
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

LINDA AROUSES A SLEEPING BARBER

John H. Reynolds

Computer Science Department
Mary Washington College

1301 College Avenue
Fredericksburg, VA 22401, U.S.A.

ABSTRACT

This paper presents an approach that gives students in-
sights into parallelism and exposure to discrete-event simu-
lation techniques without requiring that they have formal
courses in either. I apply the rather curious Linda coordina-
tion model to the classic Sleeping Barber Problem used
frequently to illustrate inter-process communication activi-
ties in operating system courses. Normally, customers
seeking haircuts are represented as processes spawned as
faceless entities with no regard to inter-arrival times or
proper ordering of departures for those who get cuts. This
paper uses elementary discrete-event simulation techniques
to introduce this sought for realism while preserving the
original motivation of using the Sleeping Barber to demon-
strate process concurrency.

1 INTRODUCTION

Computer Science majors at MWC may choose as elec-
tives Simulation Techniques and/or Parallel Processing.
Since these electives are not offered every year, students
may miss the opportunity to take them or defer to more ap-
pealing electives. But required courses like Operating
Systems can provide opportunities to illustrate discrete-
event simulation techniques normally seen in specialized
courses.

I use the C instantiation of Linda, known as C-Linda,
in my parallel processing course as a coordination model
that implements parallelism via a logically shared memory
across a network of workstations. One can teach the Linda
concept quickly by confining discussion to just four basic
operations. This makes it an ideal supplement for teaching
and exploring concurrency concepts in operating systems.

One can introduce inter-arrival delays separating cus-
tomers entering the barbershop as well as service delays by
using OS sleep functions like usleep available in UNIX.

In this paper I provide an overview of Linda and high-
light the implementation details I used to give the Sleeping
Barber example a more realistic feel.

2 WHAT IS LINDA?

In a recent paper (Reynolds 2000) I discuss my initial ex-
periences with Linda after using it to implement the Bucket
Sort algorithm suggested by Wilkinson and Allen (1999).
(Code at <http://www1.mwc.edu/~bigjr>) In that
paper I provide a thumbnail sketch of the Linda paradigm,
which I repeat here.
 Linda is a coordination language used to develop par-
allel applications (Carriero and Gelernter 1991). When
combined with C one has C-Linda, a complete parallel
programming language. In 1997 MWC purchased C-Linda
for $1,000 from Scientific Computing Associates
(<http://www.lindaspaces.com/>) who offer a
FORTRAN version as well. There are also free implemen-
tations available based on variations involving Lisp,
Prolog, and Pascal.

C-Linda runs on MWC’s computer science network of
five HP workstation/servers under the control of HP-UX.
They host 31 Entria/Envizex terminals while one server
distributes file systems to the other nodes under the control
of the NFS (Network File System). Since all architectures
are of HP’s proprietary PA-RISC design, a program com-
piled on one machine will execute on all of the others, al-
beit at different speeds. This network is ideal for parallel
processing; there is no need to do separate compilations to
accommodate disparate architectures.

The Linda model provides a virtual shared memory
(VSM) whose basic addressable unit is the tuple. The
VSM, often called tuple space, is logically shared by the
processes (frequently called workers). A tuple is a se-
quence of up to 16 typed fields enclosed in parentheses.
For example:

(“College Avenue”, 1301, “campus”)
(“CollegeAveue”,?street_number,?edifice_type)
(“worker”, id, SortMyBucket(id))

It is standard practice to use the first field in a tuple for

“documentation.” A field preceded by a “?” is known as a

http://www1.mwc.edu/~bigjr
http://www.lindaspaces.com/

Reynolds

placeholder or formal field, while those with values are
called actuals. The first two tuples are examples of data
tuples. The last one could be a data or live tuple depending
on how it is created. Processes can interface with VSM us-
ing four basic operations:

• out(tuple): Inserts data into VSM after it resolves
all fields of its tuple to actual values. Thus,
out(“worker”, id, SortMyBucket(id)) results in
a data tuple placed in VSM after SortMyBucket is
“replaced” by the value it returns. On the other
hand, out(“data”, my_id, MyBucketSize) results
in a data tuple whose fields contain the current
values of the variables.

