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ABSTRACT 

This paper presents an approach that gives students in-
sights into parallelism and exposure to discrete-event simu-
lation techniques without requiring that they have formal 
courses in either. I apply the rather curious Linda coordina-
tion model to the classic Sleeping Barber Problem used 
frequently to illustrate inter-process communication activi-
ties in operating system courses.  Normally, customers 
seeking haircuts are represented as processes spawned as 
faceless entities with no regard to inter-arrival times or 
proper ordering of departures for those who get cuts. This 
paper uses elementary discrete-event simulation techniques 
to introduce this sought for realism while preserving the 
original motivation of using the Sleeping Barber to demon-
strate process concurrency. 

1 INTRODUCTION 

Computer Science majors at MWC may choose as elec-
tives Simulation Techniques and/or Parallel Processing. 
Since these electives are not offered every year, students 
may miss the opportunity to take them or defer to more ap-
pealing electives. But required courses like Operating 
Systems can provide opportunities to illustrate discrete-
event simulation techniques normally seen in specialized 
courses. 

I use the C instantiation of Linda, known as C-Linda, 
in my parallel processing course as a coordination model 
that implements parallelism via a logically shared memory 
across a network of workstations.  One can teach the Linda 
concept quickly by confining discussion to just four basic 
operations.  This makes it an ideal supplement for teaching 
and exploring concurrency concepts in operating systems. 

One can introduce inter-arrival delays separating cus-
tomers entering the barbershop as well as service delays by 
using OS sleep functions like usleep available in UNIX.  

In this paper I provide an overview of Linda and high-
light the implementation details I used to give the Sleeping 
Barber example a more realistic feel.   

 

2 WHAT IS LINDA? 

In a recent paper (Reynolds 2000) I discuss my initial ex-
periences with Linda after using it to implement the Bucket 
Sort algorithm suggested by Wilkinson and Allen (1999). 
(Code at <http://www1.mwc.edu/~bigjr>) In that 
paper I provide a thumbnail sketch of the Linda paradigm, 
which I repeat here.  
 Linda is a coordination language used to develop par-
allel applications (Carriero and Gelernter 1991). When 
combined with C one has C-Linda, a complete parallel 
programming language. In 1997 MWC purchased C-Linda 
for $1,000 from Scientific Computing Associates 
(<http://www.lindaspaces.com/>) who offer a 
FORTRAN version as well. There are also free implemen-
tations available based on variations involving Lisp, 
Prolog, and Pascal.  

C-Linda runs on MWC’s computer science network of 
five HP workstation/servers under the control of HP-UX. 
They host 31 Entria/Envizex terminals while one server 
distributes file systems to the other nodes under the control 
of the NFS (Network File System).  Since all architectures 
are of HP’s proprietary PA-RISC design, a program com-
piled on one machine will execute on all of the others, al-
beit at different speeds. This network is ideal for parallel 
processing; there is no need to do separate compilations to 
accommodate disparate architectures. 

The Linda model provides a virtual shared memory 
(VSM) whose basic addressable unit is the tuple. The 
VSM, often called tuple space, is logically shared by the 
processes (frequently called workers).  A tuple is a se-
quence of up to 16 typed fields enclosed in parentheses. 
For example:  

 
(“College Avenue”, 1301, “campus”) 
(“CollegeAveue”,?street_number,?edifice_type) 
(“worker”, id, SortMyBucket(id)) 

 
It is standard practice to use the first field in a tuple for 

“documentation.” A field preceded by a “?” is known as a 

 

http://www1.mwc.edu/~bigjr
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placeholder or formal field, while those with values are 
called actuals. The first two tuples are examples of data 
tuples. The last one could be a data or live tuple depending 
on how it is created. Processes can interface with VSM us-
ing four basic operations: 

 

• out(tuple): Inserts data into VSM after it resolves 
all fields of its tuple to actual values. Thus, 
out(“worker”, id, SortMyBucket(id)) results in 
a data tuple placed in VSM after SortMyBucket is 
“replaced” by the value it returns.  On the other 
hand, out(“data”, my_id, MyBucketSize) results 
in a data tuple whose fields contain the current 
values of the variables. 

