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ABSTRACT  

The purpose of this paper is to validate and test the ade-
quacy of an analytical expression to calculate proper safety 
stock levels using simulation techniques. The model refers 
to a periodic review system and a lot-4-lot replenishment 
policy, with randomness in forecast errors and in order ful-
fillment. The simulation model is formulated in a spread-
sheet environment using MS Excel® and @Risk®. The per-
centage of periods without stockout is computed and 
compared to the theoretical value expected by the assump-
tions inherent to the analytical expression. 

1 INTRODUCTION 

Formulating an effective inventory planning policy to en-
sure product availability at the lowest possible cost is not 
an easy task. The uncertainties inherent to the logistical 
process, i.e., inaccurate demand forecasting, replenishment 
lead time and amounts received short of amounts ordered 
require the building up of safety stocks.  

While overstocking involves extra inventory holding 
costs, the lack of safety stocks may cause sales losses and a 
higher rate of order filling postponements than desirable, 
resulting in the deterioration of customer service standards. 

The problem of sizing the proper safety stock has been 
tackled by a number of authors, like Hadley and Within 
(1963) and Brown (1967), particularly for the classical pol-
icy {r,Q}, i.e., economic lot size and reorder point, where 
Q is the quantity ordered when the on-hand inventory hits r 
units. In this case, the safety stock is determined for a 
given level of customer service according to demand fluc-
tuations along the replenishment time, where lead times 
and demands are stochastic.  

The problem in general is not simple to solve analyti-
cally, due to the need to determine the percentiles of the 
demand during the lead time. This lead time demand fol-
lows a compound probability distribution, which is the 
convolution of a random number of periods, each having 
its own random demand. A common approach for this 
problem is to assume normality in the distribution of the 
lead time demand, as shown in Keaton (1995). Thus, it is 
only needed to estimate the mean and the standard devia-
tion of the compound distribution to evaluate analytically 
the safety stock.  

Nevertheless, according to Tyworth (1992), even if the 
lead time and the demand are normally distributed, the 
compound distribution may not be normal. This fact can 
lead to considerable errors and deviations in determining 
the necessary safety stock to achieve a certain level of cus-
tomer service.  

Simulation models are usually more precise in deter-
mining safety stocks. However, such models can demand a 
lot of computational effort and time, especially when it is 
needed to evaluate the safety stock for many products and 
the parameters of the variables involved change from time 
to time. For example, the distribution of the lead time can 
change when the supplier or the transportation mode is 
changed. The parameters of the demand for a product is 
another factor that changes through time, being dependent 
on which stage the product is in its life cycle, as seen in 
Slack, Chambers, Harland, Harrison and Johnston (1995). 

Thus, analytical models are more flexible and can be 
very practical in industrial problems, automating the 
evaluation of safety stocks. Simulation models can be used 
to test and validate the characteristics assumed for the 
compound distribution present in the problem. Such simu-
lations can indicate that an analytical expression is valid or, 
if the expected level of customer service is not achieved, 
that the analytical model should be reformulated. 

In this manner, the purpose of this paper is to present 
simulation models to validate an analytical expression for 
determining the safety stock in a periodic review planning 
environment, with lot-4-lot replenishment policy, i.e., or-
ders equal net requirements. Uncertainties are present in 
demand forecast errors and in the consistency between 
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quantity received and order placed. The latter uncertainty 
occurs by virtue of quality control failure, supplier fault or 
production yields different from the expected rates, as 
shown by Gullu, Onol and Erkip (1999). 

2 DESCRIPTION OF THE  
ANALYTICAL MODEL 

Garcia and Machado (2001) formulated an analytical ex-
pression to calculate the proper safety stock levels according 
to the desired customer service rate, in a periodic review sys-
tem with stochastic forecast error and order fulfillment.  

In this model, it is assumed that the quantity ordered at 
the planning time is received, completed or not, before the 
demand occurs. Figure 1 illustrates one possible situation. 
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Figure 1: An order is Received between Ti-1 
and Ti to Fulfill Demand at Time Ti 

 
where: 
 

• Ti is the time in which an order is placed to fulfill 
the demand at time Ti+n ; 

• R is the period between two planning times, i.e., 
between two inventory level reviews; 

• n is the number of inventory level reviews be-
tween the planning period and the occurrence of 
the demand that was planned to be fulfilled; 

• Di is the demand at time Ti ; 
• Qri is the quantity received within a period R be-

tween Ti-1 and Ti , which was ordered at time Ti-n 
to fulfill the demand at time Ti . 