• in(tuple): Does destructive read of data from
VSM by removing, atomically, the first tuple
found that matches the operation’s tuple (some-
times referred to as the anti-tuple or template). If
more than one tuple satisfies a request, an arbi-
trary, non-deterministic selection is made. If no
match is found, the requesting process blocks un-
til a matching tuple is placed in VSM. Thus,
in(“data”, my_id, MyBucketSize) is looking for
a data tuple whose field values match the current
field values of the requesting tuple. The request,
in(“data”, ?my_id, ?MyBucketSize), implies
that the first data tuple found in VSM whose first
field is “data”, and the last two matching the field
types of the template, will be removed.

• rd(tuple): Functions identically to in except that it
does not remove the matching tuple from tuple
space. That is, it does a non-destructive read of
data from VSM.

• eval(tuple): Creates a process tuple consisting of
the fields specified as its argument and then re-
turns. A child process performs the evaluation for
each field. During the evaluation process the tuple
is not accessible until it becomes a passive data
tuple. Thus, it is a live tuple until the field-
evaluating processes terminate. Within a loop, one
could spawn many eval(“worker”, id, SortMy-
Bucket(id)) tuples, which will execute in parallel.
The difference between out and eval is that the
former returns after the data tuple is placed in
VSM while the latter returns before the data tuple
materializes in VSM.

C-Linda offers a Code Development System for creat-

ing and verifying code. Solutions run on a uniprocessor
simulator; hence no speedup can be observed. By chang-
ing an environment variable and recompiling the source
code, one can run the application across a network of
workstations. Finally, only C functions can call Linda
functions. C++ functions can be intermingled as long as
they are devoid of Linda constructs.
3 THE SLEEPING BARBER PROBLEM

A class of problems in the study of operating systems deals
with inter-process communication. These problems require
techniques that provide cooperative solutions when compet-
ing processes want to modify the same variable within a criti-
cal section (CS). Tanenbaum (1992) offers extensive cover-
age of this subject including the approach by Dijkstra (1965)
where mutual exclusion is controlled by semaphores that can
be raised (V operation) and lowered (P operation) atomically.
 Tanenbaum (1992) also provides a pseudo-C solution
to the classical Sleeping Barber Problem proposed by
Dijkstra (1965) that has customer processes interfacing
with a barber process who, when not busy, sleeps in his
chair. An arriving customer finding a sleeping barber,
wakes him up, and gets a haircut. New arrivals encounter-
ing a busy barber take a seat in the n-chair waiting room. If
the waiting room is full, the customer simply leaves.

Figures 1 and 2 provide an outline of Tanenbaum’s
barber and customer processes, respectively. Figure 3 in-
cludes the two functions, called in the previous figures,
used in a solution by Hartley (1995). The semaphores
mutex and barber are binary with the former “raised (1)”
and the latter “lowered (0)” initially. The counting sema-
phores customers and cutting are 0 initially.

Figure 1: Outline of the Barber Process

Figure 2: Outline of the Customer Process

while (1) {
 P(customers); //Sleep if customers = 0
 P(mutex); //Get access to waiting room
 waiting--; //Remove a customer
 V(barber); //Barber ready to cut hair
 V(mutex); //Release access to waiting
 cut_hair(); //Cut hair (outside of CS)
}

P(mutex); //Enter critical section
if (waiting < CHAIRS){//Full waiting room?
 waiting++; //Admit customer
 V(customers); //Wake up barber, possibly
 V(mutex); //Release access to waiting
 P(barber); //Sleep if barber busy
 get_haircut;} //Get in chair; be serviced
else {//Shop is full; do not wait
 V(mutex); //Release access to waiting
}

void cut_hair()
{
 P(cutting);
} //end of cut_hair

void get_haircut()
{
 V(cutting);
} //end of get_haircut

Figure 3: Skeletal forms of
cut_hair and get_haircut

ynolds
Re

4 ADDING REALISM

The solution by Hartley (1995) employs the SR program-
ming language, a high-level Pascal-like language for writ-
ing concurrent/parallel programs. He also monitors his pro-
gram’s behavior by printing milestones such as the id’s of
customer processes in the order of arrival as well as the
id’s of customers in the order of departure. Although I
consider his solution correct for the approach taken, his ex-
ample, involving a waiting room with three chairs, shows
six customers arriving in numerical order as one would ex-
pect, but the first two customers getting haircuts are the
first and fourth arrivals, respectively.