• in(tuple): Does destructive read of data from 
VSM by removing, atomically, the first tuple 
found that matches the operation’s tuple (some-
times referred to as the anti-tuple or template). If 
more than one tuple satisfies a request, an arbi-
trary, non-deterministic selection is made. If no 
match is found, the requesting process blocks un-
til a matching tuple is placed in VSM. Thus, 
in(“data”, my_id, MyBucketSize) is looking for 
a data tuple whose field values match the current 
field values of the requesting tuple. The request, 
in(“data”, ?my_id, ?MyBucketSize), implies 
that the first data tuple found in VSM whose first 
field is “data”, and the last two matching the field 
types of the template, will be removed.  

• rd(tuple): Functions identically to in except that it 
does not remove the matching tuple from tuple 
space.  That is, it does a non-destructive read of 
data from VSM. 

• eval(tuple): Creates a process tuple consisting of 
the fields specified as its argument and then re-
turns. A child process performs the evaluation for 
each field. During the evaluation process the tuple 
is not accessible until it becomes a passive data 
tuple. Thus, it is a live tuple until the field-
evaluating processes terminate. Within a loop, one 
could spawn many eval(“worker”, id, SortMy-
Bucket(id)) tuples, which will execute in parallel. 
The difference between out and eval is that the 
former returns after the data tuple is placed in 
VSM while the latter returns before the data tuple 
materializes in VSM.  

 
C-Linda offers a Code Development System for creat-

ing and verifying code. Solutions run on a uniprocessor 
simulator; hence no speedup can be observed.  By chang-
ing an environment variable and recompiling the source 
code, one can run the application across a network of 
workstations.  Finally, only C functions can call Linda 
functions. C++ functions can be intermingled as long as 
they are devoid of Linda constructs. 
3 THE SLEEPING BARBER PROBLEM 

A class of problems in the study of operating systems deals 
with inter-process communication.  These problems require 
techniques that provide cooperative solutions when compet-
ing processes want to modify the same variable within a criti-
cal section (CS). Tanenbaum (1992) offers extensive cover-
age of this subject including the approach by Dijkstra (1965) 
where mutual exclusion is controlled by semaphores that can 
be raised (V operation) and lowered (P operation) atomically.  
 Tanenbaum (1992) also provides a pseudo-C solution 
to the classical Sleeping Barber Problem proposed by 
Dijkstra (1965) that has customer processes interfacing 
with a barber process who, when not busy, sleeps in his 
chair. An arriving customer finding a sleeping barber, 
wakes him up, and gets a haircut. New arrivals encounter-
ing a busy barber take a seat in the n-chair waiting room. If 
the waiting room is full, the customer simply leaves. 

Figures 1 and 2 provide an outline of Tanenbaum’s 
barber and customer processes, respectively. Figure 3 in-
cludes the two functions, called in the previous figures, 
used in a solution by Hartley (1995).  The semaphores 
mutex and barber are binary with the former “raised (1)” 
and the latter “lowered (0)” initially. The counting sema-
phores customers and cutting are 0 initially. 

 

 
 
 
 
 
 
 

 

Figure 1: Outline of the Barber Process 
 
 
 
 
 
 
 
 
 
 

Figure 2: Outline of the Customer Process 
 
 
 

 
 
 
 
 
 
 
 

while (1) { 
  P(customers); //Sleep if customers = 0 
  P(mutex);     //Get access to waiting room 
  waiting--;    //Remove a customer 
  V(barber);    //Barber ready to cut hair 
  V(mutex);     //Release access to waiting 
  cut_hair();   //Cut hair (outside of CS) 
} 

