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ABSTRACT

High volume production flows are modeled by nonlinea
hyperbolic partial differential equations representing co
servation laws. These models have Little’s law explicitl
built into the formulation. Borrowing from concepts in ga
dynamics and vehicular traffic models we derive sever
prototypical equations representing linear as well as r
entrant factories. Multiple products, dispatch polices an
control actions can be modeled. Standard hydrodynam
codes provide very fast simulations of these models allo
ing us to link them together to form efficient supply chai
simulations.

1 INTRODUCTION

Understanding the behavior of large supply chains und
different polices and scenarios is a major issue for ma
businesses today. Obviously there are no controlled e
periments that can be done involving whole supply chai
or even involving only a single large factory. Hence sim
ulation models will have to be developed that substitu
for the real environment. While discrete event simulato
have been highly successful to simulate single factorie
for instance simulations of semiconductor manufacturin
at the tool level, they are much too computationally ex
pensive to simulate even a moderately complicated sup
chain. Alternative models that endow supply chain nod
with fixed production capacities and fixed lead times are n
accurate enough since they do not take into account the f
that capacitated system respond nonlinearly to increases
demand close to the limit of the production capacity. I
this paper we propose continuum models of factory produ
tion that treat the flow of products much like a traffic flow
or a hydrodynamic flow. We discuss models for a linea
factory and a re-entrant factory, typical for semiconduct
production. The resulting models are nonlinear, nonloc
hyperbolic conservation laws. There are standard numeri
algorithms that allow a very fast and efficient simulatio
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of such equations. By linking three factories together to a
supply chain we demonstrate the feasiblilty of our approach.

2 HYPERBOLIC CONSERVATION MODELS

Real factories show a strong increase in the average through
put timeτ as the loading of the factory is increased. Unfor-
tunately, large factories are rarely run in equilibrium for any
amount of time and are too costly to be run as a controlled
experiment. Hence the specific nature of the throughput
time nonlinearity is unclear. We have developed two models
that can serve as extreme case models for real factories
Most likely any real factory will behave in some intermedi-
ate manner. The two models roughly correspond to a linear
factory where every production step has its own machine
and a re-entrant factory where product has repeated passe
through the same machine, respectively. We call the former
a queuing model and the latter a re-entrant model.

Both models are based on the fundamental fact of
conservation of jobs: whatever enters the factory has to
come out of the factory at some time (we neglect the yield
issue for the moment). We definex to be a “completion”
variable withx = 0 denoting the start of a product into the
factory andx = 1 the release of a finished product. Writing
ρ(x, t) for the density of work at stagex at time t we get
the total load (WIP) as a function of time

L(t) =
∫ 1

0
ρ(x, t)dx.

The density then satisfies a hyperbolic conservation law of
the form

ρt + (v(ρ)ρ)x = 0 (1)

wherev(ρ) describes the velocity of product moving in the
factory. In general,v(ρ) will have a functional, non-local
dependence onρ as opposed to a simple local function ofρ
as in a traffic flow model. The exact nature of the transport
velocity v(ρ) is the major modeling issue.
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For a re-entrant factory we assume thatv(ρ) is described
by a state equation of the form

v(ρ) = v0(1− L

Lmax
). (2)

Here v0 is the speed for the empty factory andLmax is
the maximal load. Equation (2) implies that the velocity is
uniform in the whole factory and that, due to the re-entran
nature of the flow, the total WIP determines this velocity
Notice thatv is time dependent throughL(t). The start rate
λ(t) into the factory enters as the boundary condition fo
the flux atx = 0:

λ = ρ(0, t)v(t). (3)

It is easy to see that for any equilibrium solutionρeq as
well as for long term averages (if they exist) equations (1-3
satisfy Little’s law (Little 1961): Assumeρ = ρeq . Then
ρ(0, t) = ρeq and withv = veq = 1

τ
, equation (3) becomes

Little’s law. The full model (1-3) in essence describes
the dynamics of the factory flow as if it were always in
equilibrium, following adiabatically the state equation (2)

In contrast to the re-entrant model, a more sophisticate
model for the queuing model can be derived (Ringhofer an
Armbruster 2002). It allows for non-adiabatic relaxation
of the velocity fields: Consider a job arriving at a queue
with processing rateµ. Its throughput time depends on the
number of jobs waiting before it

τ = 1

µ
(1+ L). (4)

Using this relationship as a boundary condition we deriv
a set of coupled hyperbolic conservation laws for the WI
densityρ(x, t) and the velocityv(x, t) of the form:

ρt + (vρ)x = 0 (5)

vt + vvx = 0 (6)

v(0, t) = µ

1+ L(t) (7)

v(0, t)ρ(0, t) = λ(t). (8)

The heuristic model for the re-entrant flow can be
extended to include many issues relevant to a real simulatio

• Multiple products: To model production of two
products, A and B, we extend our formulation to
two densitiesρA andρB and two state equations

vA = vA0 (1− L
LAmax

)

vB = vB0 (1− L
LBmax

)

L = ∫ 1
0 (ρA + ρB)ds

(9)
which allows for different raw speeds of the A
and B product and for different capacities of the
factory relative to the two products.