One could argue that when customer processes are
spawned they represent templates of customers who become
real when get_haircut is called in Figure 2 above. Thus, the
fourth customer, as a template, is really the second customer
to receive the haircut. A better approach is to accommodate
the fact that preserving first-come first-served ordering is
jeopardized when customer processes block before calling
the get_haircut function. I see problems like the Sleeping
Barber as an opportunity to expose students to discrete-event
simulation techniques. In my solution I spawn customers
around an exponentially distributed inter-arrival time cen-
tered on an input mean. These computed times are used to
cause actual delays through calls to the UNIX usleep func-
tion. In addition, I determine haircut times randomly dis-
tributed between minimum and maximum service times.
These too are used to build in operating system delays
within get_haircut. Before providing a few details about my
solution in the next section, I want to illustrate the prior
point made when one disregards customer servicing in the
order of arrival. The following output was generated by a
modified version of my final solution:

This program simulates the classic Sleeping Bar-
ber problem. The shop has one barber and a fixed-
size waiting room. Arriving customers finding a
full waiting room simply depart.

Type in mean for customer interarrival times: 10
Type in minimum and maximum haircut times: 10 20
Number of arrivals to attempt (must be > 0)? 10
How many chairs in waiting room (must be > 0)? 3

Summary of Input for This Setup

Mean interarrival time = 10 units
Minimum haircut time = 10 units
Maximum haircut time = 20 units
Number of chairs in waiting room = 3
Number of arrivals attempted = 10

Monitoring of transactions follows:

 Barber ready for first customer of the day
 Customer 1 in waiting room. Total waiting = 1
 Barber has next customer. Total waiting = 0
 Customer 2 in waiting room. Total waiting = 1
 Customer 3 in waiting room. Total waiting = 2
 Customer 4 in waiting room. Total waiting = 3
 Customer 5 turned away; full waiting room
 Customer 6 turned away; full waiting room
 Customer 7 turned away; full waiting room
 Customer 8 turned away; full waiting room
 Customer 1 finished haircut in 18 time units
 Barber has next customer. Total waiting = 2
 Customer 9 in waiting room. Total waiting = 3
 Customer 10 turned away; full waiting room
 Customer 4 finished haircut in 12 time units
 Barber has next customer. Total waiting = 2
 Customer 9 finished haircut in 12 time units
 Barber has next customer. Total waiting = 1
 Customer 3 finished haircut in 14 time units
 Barber has next customer. Total waiting = 0
 Customer 2 finished haircut in 12 time units
 Barber is finished for the day

It is evident that realism goes out the window when

customers arriving in numerical order, who get haircuts,
leave in the order 1, 4, 9, 3 and 2!

5 C-LINDA SOLUTION

Some of the implementation details are offered here to il-
lustrate how one represents concepts like binary and count-
ing semaphores in C-Linda. Readers will find the com-
plete code at <http://www1.mwc.edu/~bigjr>.

The eval operation dispatches the barber and customer
processes:

eval(“Barber”, Barber());
eval(“Customer”, Customer(cut_time);

The customers are dispatched within a loop. The UNIX
usleep function uses exponentially distributed inter-arrival
times as an argument to provide delays between dis-
patches. Notice also that a randomly calculated service
time is sent as an argument to the Customer process. Of
course, this time becomes moot if a customer can’t be ad-
mitted because of a full waiting room.

