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ABSTRACT

An input model is a collection of distributions together

bakery). Service times are independent of one another and
of the arrival process, and successive days are independent
of one another. Steve wants to decide how many staff are

with any associated parameters that are used as primitive needed to serve customers so that over the long run at least

inputs in a simulation model. Input model uncertainty arises
when one is not completely certain what distributions and/or

parameters to use. This tutorial attempts to provide a sense

of why one should consider input uncertainty and what
methods can be used to deal with it.

1 INTRODUCTION

Consider the following artificial examples of decision prob-
lems where simulation can play a role. (Any resemblance
to real people is entirely coincidental.)

Example 1: Bruce Lee runs a bakery that is open from
6am till 3pm every day. During that time customers arrive
according to a Poisson process at rAteThe rateA varies
from day to day in an i.i.d. fashion, and on any given day
is gamma distributed with parameters- 0 andg > 0, so
that the density o atx > 0 is proportional tox? e %/,

90% of customers wait 1 minute or less in line before being
served.

The structure of these two systems, being multiserver
queues, is the same. Furthermore, customers arrive accord-
ing to a Poisson process on any given day, and have the
same service time distribution. The difference lies in the
uncertainty associated with the arrival rate of the Poisson
process. In Example 1 this uncertainty takes the form of a
varying arrival rate, where the arrival rate varies known
fashion In Example 2 the arrival rate is the same from day
to day, butwe do not know the exact value

Are these two problems the same? In other words,
can we analyze the systems using identical performance
measures and interval-estimation procedures?

| believe that the answer is no.

To understand why, let us consider the calculation of
the long-run fraction of customers who wait for 1 minute or

A single staff member can serve a customer in an amount less. Suppose that we observe one of the storeé days.

of time that is exponentially distributed with mea ™.

Let N; andS be the number of customers that arrive to the

Service times are independent of one another and of the store, and the number of customers that reach service in 1
arrival process, and successive days are independent of oneminute or less, on day respectivelyi = 1,...,¢. Then
another. Bruce wants to decide how many staff are needed the fraction of customers that wait for 1 minute or less over
to serve customers so that over the long run at least 90% of the ¢ days is

customers wait 1 minute or less in line before being served.
Example 2: Steve Russell runs a wine store that is
open from 11am till 8pm every day. During that time cus-
tomers arrive according to a Poisson process atrafehe
rate A is fixed, but not known with certainty. However, the
uncertainty is well modelled by assuming thais gamma
distributed with parameters and 8 (the same values as at

Bruce Lee’s bakery). A single staff member can serve a cus-

tomer in an amount of time that is exponentially distributed
with mean ~1(again the same value as at Bruce Lee’s
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As ¢ gets large, this ratio converges to
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as can be seen by dividing both the numerator and denom-
inator by ¢ and applying the strong law of large humbers

to both.
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Now let us specialize to Example 1. Conditioning on
the arrival rateA and using a standard result for Poisson
processes we find that

EN; = EE[N1|A] = E[9A] = a8,

The problem is compounded by the fact that for any
fixed input model, simulation can only repastimatesof
performance measures. In particular, the simulation is built
from random variables that ensure that the resulting estimate
is also random. This form of randomness is the one that we
are very familiar with. It takes various names, depending

where the 9 comes from the fact that the shop is open for 9 on who you speak with, including statistical uncertainty,
hours. There are several ways to compute or approximate stochastic uncertainty, aleatory uncertainty and simulation

ES. One could apply queueing theory, but we will instead
use simulation. Specifically, one can imagine simulating the
bakery operations for a large number of ddysOn dayi

we first generate a realizatioxy of A from its distribution,
and then simulate a multiserver queue with arrival rate
Aj for the remainder of the day. The simulated random
variables(S, ..., &) are then i.i.d. random variables with

uncertainty. This form of uncertainty can be contrasted with
input model uncertainty as described above, which also has
multiple names including structural uncertainty, subjective
uncertainty, and epistemic uncertainty.

It is worth noting that while we are discussing this
problem in the context of stochastic simulation, the problem
is not unique to this field. For example, even if one were to

finite variance, and so we can construct a confidence interval apply queueing formulae to approximate the performance

for ES in the usual fashion. We see that we can proceed
in exactly the fashion that we are used to in conducting
simulation experiments. Interestingly, the situation is not
as clear cut for Example 2.

Consider how we can computEN; for Example 2.
In this case there is no need to conditionjosince it is a
deterministic quantity. From a standard result for Poisson
processeskE Ny = 91. But what is this value? We do not
know for sure because we do not know the value.otWe
have the same problem with computikgS. We could
use simulation to estimate it for any fixed valueigfbut
what value ofx should be used? Should we pick a single
value forA? Or should we sample the value Dfprior to
each day’s operation as we did in Example 1? If we are
to perform such sampling, then what should we report to
the simulation user? A confidence interval as before? If
so, how should such a confidence interval be interpreted?

measure for Example 2 above, one must still deal with the
issue of what to report, and how to decide when Steve Russell
has enough staff members. With deterministic formulae one
no longer has to deal with simulation uncertainty, but one

still has to deal with input model uncertainty.