 
At this situation, an order is placed at time T0 to meet 

the demand at time Tn. At T0, the forecasted demand is 
known for each period from T1 to Tn and the orders placed 
before. The real demands from T1 to Tn and the quantities 
received within that time are unknown at T0 and should be 
modeled as random variables. 
Considering the simplest case, in which n is equal to 1, 
such situation can represent the formation of inventory lev-
els in some manufacturing environments, similarly to the 
approach presented by Hung and Chang (1999). An order 
is placed at the beginning of a period, the inventory levels 
rise due to production and at a pre-defined time occurs the 
demand. The abrupt fall of the inventory level can be 
caused by consolidation in shipments to other links in the 
supply chain, such as dealers and wholesalers. Likewise, 
the demand for raw materials in certain production envi-
ronments can be concentrated at specific and preset periods 
according to production scheduling characteristics. The 
behavior of inventories described is illustrated in Figure 2, 
in which continuous replenishment along time and replen-
ishment at a single time are shown respectively. 
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Figure 2: Continuous and Instantaneous Replenishment  

 
where I0 and I1 are on-hand inventories at periods T0 and T1. 

Another situation, analogous to the one presented in 
Figure 1, is when the quantities ordered at time Ti are re-
ceived at time Ti+n to meet the demand that occurs between 
Ti+n and Ti+n+1 . Figure 3 illustrates this case. 

This case is similar to the periodic review system 
{R,S} presented in Silver and Peterson (1979). Such situa-
tion is more common in managing inventories in dealers 
and wholesalers, where an order is received at a single time 
and the demand occurs continuously through time. A saw-
tooth graphic, as shown in Figure 4, can represent it well. 
The periodic review is efficient in these cases as it can save 
costs of processing orders and obtain other scale econo-
mies, since all the orders are placed at the same time.  
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Figure 3: An order is Received at Time Ti to 
Fulfill the Demand that Occurs between Ti and 
Ti+1  
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Figure 4: Saw-tooth Representing the Inventory Level 
Though Time 

 
For the given descriptions of inventory levels behav-

ior, considering the uncertainties in forecasted demand and 
in order fulfillment, two variables should be defined: 

 
 (1) 

 
 

 (2) 
 

where ri is the quantifier of the deviation between the de-
mand Di and its forecast Fi, and ai is the quantifier of the 
deviation between the quantity ordered Qoi and the quan-
tity effectively received Qri. All the parameters refer to a 
certain period Ti.  

If we are at time T0 planning for time Tn , the order 
placed to fulfill the demand at Tn is: 
 

 (3) 
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where: 
 

• Qon is the quantity ordered at T0 to meet the de-
mand at Tn;  

• Fn is the forecasted demand for Tn;  
• In-1 is the expected on-hand inventory just before 

the order Qon is received or starts to be received; 
•  SS is the safety stock required to achieve a certain 

level of product availability or customer service.  
 
Finally, knowing the statistical parameters of all the ri 

and ai at time T0, we have the expression for the safety 
stock SS (Garcia and Machado 2001): 
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where: 
 

• NR is the estimated mean of net requirements at 
time Tn; 

• µri is the mean of each variable ri; 
• µai is the mean of each variable ai; 
• I0 is the on-hand inventory at time T0; 
• Fi is the forecasted demand for time Ti; 
• Qoi is the order placed to fulfill demand at time Ti; 
• SNR is the estimated standard deviation of net re-

quirements at time Tn; 
• σri is the standard deviation of each variable ri; 
• σai is the standard deviation of each variable ai; 
• σIn-1 is the standard deviation of In-1; 
• k is the constant to determine the customer ser-

vice, according to the normal distribution. 
 
As seen, this model assumes normality in the net re-

quirements, the compound distribution, what can be a non-
reasonable approach. Following, simulation models will be 
formulated to test the analytical expression and its assump-
tions, determining in which situations it is valid. 
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3 A FIRST SIMULATION MODEL (n=1) 

First, a simulation model will be presented for the simplest 
case, with n equals 1. In this manner, the expected on-hand 
inventory In-1 becomes I0, a deterministic parameter at T0, 
i.e., there is no uncertainty presented in the initial on-hand 
inventory. 