Once the processes die, the live tuples become data
tuples and thus, can be withdrawn from the VSM:

for (i = 1; i <= TotalCust; i++)
 in(“Customer”, ?done);
in(“Barber”, ?done);
printf(“ Barber is finished for the day\n”);

The P and V operations are easy to implement on bi-

nary semaphores. For example:

in(“mutex”, 1); /* P(mutex) */
out(“mutex”, 0);

in(“mutex”, 0); /* V(mutex) */
out(“mutex”, 1);

Counting semaphores are difficult if not impossible to
implement in C-Linda because there is no easy way to
simulate atomic updates. However, one can get the job

http://www1.mwc.edu/~bigjr

Reynolds

done by using multiple tuples to represent each value of the
count. For example, a literal translation of P(customers)
in Figure 1 and V(customers) in Figure 2 would be, in its
simplest form:

in(“customers”); /* P(customers) */
out(“customers”); /* V(customers) */

Thus, if five customers are accepted for haircuts, the V op-
eration will place five copies of the (“customers”)-tuple
into VSM. On the other hand, the P operation draws, in a
non-deterministic way, a tuple representing a “faceless”
customer. This approach explains why the out-of-order
customer departures demonstrated previously can occur.
One must also build in a mechanism that prevents deadlock
when the barber gives the last haircut and no more tuples
are available to draw. Otherwise, the barber will block
forever on its in(“customers”) operation.

To keep track of customers I maintain a counting tu-
ple, CustServed, whose values give unique identities to the
“customers” tuples. Likewise, the barber maintains a local
variable, my_load, that guarantees a withdrawal of the cor-
rect “customers” tuple whose second coordinate matches
the current value of my_load. Thus, my P and V opera-
tions become:

in(“customers”, my_load); /* P */
out(“customers”, CustServed); /* V */

I should mention that the value of CustServed is not the
same as the id assigned to a customer upon arrival. It is
strictly a count of customers admitted to the waiting room.
The correlation of waiting room arrival order to the cus-
tomer identifier, my_id, is handled when the call to
get_haircut is made.

The CustServed tuple also provides the values used to
control orderly access to the get_haircut function. During
initialization activities, the (“FCFS”, 1) tuple is placed in
VSM. It is used to guarantee that no “line jumping” occurs
when customers, who block before calling get_haircut, are
usurped by later arriving customers who are not impeded.
The code is as follows:

in(“FCFS”, CustServed);
in(“barber”, 1); /* P(barber) */
out(“barber”, 0);
get_haircut(CustServed, my_id, cut_time);
out(“FCFS”, CustServed+1);

To complete the general picture I include my code for
the two functions in Figure 3.

void cut_hair(CurrentCust)
 int CurrentCust;
{
/* Barber cutting hair */
in(“cutting”, CurrentCust); / *P(cutting) */
/* Barber finished with this customer */
} /* end of cut_hair */

void get_haircut(next, CustNum, cut_time)
 int next, CustNum, cut_time;
{
usleep(10000*cut_time);
printf(“ Customer %d finished haircut in %d”,
 CustNum, cut_time);
printf(“ time units\n”);
out(“cutting”, next); /* V(cutting) */
}/* end of get_haircut */

The output below illustrates the effects of a one-chair
waiting room. As expected, many arrivals go home without
haircuts.

Monitoring of transactions follows:

 Barber ready for first customer of the day
 Customer 1 in waiting room. Total waiting = 1
 Barber has next customer. Total waiting = 0
 Customer 2 in waiting room. Total waiting = 1
 Customer 3 turned away; full waiting room
 Customer 4 turned away; full waiting room
 Customer 5 turned away; full waiting room
 Customer 6 turned away; full waiting room
 Customer 7 turned away; full waiting room
 Customer 8 turned away; full waiting room
 Customer 1 finished haircut in 18 time units
 Barber has next customer. Total waiting = 0
 Customer 9 in waiting room. Total waiting = 1
 Customer 10 turned away; full waiting room
 Customer 2 finished haircut in 12 time units
 Barber has next customer. Total waiting = 0
 Customer 9 finished haircut in 12 time units

 Barber is finished for the day

Finally, a repeat of the out-of-order example under the

same input conditions produces serviced customers depart-
ing in the correct order.