As a second example, the field of risk analysis has
grappled with this issue for some time; see Helton (1996),
Helton (1997), Helton and Davis (2003) and Oberkampf
et al. (2003) for entry points to that literature, and below
for the approach described in Helton (1996). Oberkampf
et al. (2003) describe a wide variety of methods for dealing
with input model uncertainty that draw from such fields
as interval analysis, fuzzy set theory, possibility theory,
evidence (Dempster-Shafer) theory, and imprecise proba-
bility theory. These methods are not included in this survey
because | believe that the methods that included are
more appropriate for addressing input model uncertainty in

The answers to these questions vary depending on who simulation.

you ask, because this problem is a special case of the

problem of input model uncertainty and there is no general
agreement on how to proceed.

The general form of this problem may be phrased as
follows. A simulation modelrelies on the specification of the

As a third example, there is now an area known as
robust optimizatiorthat deals with optimization problems
with constraints, where the parameters of the optimization
problem (not the decision variables) are assumed to lie
in an ellipsoid L say. These methods require that any

distributions and associated parameters (these distributionsdecision be feasible with respect to the constraintsafor

could be multivariate) that serve as inputs to the model.
Following the custom of several authors, we reserve the
term model uncertaintyo relate to the choice of a family
of distributions (e.g., normal, exponential, Weibull), and
parameter uncertaintio relate to the selection of parameters
for those distributions (e.g., mean and variance for the
normal distribution). The termnput model uncertainty
refers collectively to both problems.

choice of the parameters ih. Assuming the problem

is of “minimize” type, they then minimize the maximum
possible value of the objective, where the inner maximum
is over the values of the parameters. Robust optimization
methods are therefore quite conservative in their approach.
Nevertheless, for many problems one does not see much of
a deterioration in the optimal value that is reported, and the
recommended solutions are far more robust to perturbations

This definition also encapsulates input models that are in the parameters than is the case for a solution generated

based on nonparametric methods such as empirical distribu-

tion functions. An empirical distribution function (or some
smoothed version thereof) is a particular model choice.

Parameter uncertainty then relates to the value of the dis-

tribution function at the observed points.
91

assuming that the parameters take a single value. Much
of the work in this area is devoted to developing efficient
solution algorithms. See Ben-Tal and Nemirovski (1998),
Ben-Tal and Nemirovski (2000) for details and examples.
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Consider now the two questions in the title of this
paper. First, why do we care? The answer to this question
is well understood, and is discussed below. Second, what
should we do about it? The answer to this question is less

The case wherg > ug corresponds to an unstable system,
so that in this case we take the performance toobe
The function f also depends omg but we ignore this
dependence in what follows because our focus is on the

clear, and many answers have been proposed. Any methodunknown parametexg. The true value of performance is

for dealing with input uncertainty must satisfy at least the
following requirements.

Transparency— The method should be understood
by users.

Validity — The method should be based on a firm
statistical foundation that experts agree is reason-
able.

Implementability — The method should ideally be
able to be applied to a range of problems without
any need for expertinterventionin each application.
Efficiency — The method should not require an
unduly large amount of computing time.

This paper surveys the methods that have been sug-
gested for dealing with input uncertainty and is organized as
follows. In 82 we answer the question of why we care. 83
establishes a framework that allows a concrete discussion
of the various methods that have been proposed to deal with
input uncertainty. In 84 we describe a standard method,
that is standard in the sense that it has been well known
and used for some time. Next, in 85 we survey some of the
recently proposed methods. Some final remarks are offered
in 86.

2 WHY DO WE CARE?

In this section we explore an example involving the M/M/1
gueue. Our goal is to explain the motivation for explicitly

f(ho) = 1.

In this example we do not use simulation but rather, for
any value ofy, simply compute the functiofi (A). So here
the function f takes the place of a simulation. One can
view f as a zero-variance simulation, or the result from a
simulation that runs for an infinite period of time. Even in
this idealized setting the issue of input model uncertainty
is nontrivial.

We assume thatg must be estimated from interarrival
time data. Suppose that we hawme> 1 i.i.d. expio)
interarrival timesUy,...,U,. The maximum likelihood
estimator ofig from this data isk, = 1/U,, the inverse
of the sample mean. Hence, for any finite valuenpbur
estimate ofig will not coincide with the true value of 9
with probability 1. The key question is whether this makes
much difference.

Asymptotic theory ensures that for> 1, the estimator
An is approximately normally distributed with meap and
variance)%/n. We will pretend that this distributional
approximation is exact, and look at performance assuming
this is the case.