P(mutex);       //Enter critical section 
if (waiting < CHAIRS){//Full waiting room? 
  waiting++;    //Admit customer 
  V(customers); //Wake up barber, possibly 
  V(mutex);     //Release access to waiting 
  P(barber);    //Sleep if barber busy 
  get_haircut;} //Get in chair; be serviced 
else {//Shop is full; do not wait 
  V(mutex);     //Release access to waiting 
} 

void cut_hair() 
{ 
 P(cutting); 
} //end of cut_hair 
 
void get_haircut() 
{ 
  V(cutting);      
} //end of get_haircut 

Figure 3: Skeletal forms of 
cut_hair and get_haircut 
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4 ADDING REALISM 

The solution by Hartley (1995) employs the SR program-
ming language, a high-level Pascal-like language for writ-
ing concurrent/parallel programs. He also monitors his pro-
gram’s behavior by printing milestones such as the id’s of 
customer processes in the order of arrival as well as the 
id’s of customers in the order of departure.  Although I 
consider his solution correct for the approach taken, his ex-
ample, involving a waiting room with three chairs, shows 
six customers arriving in numerical order as one would ex-
pect, but the first two customers getting haircuts are the 
first and fourth arrivals, respectively. 

One could argue that when customer processes are 
spawned they represent templates of customers who become 
real when get_haircut is called in Figure 2 above.  Thus, the 
fourth customer, as a template, is really the second customer 
to receive the haircut.  A better approach is to accommodate 
the fact that preserving first-come first-served ordering is 
jeopardized when customer processes block before calling 
the get_haircut function. I see problems like the Sleeping 
Barber as an opportunity to expose students to discrete-event 
simulation techniques.  In my solution I spawn customers 
around an exponentially distributed inter-arrival time cen-
tered on an input mean.  These computed times are used to 
cause actual delays through calls to the UNIX usleep func-
tion.  In addition, I determine haircut times randomly dis-
tributed between minimum and maximum service times.  
These too are used to build in operating system delays 
within get_haircut.  Before providing a few details about my 
solution in the next section, I want to illustrate the prior 
point made when one disregards customer servicing in the 
order of arrival.  The following output was generated by a 
modified version of my final solution: 

  
This program simulates the classic Sleeping Bar-
ber problem. The shop has one barber and a fixed-
size waiting room. Arriving customers finding a 
full waiting room simply depart. 
 
Type in mean for customer interarrival times: 10 
Type in minimum and maximum haircut times: 10 20 
Number of arrivals to attempt (must be > 0)? 10 
How many chairs in waiting room (must be > 0)? 3 
 
 
Summary of Input for This Setup 
******************************* 
Mean interarrival time = 10 units 
Minimum haircut time = 10 units 
Maximum haircut time = 20 units 
Number of chairs in waiting room = 3 
Number of arrivals attempted = 10 
 
Monitoring of transactions follows: 
 
    Barber ready for first customer of the day 
    Customer 1 in waiting room. Total waiting = 1 
    Barber has next customer. Total waiting = 0 
    Customer 2 in waiting room. Total waiting = 1 
    Customer 3 in waiting room. Total waiting = 2 
    Customer 4 in waiting room. Total waiting = 3 
    Customer 5 turned away; full waiting room 
    Customer 6 turned away; full waiting room 
    Customer 7 turned away; full waiting room 
    Customer 8 turned away; full waiting room 
    Customer 1 finished haircut in 18 time units 
    Barber has next customer. Total waiting = 2 
    Customer 9 in waiting room. Total waiting = 3 
    Customer 10 turned away; full waiting room 
    Customer 4 finished haircut in 12 time units 
    Barber has next customer. Total waiting = 2 
    Customer 9 finished haircut in 12 time units 
    Barber has next customer. Total waiting = 1 
    Customer 3 finished haircut in 14 time units 
    Barber has next customer. Total waiting = 0 
    Customer 2 finished haircut in 12 time units 
    Barber is finished for the day 

 
It is evident that realism goes out the window when 

customers arriving in numerical order, who get haircuts, 
leave in the order 1, 4, 9, 3 and 2! 