A spreadsheet model is built in MS Excel® and 
@Risk® to run the simulations. An example of the model is 
shown in Figure 5.  
 

Period 1 2 3 4 5
Forecasted Demand (F) 100 130 110 85 90

Initial Inventory (I) 20 24 48 20 33
Net Requirements (NR) 89 118 69 72 63

Safety Stock (SS) 44 57 44 37 37
Quantity Ordered (Qo) 124 163 106 102 94
Quantity Received (Qr) 114 160 103 91 88

Actual Demand (D) 110 136 131 78 115
Final Inventory 24 48 20 33 6  

Figure 5: Example of the Spreadsheet Model Formulated 
 

Here we consider that the order placed at the begin-
ning of period 1 (T0) is received before the demand in that 
period occurs. At the example in Figure 5 the calculations 
were done considering 1 for the mean of all ri and 0.15 for 
its standard deviation, and for ai a mean of 0.9 and a stan-
dard deviation of 0.05. The constant k equals 2 in this ex-
ample. The net requirements are calculated as in equation 
5, the safety stock as in equation 4 and the quantity ordered 
as in equation 3. 

Both ri and ai are modeled by normal distributions using 
@Risk® built in function. The quantity received is equal to 
the quantity ordered times the random variable ai, and the 
demand is equal to its forecast times the random variable ri. 
In this manner, in Figure 5 the quantity received (Qr) and the 
actual demand (D) are the stochastic variables, being the 
values presented in the figure randomly generated. The final 
inventory of a period is the quantity received plus the initial 
inventory minus the demand. The initial inventory of the 
next period is the final inventory of the previous period. 
Backorders are accepted in this model, i.e., a negative final 
inventory should be fulfilled in the next period. 

The simulation consisted of one run of 5000 iterations 
for each scenario, using Latin Hipercube sampling. The dif-
ferences between the scenarios are the values of the constant 
k and the parameters of the random variables (means and 
standard deviations). For each scenario it was computed the 
percentage of periods without stockouts, a measure of cus-
tomer service. The results are shown in Table 1. 
 The values obtained by simulation should be com-
pared to the expected values according to the normal dis-
tribution. In the unit normal table, k equals 1 corresponds 
to 84.13% cumulative probability, k equals 2 to 97.72% 
Table 1: Simulation Results – Percentage of Periods with-
out Stockout 

Parameters k=1 k=2 k=3

83.67% 97.35% 99.81%

82.47% 96.06% 99.34%

80.52% 93.74% 98.21%

83.99% 97.60% 99.83%

83.08% 96.88% 99.74%

81.71% 95.43% 99.06%

% of Periods without Stockout 
obtained by the Simulation 
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and k equals 3 to 99.87%. Table 2 shows the absolute de-
viation between the percentage of periods without stock-
outs obtained by the simulation and the expected values 
assuming normality in the compound distribution. 

 
Table 2: Comparison of Simulation Results and the Ex-
pected Values Assuming Normal Distribution 

Parameters k=1 k=2 k=3

0.47% 0.37% 0.05%

1.67% 1.66% 0.53%

3.61% 3.98% 1.65%

0.15% 0.13% 0.03%

1.05% 0.84% 0.12%

2.42% 2.29% 0.81%

Absolute deviation between the 
simulation results and the expected  

values assuming normality
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As seen in Table 2, a very good agreement between 
theoretical and simulated result was achieved. Further-
more, the analytical model tested has smaller deviations 
from the normal assumption when k assumes higher val-
ues, and, as the ratio between the standard deviations of ri 
and ai increases, the deviations decrease, i.e., the analytical 
model converges to normality.  

4 A SIMULATION MODEL FOR n=3 

Now a more complex model will be formulated, when n 
equals 3. In this case, at T0 an order is placed to fulfill the 
demand at T3. The information known at T0 are the orders 
in process, which were placed before, the initial on-hand 
inventory I0, the forecasted demand for T1, T2 and T3, and 
the statistics for each ri and ai. All other data should be cal-
culated based on this information. 