Our estimatori, is normally distributed, so it has
infinite right and left tails. Therefore, no matter how large
nis, there is a positive probability that the queue is unstable.
Furthermore, there is also a positive probability thatis
negative since we are assuming that ieiactlynormally
distributed! Of course, the case of a fitted negative arrival

addressing input model uncertainty. Our presentation is rate never arises in practice because of the form of our
motivated by the example presented in Barton and Schruben estimator ofi,,. There is no real need to worry about either
(2001) and elaborated on in Barton et al. (2002), although instability or negative arrival rates whemis large, since
we present the key ideas in a different manner. In particular, the chance of these events is then ridiculously small, as
we work with parametric classes of distributions as opposed can be quantified by large deviations theory. We ignore the
to empirical distribution functions, and consider the case possibility of a negative arrival rate in what follows, but
where the simulation is “perfect”, i.e., simulation error is 0. explicitly consider the possibility of an unstable queue.
At the end of the section we discuss the example given in Sincein is a random variable, the estimatb(f\n) of
Barton and Schruben (2001) in a little more detail, partly the mean sojourn time is also a random variable. (In fact,
to stress that the idealized assumptions of our example do it is an improper random variable since it takes the value
not distort the key issues, although they do simplify some oo with positive probability.) The randomness arises purely
of the difficulties. as a result of input model uncertainty. We can obtain its
Example 3: Consider an M/M/1 queue with arrival  distribution by noting that fox > 0
rate Ao customers per hour and service ratg customers
per hour. We assume thatp = 10 is known, butyg is
not. We take the (unknown) value o = 9. We are
interested in computing the expected steady-state sojourn
time (time spent in queue and in service) in the system,

P((to — An) ™t < X, An < 10)
P(uo — )A»n > X_l, in < [0)
P(An < o —x"h

mo — Ao — X~

P(f(n) <X)

which queueing theory gives aY\p), where - ' (1)
n—1/2)q ’
_ | (o—n7T i A < po,
f(”—{ oo if &> pio.
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where® is the cumulative distribution function of a standard
normal random variable. Here (1) follows sinéq is
normally distributed. Differentiating, we obtain the density
of f(An)~L for x > 0 as

d

whereg is the density of a standard normal random variable.
The density (2) is plotted for various valuesoih Figure 1.
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Figure 1: The Density of the Expected Steady-State
Waiting Time for Variousn

It is important to understand what these densities tell
us. For any fixed value ofi, the density gives a sense
of what our “simulation” experiment could predict for the
mean steady-state sojourn time. The height of the density,
as always, gives a sense of how likely a given value is to
occur. Some observations are in order.

1. Asn increases, the densities shift to the right and
concentrate around 1, indicating that for lange
we are likely to predict a value very close to the
correct value of 1. This is as expected because as
n increases., — A with probability 1.

The densities are not heavily concentrated, even for
moderately large values of Therefore it is quite
likely that we will predict values for the steady-
state mean waiting time that are quite different
from 1, simply because of our error in the estimate
of the arrival rate. We need\&ry large value of

n, i.e., a significant amount of data, to ensure high
accuracy.

The densities are somewhat skewed, especially for
small values o, so that most of the probability
concentrates around values significantly smaller
than 1. So bias is most-likely significant, even for
moderately largen.
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So in this first example, we see that input model un-
certainty can have a significant impact on performance
predictions. One needs a very large number of observations
to ensure high accuracy.

Of course, this example is contrived in several ways.
First, the system we studied is a heavily-loaded M/M/1
gueue. Performance measures for such queues are highly
sensitive to input parameters. Hence, this example is per-
haps an extreme example of sensitivity to input parameters.
Second, the system has no bound on capacity. This is often
a feature ofmodelsbut not of real systems themselves. For
example, call centers have a finite number of trunk lines, and
emergency rooms in hospitals can redirect patients to other
parts of the hospital, or to other hospitals. Nevertheless, for
any capacitated queue, similar phenomena arise. Barton and
Schruben (2001) explicitly deal with a capacitated queue
in their example, and yet they observe similar behaviour
to that shown above. Third, we assumed that interarrival
times were indeed exponentially distributed. In general we
may suspect that this is the case via our understanding of a
process, but still not be absolutely sure. Zouaoui and Wilson
(2001a) and others call such uncertaimgdeluncertainty
as opposed tparameteruncertainty. Even when we ignore
model uncertainty we see nontrivial behaviour. Finally, we
assumed a “zero variance” simulation. In practice we do not
have this luxury and must explicitly deal with the fact that
simulation estimates of performance measures are subject
to simulation uncertainty.