Monitoring of transactions follows:

 Barber ready for first customer of the day
 Customer 1 in waiting room. Total waiting = 1
 Barber has next customer. Total waiting = 0
 Customer 2 in waiting room. Total waiting = 1
 Customer 3 in waiting room. Total waiting = 2
 Customer 4 in waiting room. Total waiting = 3
 Customer 5 turned away; full waiting room
 Customer 6 turned away; full waiting room
 Customer 7 turned away; full waiting room
 Customer 8 turned away; full waiting room
 Customer 1 finished haircut in 18 time units
 Barber has next customer. Total waiting = 2
 Customer 9 in waiting room. Total waiting = 3
 Customer 10 turned away; full waiting room
 Customer 2 finished haircut in 12 time units
 Barber has next customer. Total waiting = 2
 Customer 3 finished haircut in 14 time units
 Barber has next customer. Total waiting = 1
 Customer 4 finished haircut in 12 time units
 Barber has next customer. Total waiting = 0
 Customer 9 finished haircut in 12 time units
 Barber is finished for the day

It took several attempts to reproduce the same custom-

ers getting haircuts as the out-of-order example previously.
For example, one of the iterations had six customers get-

Reynolds

ting haircuts in the order 1, 2, 3, 4, 6, and 8. Variations like
this can be expected because one cannot predict when
processes exhaust time slices and block. Also, we are not
concerned with internal scheduling strategies used to re-
schedule processes for another time slice or after blocking
for I/O. In fact, one can get several different outcomes
with the out-of-order example as well.

6 CONCLUSION

Much more could be done with the program I have de-
scribed. The results shown above were generated on a uni-
processor under C-Linda’s Code Development System.
However, with some minor modifications and a re-
compilation, one could run the same program on a large
network of workstations where each node represents a sin-
gle customer. One could also experiment with a shop
housing more than one barber. Finally, one could create
“departure” tuples of customers that include not only arri-
val and haircut times but also departure and waiting times.
This would allow a tabular printout of all activities after
the barber process shuts down.
 I have attempted to show that by infusing a standard
operating systems course with ideas from other topics in
computer science, one can provide students with exposure
they could easily miss in a crowded curriculum. This ap-
proach could also serve to whet appetites for electives they
haven’t considered.

REFERENCES

Carriero, N. and D. Gelernter 1991. How to Write Parallel
Programs. Cambridge, MA: MIT Press.

Dijkstra, E.W. 1965. Cooperating sequential processes.
Technical Report EWD-123, Technological Univer-
sity, Eindhoven, The Netherlands. Reprinted in
Genuys (1968), 43-112.

Hartley, S. J. 1995. Operating Systems Programming.
New York, NY: Oxford University Press.

Reynolds, J. H. 2000. Two Shared-Memory Tools: SMS and
Linda. In Proceedings of the Sixteenth Annual Eastern
Small College Computing Conference 16: 3-16.

Tanenbaum, A. S. 1992. Modern Operating Systems.
Englewood Cliffs, NJ: Prentice Hall.

Wilkinson, B. and M. Allen 1999. Parallel Programming
Techniques and Applications Using Networked Work-
stations and Parallel Computers. Upper Saddle River,
NJ: Prentice Hall.

AUTHOR BIOGRAPHY

JOHN H. REYNOLDS is a Professor of Computer Sci-
ence at Mary Washington College where he has taught
since 1983. His current interests are parallel processing and
operating systems. Prior to coming to MWC he served
four years in the U.S. Navy followed by seventeen years of
employment at the Naval Surface Warfare Center (Dahl-
gren, VA) from 1966-1983. At NSWC he worked in geo-
ballistics that required design and implementation of com-
puter simulations, in numerical analysis, in compiler de-
velopment, in project management, and in personnel train-
ing. His e-mail and web addresses are <bigjr@mwc.
edu> and <www1.mwc.edu/~bigjr>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1804
	02: 1805
	03: 1806
	04: 1807
	05: 1808