Figure 6 shows an example of the known data and the 
calculations done to decide how much to order at the begin-
ning of period 1 (T0) to guarantee, with a certain confidence, 
the fulfillment of the demand at the end of period 3 (T3). 
 

Period 1 2 3
Forecasted Demand (F) 90 115 120

Expected Initial Inventory (I) 30 57 41
Orders in Process 130 110 -

 Net Requirements (NR) - - 88
Safety Stock (SS) - - 62

Quantity Ordered (Qo) - - 141
Expected Final Inventory 57 41 48

Known Data and Analytical Calculations

 
Figure 6: Example of the Known Data and the Necessary 
Calculations to Decide How Much to Order at T0 
 

At this example, k equals 2, the mean for all ai is 0.9 
and the standard deviation for all ai is 0.05. For ri, three 
variables were considered: r1, quantifier of the relation be-
tween the demand at T1 and its forecast at T0; r2, quantifier 
of the relation between the demand at T2 and its forecast at 
T0; and r3, quantifier of the relation between the demand at 
T3 and its forecast at T0. Since all the forecasts are done at 
T0, it is assumed that the more the forecast is far from T0, 
the more the uncertainty in ri increases. Thus, at the exam-
ple in Figure 6, r1 standard deviation is 0.05, r2 standard 
deviation is 0.10 and r3 standard deviation is 0.15. The 
mean of all r1 was assumed to be 1.  

Having done all the necessary calculations, the model 
consists in simulating the demands, quantities received and 
final inventories at T1, T2 and T3, besides the initial invento-
ries at T2 and T3. Figure 7 shows an example of the variables 
simulated, according to the data presented in Figure 6. 
 As in the first simulation model, this simulation con-
sisted of one run of 5000 iterations using Latin Hipercube 
sampling in @Risk® for each scenario. The differences be-
tween the scenarios are the values of k and the parameters
 

 
Period 1 2 3 

Real Initial Inventory 30 55 46 
Quantity Received (Qr) 114 104 121 

Actual Demand (D) 89 113 127 
Final Inventory 55 46 39 

Simulation 

 

Figure 7: Example for the Simulated Variables Based on 
the Calculations Presented in Figure 6 
 
of ri and ai, which are modeled as normal distributions. 
The percentages of periods without stockout obtained by 
the simulation are presented in Table 3. 

As before, the values obtained by the simulation are 
compared to the expected values according to the normal 
distribution. Table 4 shows the deviations between the per-
centage of periods without stockout obtained in the simula-
tion and the theoretical values according to the normal dis-
tribution. 
 

Table 3: Simulation Results Obtained for n=3 
 

Parameters k=1 k=2 k=3 

83.72% 97.26% 99.82% 

83.12% 96.02% 99.44% 

81.12% 94.06% 97.96% 

84.08% 97.38% 99.84% 

83.26% 96.48% 99.54% 

81.38% 94.72% 98.34% 

%  of  Periods without Stockout  
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Table 4: Comparison of the Simulation Results and the 
Expected Values Assuming Normal Distribution for n=3 

Parameters k=1 k=2 k=3

0.41% 0.46% 0.05%

1.01% 1.70% 0.43%

3.01% 3.66% 1.91%

0.05% 0.34% 0.03%

0.87% 1.24% 0.33%

2.75% 3.00% 1.53%
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Analyzing Table 4, it is seen that the absolute differ-
ences between the simulation results and the normal values 
tend to be higher at k equals 2. Again, k equals 3 has the 
smallest deviations and when the ratio between the uncer-
tainties in the ri and the uncertainties in the ai increases, the 
deviations decrease. 

5 CONCLUSION 

Simulation models are very useful tools when dealing with 
safety stock models. They are useful not only to evaluate 
the proper safety stock to achieve a certain level of cus-
tomer service, but also to validate and evaluate the ade-
quacy of analytical expressions, which are easier to im-
plement and more practical in many industrial problems. 
The simulation models presented in this paper brought 
valuable information about the analytical expression. De-
pending on the target customer service and on the relative 
magnitude between the uncertainties considered, the ana-
lytical expression can result in significant differences from 
the theoretical customer service based on the assumption of 
normality. 

Nevertheless, field research shows that in many real 
cases the uncertainty in forecast errors tends to have a 
higher magnitude than order fulfillment uncertainty, what 
makes the analytical model valid and adequate to many 
situations. 
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