As noted above, Barton and Schruben (2001) consider
a similar example in order to demonstrate the difficulties as-
sociated with ignoring input model uncertainty. They look
at a single-server queue with capacity for 10 customers,
where customers arriving to a full system are lost. Instead
of using parametric distributions as we did, they instead
use smoothed empirical distribution functions to estimate
both the interarrival and service time distributions from
data. They conduct a finite-length simulation run in or-
der to estimate the expected steady-state sojourn time over
customers that actually enter the queue. As the simula-
tion runlength increases, the confidence intervals reduce in
width. For an infinite simulation runlength the confidence
interval widths would converge to 0, giving an exact result,
just as we assumed in the above example. They observe
that the coverage of the confidence intervals, given by the
fraction of their confidence intervals that cover the true
value of the performance measure, deteriorates as the sim-
ulation runlength increases. As they point out, this is to be
expected because any one of their experiments first samples
an interarrival and service time distribution. The sampled
distributions differ from the true distributions, and so the
simulation experiment estimates the performance associated
with the wrong system.

Typically, simulation is used to provide insight so that
a decision can be made. In Example 2 above the decision
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is how many staff to hire to ensure satisfactory customer otherwise, and may be random or nonrandom. One then
service. The main reason that we care about input model fixesh andd and then conditional on these values, obtains

uncertainty is that it may lead us to an incorrect decision.
If we underestimate the true arrival rate in Example 2,
then we will likely not hire enough staff members to ensure
satisfactory waiting times. If we overestimate the true arrival
rate then we will provide better service than we expected
(not such a bad thing), but at the financial cost of hiring
too many staff. While these issues may not be so critical
in a bakery or wine store, they are of more concern when
one is dealing with an emergency service call center, for
example.

3 FRAMEWORK

Let us consider a fairly general framework that will allow
a concrete discussion of the issues. This framework is
essentially that proposed in Cheng (1994) with a small
extension to allow for model uncertainty, and another slight
modification of notation to reduce reliance on the Greek
alphabet!

We wish to compute = f (mp, 6p), where the function
f depends on two variables. The first variableindexes
a (potentially uncountably infinite) class of models. The
second variable € %P represents a finite-dimensional set
of parameters. For a given model, one may not need

an i.i.d. sample of sizé, (X (h, f):1<i < ¢). Onethen
estimatesf (mg, 6p) by the sample average

1@
b ==Y X, o).
Q ‘E'( )

One way to measure the quality éfis through its mean
squared error

E(@ — «)? = var&) + biagé)>.
The bias is given by
Ef(mh, §) — f(mo, 6o). ©)

The variance can be further broken down using the condi-
tional variance formula as in Cheng (1994) to give

Evar@&|m, §) + vark (&|m, )
Eo2(rh, §)

var(a)

+ varf (m, §). (4)

We label the two terms in (4) expected simulation variance

all p parameters since various models require more or less @nd input model variance respectively. Thus, the mean

parameters. For example, the normal distribution has 2
parameters while the exponential has only 1.
The quantitiesng and 6y represent the “true” model

squared error oft has three components: squared bias,
expected simulation variance and input model variance.
In Example 3 there was only a single choice of madgl

and its associated parameters. The notion of a “true” model e assumed a zero-variance simulation so ﬂ”?ﬁ_(mo_’ 0)
and set of parameters is contrary to a Bayesian philosophy. iS identically O for anyd. Input model variance is simply
When we come to Bayesian methods we will modify the the variance associated with the density that was plotted.

discussion accordingly. The functioh gives, for eachm

Bias is identified by comparing the mean of the density

and@, the exact value of the desired performance measure With the true value 1.

that would be obtained from a simulation with zero variance.
A simulation model is available that can be used to
estimatef (m, 9). Specifically the simulation model can be
used to generate i.i.d. sampléXj(m, ) : i > 1), where
the samples are unbiased X; (m, 8) = f(m, 0)) and have
finite variances2(m, 6).
This structure fits well with most terminating simu-

lations where the goal is to compute an expected value.

There are, however, simulation problems that do not fit this
framework very well. An important class of problems that
is excluded is steady-state simulation where initialization
bias and choice of runlength play an important role. As
another example, the problem of computing a quantile of
the distribution ofX (mg, 8p) does not fit our structure. For
the problem of quantile estimation one can still view the
performance measure as a functibrof m andé, but the
function is no longer given byf (m, 8) = E X1(m, 9).
Suppose that one selects modeland associated pa-
rametersf. These selections may be based on data or
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4 THE “STANDARD” APPROACH

We have seen that input model uncertainty can have a
dramatic impact on performance predictions, and therefore
on the decisions one makes based on the results of the
simulation study. So what should one do about it? In this
section we describe one of the currently used methods for
dealing with input model uncertainty.

Bruce Schmeiser discusses input model uncertainty in
Barton et al. (2002). He draws a clear distinction between
model error (as can be quantified by bias as in (3)) and
simulation error (quantified by simulation variance, i.e.,
the first term in (4)), but does not discuss input model
variance. His main pointis that so long as the simulation user
understands that the error bounds reported by a simulation
are with respect to simulation error alone, “all is well.” To
paraphrase his position, both bias and input model variance
are irrelevant so long as one understands that simulation is
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only a tool for analyzing the system with the selected input models are deterministic so that simulation error is not
model and parameters. present.