5 C-LINDA SOLUTION 

Some of the implementation details are offered here to il-
lustrate how one represents concepts like binary and count-
ing semaphores in C-Linda.  Readers will find the com-
plete code at <http://www1.mwc.edu/~bigjr>. 

The eval operation dispatches the barber and customer 
processes: 

 
eval(“Barber”, Barber()); 
eval(“Customer”, Customer(cut_time); 

   
The customers are dispatched within a loop.  The UNIX 
usleep function uses exponentially distributed inter-arrival 
times as an argument to provide delays between dis-
patches.  Notice also that a randomly calculated service 
time is sent as an argument to the Customer process. Of 
course, this time becomes moot if a customer can’t be ad-
mitted because of a full waiting room. 

Once the processes die, the live tuples become data 
tuples and thus, can be withdrawn from the VSM: 

 
for (i = 1; i <= TotalCust; i++) 
    in(“Customer”, ?done); 
in(“Barber”, ?done); 
printf(“ Barber is finished for the day\n”); 

 
The P and V operations are easy to implement on bi-

nary semaphores.  For example: 
 
in(“mutex”, 1);   /* P(mutex) */ 
out(“mutex”, 0); 
 
in(“mutex”, 0);   /* V(mutex) */ 
out(“mutex”, 1); 

 

Counting semaphores are difficult if not impossible to 
implement in C-Linda because there is no easy way to 
simulate atomic updates.  However, one can get the job 
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done by using multiple tuples to represent each value of the 
count.  For example, a literal translation of  P(customers) 
in Figure 1 and V(customers) in Figure 2 would be, in its 
simplest form: 

 
in(“customers”);   /* P(customers)  */ 
out(“customers”);  /* V(customers)  */ 
 

Thus, if five customers are accepted for haircuts, the V op-
eration will place five copies of the (“customers”)-tuple 
into VSM. On the other hand, the P operation draws, in a 
non-deterministic way, a tuple representing a “faceless” 
customer.  This approach explains why the out-of-order 
customer departures  demonstrated previously can occur.  
One must also build in a mechanism that prevents deadlock 
when the barber gives the last haircut and no more tuples 
are available to draw.  Otherwise, the barber will block 
forever on its in(“customers”) operation. 

To keep track of customers I maintain a counting tu-
ple, CustServed, whose values give unique identities to the 
“customers” tuples. Likewise, the barber maintains a local 
variable, my_load, that guarantees a withdrawal of the cor-
rect “customers” tuple whose second coordinate matches 
the current value of my_load.  Thus, my P and V opera-
tions become: 

 
in(“customers”, my_load);     /* P */ 
out(“customers”, CustServed); /* V */ 
 

I should mention that the value of  CustServed is not the 
same as the id assigned to a customer upon arrival. It is 
strictly a count of customers admitted to the waiting room. 
The correlation of waiting room arrival order to the cus-
tomer identifier, my_id,  is handled when the call to 
get_haircut is made. 

The CustServed tuple also provides the values used to 
control orderly access to the get_haircut function.  During 
initialization activities, the (“FCFS”, 1) tuple is placed in 
VSM.  It is used to guarantee that no “line jumping” occurs 
when customers, who block before calling get_haircut, are 
usurped by later arriving customers who are not impeded. 
The code is as follows: 

 
in(“FCFS”, CustServed); 
in(“barber”, 1);  /* P(barber) */ 
out(“barber”, 0); 
get_haircut(CustServed, my_id, cut_time); 
out(“FCFS”, CustServed+1); 

 

To complete the general picture I include my code for 
the two functions in Figure 3. 

 
void cut_hair(CurrentCust) 
     int CurrentCust; 
{ 
/* Barber cutting hair */ 
in(“cutting”, CurrentCust); / *P(cutting) */ 
/* Barber finished with this customer */ 
} /* end of cut_hair */ 
 

void get_haircut(next, CustNum, cut_time) 
     int next, CustNum, cut_time; 
{ 
usleep(10000*cut_time); 
printf(“ Customer %d finished haircut in %d”, 
           CustNum, cut_time); 
printf(“ time units\n”); 
out(“cutting”, next); /* V(cutting) */ 
}/* end of get_haircut  */ 
 

The output below illustrates the effects of a one-chair 
waiting room. As expected, many arrivals go home without 
haircuts.  

