the models and parts, 
the resulting usage patterns resemble the skewness given in 
Table 2 and no clear skewness effect is found. From these 
analysis results, appropriate plan with regard to the number 
of models and optional parts can be developed to reduce 
customer wait time and condition mismatch. In addition, 
skewing penetration for certain optional parts can lower 
parts usage. With these principles proposed in this study, 
we can achieve better supply chain planning and execution. 
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