Schmeiser also explicitly recognizes that it is important
to obtain a sense of the effect of modeling error. He then 5 RECENTLY PROPOSED METHODS
argues that these two problems should be treated separately.

This position is a reasonable one, and one that is essentially We now turn to some of the more-recently proposed methods
the status quo. There are some difficulties with this overall for dealing with input model uncertainty in the presence of
framework though, and we describe some of them below. simulation error.

A tool that is often used to explore the impact of in- The closest method to that described in the previous sec-
put model uncertainty isensitivity analysisA sensitivity tion was described in Freimer and Schruben (2002). Freimer
analysis (e.g., Kleijnen 1994, Kleijnen 1996) is performed and Schruben give two design of experiments methods for
by varying the input distributions and parameters in some deciding how much data to collect for one or more pa-
manner, and observing the changes in the output. This is rameters. Both of their methods iteratively search for an
often done in a somewhat haphazard way, although there amount of data so that the difference in the results of the
are benefits to formalizing the approach using design of ex- simulation experiment are statistically indistinguishable at
periments and/or regression approaches. See, e.g., Chapteextreme values of the parameter settings. The extreme val-
12 of Law and Kelton 2000 for an accessible introduction ues they select are the endpoints of confidence intervals for
to these techniques. the parameters. In other words, they search for an amount

A standard, and often recommended, approach to quan- of input data that is sufficient to ensure that simulation vari-
tifying the effect of parameter uncertainty is to useka 2 ance dominates both bias and input model variance. Their
factorial design. In this approach there &rgsay) different approach is certainly implementable (it requires only a few
parameters that are to be adjusted. The goal is to deter- easily-understood inputs from the simulation user and the
mine which parameters or parameter combinations have arest of the procedure is automated). Unfortunately, both
significant effect on the output. If such parameters can be of their approaches may require a large amount of com-
identified, then we can decide whether to collect more data putation. Furthermore, they use repeated hypothesis tests
to help improve the accuracy of estimates of these input which, while not unreasonable and certainly common in
parameters or not. Suppose we restrict attention to 2 pos- the literature, is a potential source of concern. Finally, the
sible values (high and low) for each parameter. Then there amount of data reported as required is related to simulation
are X possible parameter settings that could be considered. variance, and not to an error tolerance prescribed by the
One then runs a simulation experiment at each of these user.
parameter settings, and uses the results to determine which
parameter combinations have a significant impact on the 5.1 Delta-Method Approaches
output performance measure.

Perhaps the greatest problem with this approach is that Starting with Cheng (1994) and continuing with Cheng
for large numbers of parameteéesa factorial design canre-  and Holland (1997), Cheng and Holland (1998), Cheng
quire atremendous amount of computation, i.e., the approach and Holland (2003), Cheng and Holland have developed
is not efficient One might then use a fractional-factorial a framework and several methods for dealing with input
design, or screening methods to reduce the dimensionality model uncertainty. The framework given by Cheng (1994)
of the problem (Kleijnen 1998). However, at this stage has been adopted by several authors including Zouaoui
it starts to become necessary to have expert guidance onand Wilson (2001b), Zouaoui and Wilson (2001a). (This

how to proceed, so that we run into difficulties withple- framework is slightly extended in 83.) The framework
mentability There are also other issues such as the selection assumes that the model, is specified with certainty, but
of the high and low levels of each parameter. that the parameter¢ are not. The parameters are often

These and several other issues are discussed in Kleijnenassumed to be approximately normally distributed as is
(1994), Kleijnen (1996), Kleijnen (1998). Kleijnen also the case, under mild regularity conditions, when maximum
briefly mentions uncertainty analysis, primarily in a setting likelihood is used to estimati. Cheng (1994), Cheng and
like that of Example 3, where there is no simulation error, Holland (1997) use the delta method (see, e.g., Henderson
but also in the general case where simulation error is present. 2000, Henderson 2001) to determine the first-order terms in
Uncertainty analysis involves randomly sampling the input the combined simulation variance and input model variance
parameters before each simulation run, but then holding (4). The bias (3) is not considered in these early papers.
the parameters constant during the run. Kleijnen (1994) They give estimators for the first-order variance terms. They
also gives some references to early work that implements find that the estimators suffer when there are a large number
such uncertainty analysis, predominantly in the case where of uncertain parameters. To deal with this problem they also

95



Henderson

give a parametric bootstrapping approach that is described data to collect next to maximally reduce the variance of the

below with other bootstrapping methods.