• Dispatch rules: To model a rule of preference of
product A over product B we put weight functions
on the load: For instance, if we choose product A
over product B, then product B will not influence
the speed of A through the factory, hence

LA(t) = ∫ 1
0 ρAds

LB(t) = ∫ 1
0 (ρA + ρB)ds.

(10)

Rules based on a specific ratio of As and Bs can be
accomplished by having appropriate weight factors
attached to the densities of the loads of equation
(10).

• Policies: As written so far, our models implicitly
assume FIFO policies. However other policies can
be implemented using integration kernelsw(x, s)
that indicate the importance of product at location
s in completion space on the speed of product at
locationx by writing

v(x, ρ) = v0(1− 1

Lmax

∫ 1

0
w(x, s)ρ(s)ds. (11)

As a result, the velocity will cease to be uniform
throughout the factory. For instance, a pull policy
is modeled by the kernel

w(x, s) = 0 if s < x,

= 1 if x ≤ s.

This leads to

v(x, t) = v0(1− 1

Lmax

∫ 1

x

ρ(s)ds. (12)

This implies thatv(1) = v0, indicating that product
at the end of production moves independently of
the load of the factory, whilev(0) shows the full
impact of the loading of the factory on the motion
at the beginning of the production line. Similarly, a
push policy can be easily implemented. The same
idea will also allow for a more detailed modeling
of the topology of the factory where the weight
functionw could in principle account for the impact
of the exact re-entrant flow inside the factory.

3 EXPERIMENTS

Before we couple these factories to supply chains we can
study the properties of each individual model. A short
report on equilibria, their stability and control issues has
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been given in Marthaler, Armbruster, and Ringhofer (2002)
more detail can be found in the thesis of Dan Marthale
(Marthaler (2002)). A comprehensive report is in preparatio
(Armbruster, Marthaler and Ringhofer 2002). Figure 1
shows some simulations that indicate that the model
functioning properly: We plot the transient throughput times
of product moving through a re-entrant factory for increasin
start rates. The influx increases from bottom to top accordin
to the inset. The critical start rate isλ = 2.5. For higher start
rates there does not exist an equilibrium solution any mor
In addition to the throughput time increasing nonlinearly
with the start rate, we also see that the length of the transie
increases with increasingλ.
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Figure 1: Throughput Time for a Simulation of a Re-entrant
Model (Equation (1) and (2) for Varying Start Rates)

While the possibility of shock waves and the conser
vation law properties of equation (1) require some cautio
in simulating these equations, there are nevertheless sta
dard numerical codes developed mainly for hydrodynami
purposes (LeVeque 1992) that allow basically instantaneo
simulations of these equations. Connecting several node
each simulated with an appropriate conservation law fo
mulation, is done in the simplest way via flux coupling:
Whatever comes out of one factory has to go into the ne
factory. This implies that the density will be discontinous
along a supply chain but the flux will be a continous vari-
able. Splitting and merging of production streams is als
straightforward: Fluxes are added when multiple factorie
feed into one factory and the outflux of a factory can be
split according to any desired policy to feed it into multiple
factories downstream. Figure 2 shows a snapshot of a 3 node
supply chain: We are simulating a linear factory feeding
re-entrant factory feeding another linear factory. Only on
product is simulated and FIFO is used throughout. Eac
node makes up one third of the completion space (x-axis
The influx into the first factory is a steady periodic function.
The snapshot in Figure 2 is taken during a transient gene
t

-

,

-

ated by starting with empty factories. The re-entrant facto
has a much shorter transient and is in steady state while
linear factories are still showing transient behavior. Th
is a reflection of the fact that we have chosen an avera
influx that is just below the capacity of the linear factor
with oscillations which during part of the period exceed th
capacity, whereas the capacity of the re-entrant factory
been set much higher. In addition, the re-entrant facto
acts as a damper. Not only is the variation of WIP and fl
lower in the re-entrant part, it is also lower downstream fro
the re-entrant factory. Figure 3 shows WIP as a functi
of time for this simulation. The fast transient re-entra
factory, extremly long transients in the linear factories
well as the reduced WIP downstream can be seen.
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Figure 2: Density and Flux for a 3 Node Supply Chain
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Figure 3: WIP in Each of the Three Nodes as a Functio
of Time

Clearly series of experiments analyzing the impact
changing capacities along the line, changing input fluxe
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etc. on WIP, outflux and troughput time as a function o
time can be performed.

Merging such simulations with control concepts ma
allow us to reduce variability along a supply chain: Assum
we have a supply chain where the product flow splits
the output of one factory into two streams that go throug
two identical factories. The outflux of the two factories is
then merged into one input stream. If our flux is periodi
(or has a dominant period), we can generate a phase s
by running one factory slower than the other. Alternatively
the throughput time through these factories will be ver
susceptible to the total load inside the factory. Hence b
splitting the flux exactly 50-50 but adding a second produ
into one of the factories we can create a load differenc
between the two factories. If done correctly this will lead
to a phase shift that may be used to dampen the oscillatio
of the merged flux. We expect to have simulations availab
of these ideas for the conference.
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