 
Monitoring of transactions follows: 
 
    Barber ready for first customer of the day 
    Customer 1 in waiting room. Total waiting = 1 
    Barber has next customer. Total waiting = 0 
    Customer 2 in waiting room. Total waiting = 1 
    Customer 3 turned away; full waiting room 
    Customer 4 turned away; full waiting room 
    Customer 5 turned away; full waiting room 
    Customer 6 turned away; full waiting room 
    Customer 7 turned away; full waiting room 
    Customer 8 turned away; full waiting room 
    Customer 1 finished haircut in 18 time units 
    Barber has next customer. Total waiting = 0 
    Customer 9 in waiting room. Total waiting = 1 
    Customer 10 turned away; full waiting room 
    Customer 2 finished haircut in 12 time units 
    Barber has next customer. Total waiting = 0 
    Customer 9 finished haircut in 12 time units 

 Barber is finished for the day 
 
Finally, a repeat of the out-of-order example under the 

same input conditions produces serviced customers depart-
ing in the correct order.  

 
Monitoring of transactions follows: 
 
    Barber ready for first customer of the day 
    Customer 1 in waiting room. Total waiting = 1 
    Barber has next customer. Total waiting = 0 
    Customer 2 in waiting room. Total waiting = 1 
    Customer 3 in waiting room. Total waiting = 2 
    Customer 4 in waiting room. Total waiting = 3 
    Customer 5 turned away; full waiting room 
    Customer 6 turned away; full waiting room 
    Customer 7 turned away; full waiting room 
    Customer 8 turned away; full waiting room 
    Customer 1 finished haircut in 18 time units 
    Barber has next customer. Total waiting = 2 
    Customer 9 in waiting room. Total waiting = 3 
    Customer 10 turned away; full waiting room 
    Customer 2 finished haircut in 12 time units 
    Barber has next customer. Total waiting = 2 
    Customer 3 finished haircut in 14 time units 
    Barber has next customer. Total waiting = 1 
    Customer 4 finished haircut in 12 time units 
    Barber has next customer. Total waiting = 0 
    Customer 9 finished haircut in 12 time units 
    Barber is finished for the day 

 
It took several attempts to reproduce the same custom-

ers getting haircuts as the out-of-order example previously. 
For example, one of the iterations had six customers get-
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ting haircuts in the order 1, 2, 3, 4, 6, and 8. Variations like 
this can be expected because one cannot predict when 
processes exhaust time slices and block. Also, we are not 
concerned with internal scheduling strategies used to re-
schedule processes for another time slice or after blocking 
for I/O.  In fact, one can get several different outcomes 
with the out-of-order example as well. 

6 CONCLUSION 

Much more could be done with the program I have de-
scribed. The results shown above were generated on a uni-
processor under C-Linda’s Code Development System. 
However, with some minor modifications and a re-
compilation, one could run the same program on a large 
network of workstations where each node represents a sin-
gle customer.  One could also experiment with a shop 
housing more than one barber.  Finally, one could create 
“departure” tuples of customers that include not only arri-
val and haircut times but also departure and waiting times. 
This would allow a tabular printout of all activities after 
the barber process shuts down. 
 I have attempted to show that by infusing a standard 
operating systems course with ideas from other topics in 
computer science, one can provide students with exposure 
they could easily miss in a crowded curriculum. This ap-
proach could also serve to whet appetites for electives they 
haven’t considered.  
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