Cheng and Holland (1998) introduce two new methods
for estimating the combined simulation and input model
variance, again ignoring bias. The first of these methods
involves two stages, where the vector

g= Vg f(m,0)lg,

simulation output.
5.2 Bayesian Methods

Starting with Chick (1997) there has been a fair amount
of recent interest in Bayesian methods for simulation input
analysis (Chick 1997, Chick 1999, Chick 2000, Chick 2001,
Ng and Chick 2001, Chick and Ng 2002, Zouaoui and

is estimated in the first stage, and then in the second stageWilson 2001b, Zouaoui and Wilson 2001a). The idea of

the bulk of the simulation effort is run at only 2 parameter
settings that depend on the estimatgdnd the covariance
matrix of the estimaté of #y. The second method does
not require the estimation af, so that the first stage of

applying Bayesian techniques to simulation analysis is not
new, however, and earlier references can be found in Chick
(1997). The overall philosophy behind these methods is to
place a prior distribution on the input models and parameters

simulation is unnecessary. The second method requires thatof a simulation, update the prior distribution to a posterior

the simulation user knows thegn of the entries ing but

distribution based on available data, and only then run a

not necessarily their absolute values. The method results simulation experiment. The posterior distribution quantifies
in a conservative confidence interval procedure in the sense uncertainty in the input modeh and parameters.

that the variance is overestimated. One might often expect
the signs to be known for scale parameters of distributions,

Chick (2001) recommends implementing a Bayesian
model average (Draper 1995). The Bayesian model aver-

but for other parameters such as shape parameters it seemsige (BMA) is simplyE f (rh, §), where(rh, ) follows the

unlikely that this information would be available. All of

posterior distribution. In order to compute this expectation,

these early methods ignore the bias (3) which, as we have Chick (2001) generates i.i.d. replicatesXfrh, §) by first
seen, can be substantial, and this is perhaps their mostsampling a singlen andé from the posterior and then, based

serious disadvantage.

The second new method given in Cheng and Holland
(1998) is considerably extended in Cheng and Holland
(2003). In the later paper, the assumption that the sign of
the entries ofj is retained, and a welcome improvement is
that simulation bias is explicitly considered. The authors
show that their procedure yields a conservative confidence
interval with only a small amount of computation relative
to their previously-developed methods. This method is
attractive in that its computational requirements are small
relative to virtually all other currently-known methods, and

on those values, generating a singlém, #). This pro-
cess is then repeated and the results are averaged. Zouaoui
and Wilson (2001b), Zouaoui and Wilson (2001a) intro-
duce what they call a “BMA-based simulation replication
algorithm,” which is essentially a version of the Bayesian
model average where the user exercises control over how
many simulation replications are performed at each sampled
model and set of parameters. More specifically, Zouaoui
and Wilson (2001b), Zouaoui and Wilson (2001a) generate
severalconditionally i.i.d. valuesXi(m, 6), ..., Xx(m, 0)

for each paim, 6) that are sampled, and use various meth-

it has a sound underlying theory. It has the disadvantages ods to decide how many such values to generate at each

that it only applies to parameter uncertainty, and it requires
the simulation user to know the signs of the components
of g, which makes the method less implementable than
it might otherwise be. One can imagine an extension of
this method where the signs of the componentg afre
estimated as part of the procedure. Typically it is much
easier to estimate thegn of a quantity than it is to estimate
the actualalue so that such a procedure might be expected
to work quite well in practice. It is not yet known how the
performance of this method compares with the Bayesian
approaches described shortly.

Ng and Chick (2001) discuss the issue of how to re-
duce input parameter uncertainty for simulations. They em-
ploy an approximation that is essentially the delta-method
approximation introduced in Cheng (1994), although the
interpretation is different since a Bayesian framework is
employed. They use this approximation to decide what
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pair (m, 0).

Zouaoui and Wilson (2001b) focuses on the special
case wheren is known with certainty. Zouaoui and Wilson
(2003b) and Zouaoui and Wilson (2003a) are extensions
of the conference papers that include proofs and additional
computational examples.

Chick and Ng (2002) look at the problem of identifying
which input parameters have the greatest impact on the
mean of the simulation output whimultaneouslyrying
to obtain accurate estimates of those parameters. They use
an entropy-based performance measure that is essentially
the sum of a “model discrimination term” and a “parameter
estimation” term.

The Bayesian framework is an elegant one that enables a
clean answer to many vexing questions. There are, however,
several issues that deserve further attention. Perhaps the
key issue is that of computational efficiency. It can be quite
difficult to compute the posterior distribution in general,
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so that one often has to resort to computational devices the standard error oA, andt is a constant related to the
like Markov chain Monte Carlo methods or importance desired confidence level. Given the bias that is evident in
sampling. Chick (2001) provides an overview, and Zouaoui Figure 1 even for large values of the direct-resampling
and Wilson (2001b), Zouaoui and Wilson (2001a) also approach does not seem advisable, unless one is sure that
discuss the issue. One of the key problems with either the problem under study is not subject to such bias. Given
of these techniques is the need to tailor the methods to the bias issue, the use of percentile confidence intervals
each application, which reduces the implementability of the together with one of the other resampling methods seems
Bayesian approach. Some users also object to the need tomuch more advisable.
specify prior distributions for the data, although it is my One potential difficulty with the use of percentile confi-
personal view that this is actually a strength of the approach. dence intervals is that they were originally recommended for
An important point is how one should interpret the use with bootstrapping methods in the absence of simulation
output of the BMA algorithms given in these papers. The uncertainty. Unfortunately, when simulation uncertainty is
standard BMA estimate€ f (1, ), as does the method  present, the percentile confidence intervals are based on a
described in Zouaoui and Wilson (2001a), but this can convolution of input model uncertaingnd simulation un-
be substantially different fronf (mg, 69) due to the bias certainty, rather than on input model uncertainty alone. This
(3). This objection makes sense, of course, only when one same problem is apparentin Section 3 of Cheng and Holland
adopts the frequentist perspective thatthere is a single correct(2003), where a certain bootstrap method is reviewed, and
choice (mg, 6p) of the model and parameters. Perhaps a in the interval estimation procedure mentioned at the end
more robust interval-estimation method is the one described of Section 4.2.1 of Zouaoui and Wilson (2001b). There is
in Section 4.2.2 of Zouaoui and Wilson (2001b) based on not currently any obvious way to separate these two forms
quantiles of the posterior distribution of the simulation of uncertainty using existing resampling methods. It seems
output, which is essentially a percentile confidence interval. reasonable to expect that as long as simulation uncertainty is
This method bears a close resemblance to certain interval- “small” relative to input model uncertainty, this convolution

estimation procedures used with resampling methods. issue will not cause any major problems. However, more
work is needed to understand exactly how such intervals
5.3 Resampling Methods behave.

In Barton et al. (2002), Barton reviews the resampling
We do not review the key ideas of resampling here. For proceduresadvanced in Barton and Schruben (1993), Barton
an introduction and overview of resampling methods in and Schruben (2001). Inthe same paper, Schruben discusses
simulation, see Cheng (2000), Cheng (2001). a variety of possible extensions.

Barton and Schruben (1993) propose two resampling Further discussion of resampling methods for input
methods for accounting for input uncertainty. They use model uncertainty can be found in Cheng (1994) and Cheng
empirical distribution functions (EDFs) to model the dis- and Holland (1997). The emphasis in these papers is on
tribution functions of independent input random variables. variance rather than bias.

They perform a number of macro replications, where each

macro replication consists of first sampling the input EDFs 5.4 Induced Distribution Methods

from a family of such distribution functions, and then per-

forming a simulation experiment using the sampled empir- Recall that we assume that the estimatesndd of mg and

ical distribution functions. This approach is similar to a 6 follow a certain distribution. This distribution can arise
Bayesian model average, in that parameters (EDFs) are first through expert solicitation as in Helton (1997), through fre-
sampled, and then a simulation run is conducted. Their two quentist techniques like maximum likelihood as discussed in
methods of resampling are standard bootstrap resampling Cheng (1994), Cheng and Holland (1997), through Bayesian
and a method that they call uniform resampling. formalisms as in Chick (2001), implicitly through a resam-

Barton and Schruben (2001) provide an update on this pling scheme, or otherwise. Once this distribution is speci-
approach. They also describe the construction of interval fied, we viewrh andé as random objects. The distribution
estimates of performance measures. They recommend theof f (f, §) gives the distribution of the desired performance
use of percentile confidence intervals for these two methods. measure induced purely by input model uncertainty. Note
They also introduce a method they cdlfect resampling that this distribution excludes any simulation uncertainty.
where input data are partitioned into subsamples. Each This distribution is therefore a compact representation of
subsample is then used to fit an EDF and a simulation the effect of input model uncertainty. This is, in fact, the
experiment is performed. They conclude that with suffi- distribution associated with the densities that were com-
cient data one should use direct resampling togethertwith puted in Example 3, where we looked at a problem with
confidence intervals, i.e., confidence intervals of the form no simulation uncertainty.

A+tH, whereA is a point estimateH is an estimate of
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Andradottir and Glynn (2003) describe how to estimate
the meanE f (m, é), which is the same value as the BMA.
Their framework is more general than the one here in that
it is explicitly designed to incorporate features of steady-
state simulations like bias, and they do not restrict attention
to functions of the formf (r, ) = E[X1(th, §)|, 4] as
we do. They perform several macro replications, where
each macro replication first selects values forand 4,
and then devotes a varying amount of computational effort
to a simulation at those input model settings. They show
how to split effort between sampling values fdr and
6 and simulating at those settings so as to minimize the
mean squared error of an estimatorfof(rh, §). They also
show that if certain numerical integration schemes that are
superior to Monte Carlo in low-dimensional problems are

Glynn (2003). In general, numerical integration techniques
should work well in low-dimensional problems, but can be
expected to perform less well when the dimensiotraf9)

is high.

6 CONCLUSIONS

One can quite reasonably argue that there is no need to
develop methods that capture input model uncertainty and
simulation uncertainty in the same framework. So long
as the simulation user is aware of potential model errors
due to input model uncertainty, interprets the simulation
output accordingly, and conducts sensitivity and/or uncer-
tainty analyses all is well. The problem is that the typical
simulation user is not particularly proficient in statistics,

used, then one can improve the rate of convergence of the and so is unlikely to be aware of appropriate sensitivity

mean squared error to 0. Here, dimension refers to the
combined dimensions ah andé.

Recall that in the setup of Section 8(m, 9) is actu-
ally a conditional expectatiorf,(fh, ) = E[X (th, §)|rh, ].
Lee (1998) described how to efficiently compute the dis-
tribution function of f (f, §) in the case wheréh, §) has
a discrete distribution, and more generally. Lee and Glynn
(1999) extended the results of Lee (1998) in the discrete-
distribution case. The discrete distribution case is not of as

and/or uncertainty analyses. This suggests the need for a
transparent, statistically valid, implementable and efficient
method for understanding input model uncertainty.

A feature of virtually all of the methods designed to
capture input model uncertainty is additional computation
over and above that required when a single model and set
of parameters is chosen, i.e., the standard approach is fol-
lowed. This computation almost invariably takes the form
of repeated macro replications whei®, §) are sampled,

much interest as the general case in our discussion sinceand then one or more simulation runs are performed at the
parameter uncertainty is often captured through continuous sampled values. Of course, in the standard method, one usu-

distributions.

Steckley and Henderson (2003) use kernel density es-
timation methods to estimate the densityfafh, §) (when
it exists). Under a variety of conditions they establish that

ally needs to perform a careful sensitivity and/or uncertainty
analysis. Once one factors in the additional computational
effort required to perform such an analysis, it is no longer
clear that the methods outlined above are computationally

the rate of convergence of the estimated density to the true more demanding than the standard approach.

density in terms of mean integrated squared error is of the
orderc=%7, wherec is the computational budget. This rate
is slower than that associated with kernel density estimation
(c=%%) in the i.i.d. setting. The difference is due to the
fact that one needs to control the simulation uncertainty as
well as input model uncertainty.

Helton (1996) (see also Helton 1997) summarizes work

done by a research group at Sandia National Laboratories on

The benefit of these methods is a more appropriate
representation of the uncertainty in predictions of perfor-
mance measures than in the standard approach. The extent
to which these methods are implementable, i.e., can avoid
the need for expert intervention and thus be automated, is
one of the chief factors that will determine whether they
will be adopted in the mainstream.

Perhaps an even more important factor in determining

risk assessments for nuclear waste disposal. He estimateswhether these methods will be adopted is transparency.

for any givenm and ¢, the complementary cumulative
distribution function (CCDF) ofxl([n,e), F(x;m,0) =
P(X1(m,0) > x). Whenrh and 6 are recognized as

These methods need to be understood by users. Education
of users about the issues and methods available is one
key requirement. Another is ensuring that the results of

random variables, one then obtains a family of CCDFs. these kinds of analyses can be put into a digestible form.
To manage the multidimensional nature of these results, he Even confidence intervals are not as widely accepted as
then focuses on a fixed value= R at which the CCDFs we might prefer, and if we are to report a confidence

are evaluated, and looks at the distribution of these values interval that estimates a deterministic quantity, the user must

induced by the input model uncertainty fin andé. Latin
hypercube sampling is used over the distribution(rdf 6)

and Monte Carlo sampling is used for each fixadandé

to obtain the results. The use of Latin hypercube sampling
over the distribution ofth, §) is similar in philosophy to the
use of numerical integration techniques in Andradottir and
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understand the interpretation of the deterministic quantity.
This transparency requirement is all the more challenging
when we realize that most simulation models are designed
to estimate a large number of performance measures. Our
methods should be able to easily handle such complexity.
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At the current point in time there is no clear “winner” Smith, D. J. Medeiros, and M. W. Rohrer, 179-186.
among the methods outlined in this paper. All have advan- Piscataway, NJ: IEEE.
tages and disadvantages relative to the other methods. ItCheng, R. C. H., and W. Holland. 1997. Sensitivity of
may very well be that many of the methods can be success- computer simulation experiments to errors in input
fully applied to a single problem, and the choice of method data.Journal of Statistical Computation and Simula-
may come down to a matter of taste. Nevertheless, many tion 57:219-241.
of the methods are still in an early stage of development, so Cheng, R. C. H., and W. Holland. 1998. Two-point methods
any conclusions about the dominance of one method over

another are probably somewhat premature.
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