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ABSTRACT present two specific R&S procedures as illustrations. See

Goldsman and Nelson (1998) and Law and Kelton (2000)
This paper provides an advanced tutorial on the construction for detailed “how to” guides, and Bechhofer et al. (1995)
of ranking-and-selection procedures for selecting the best for a comprehensive survey of R&S procedures.
simulated system. We emphasize procedures that provide The paperis organized as follows: In Section 2 we show
a guaranteed probability of correct selection, and the key how R&S procedures are derived in an easy, but unrealistic,

theoretical results that are used to derive them. setting. Section 3 lists the challenges and opportunities
encountered in simulation problems, along with key theo-
1 INTRODUCTION rems and results that have proven useful in extending R&S

procedures to this setting. Two specific procedures are pre-

Over the last twenty years there has been considerable effortsented in Section 4, followed by a numerical illustration
expended to develop statistically valid ranking-and-selection in Section 5. Section 6 briefly reviews asymptotic analy-
(R&S) procedures to compare a finite number of simulated sis regimes for R&S. Finally, Section 7 closes the paper
alternatives. There exist at least four classes of comparison by describing other formulations of the R&S problem and
problems that arise in simulation studies: selecting the giving appropriate references.
system with the largest or smallest expected performance
measure (selection of the best), comparing all alternatives 2 BASICS OF RANKING AND SELECTION
against a standard (comparison with a standard), selecting
the system with the largest probability of actually being the In this section we employ the simplest possible setting to
best performer (multinomial selection), and selecting the illustrate how R&S procedures attack comparison problems.
system with the largest probability of success (Bernoulli This setting (i.i.d. normal data with known, common vari-
selection). For all of these problems, a constraintis imposed ance) allows us to focus on key techniques before moving on
either on the probability of correct selection (PCS) or on tothe technical difficulties that arise in designing procedures
the simulation budget. Some procedures find a desirable for realistic simulation problems.
system with a guarantee on the PCS, while other procedures R&S traces its origins to two papers: Bechhofer (1954)
maximize the PCS under the budget constraint. Our focus established théndifference-zone formulatigorwhile Gupta
is on selection-of-the-best problems with a PCS constraint. (1956, 1965) is credited with th&ubset selection formula-
A good procedure is one that delivers the desired PCS tion of the problem. Both approaches are reviewed in this
efficiently (with minimal simulated data) and is robust to section, and both were developed to compensate for the
modest violations of its underlying assumptions. Othertypes limited inference provided by hypothesis tests for the ho-
of comparison problems and procedures will be discussed mogeniety of thek population parameters (usually means).
briefly in Section 7. In this tutorial “best” means maximum In many industrial and biostatistics experiments, rejecting
expected value of performance, such as expected throughputthe hypothesis bl: n1 = w2 = - -- = uk, wherep; is the
or profit. parameter associated with tkin population, leads naturally

Rather than present a comprehensive survey of R&S to questions about which one has the largest or smallest
procedures, or provide a guide for applying them, our goalis parameter. R&S tries to answer such questions. Multiple
to explain how such procedures are constructed, emphasizingcomparison procedures (MCPs) also provide inference be-
issues that are central to designing procedures for computeryond rejection of homogeniety; there is a close connection
simulation, and reviewing some key theorems that have between R&S and MCPs, as we demonstrate later.
proven useful in deriving procedures. We do, however,
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Suppose that there atesystems. LetXj; represent to be relatively easy to approximate numerically. Notice

the jth i.i.d. output from system and letX; = {Xjj ; | = the inequality in the final step where we make use of the
1,2, ...} denote the output sequence from systern this fact thatuk > wi.

section, we assume that thq; are normally distributed A theme that runs throughout much of R&S is first
with meansuj = E[X|j] and variancesri2 = Var[Xj;]. using appropriate standardization of estimators and then
Further, we assume that the proces¥esXo, ..., Xk are bounding the resulting probability statements in such a way
mutually independent, and the variances are known and that a difficult multivariate probability statement becomes
equal; that is,0? = 02 = --- = 02 = 2. These are  one that is readily solvable.

unrealistic assumptions that will be relaxed later, but we

adopt them here because we can derive R&S procedures2.2 Indifference-Zone Formulation

in a way that illustrates the key issues. Throughout the

paper we assume that a larger mean is better, and we letA disadvantage of the subset-selection procedure in Sec-

UK > Mk—1 > --+ > u1, SO that (unknown to us) systekn tion 2.1 is that the retained sktmay, and likely will, contain

is the best system. more than one system. However, there is no procedure that
can guarantee a subset of size 1 and satisfy (1) for arbitrary

2.1 Subset-Selection Formulation n. Even whemn is under our control, as it is in computer

simulation, the appropriate value will depend on the true
Suppose that we have outputs from each of the sys-  differencesuk — ui, Vi # k. To attack this problem, Bech-
tems. Our goal is to use this data to obtain a subset hofer suggested the following compromise: guarantee to

I €{1,2,...,k} such that select the single best systeky,whenevenyx — uk—1 > 8,
whered > 0 is the smallest difference the experimenter
Pikel}>1—« (1) feels is worth detecting. Specifically, the procedure should
guarantee

where Yk < 1—a < 1. Ideally|l| is small, the best case
being|l| = 1. Gupta’s solution was to include in the det Pr{selectk|ukx — k-1 =38} >1—« 3)
all systems? such that

where Yk < 1 —«o < 1. If there are systems whose

_ _ 2 means are withirs of the best, then the experimenter is
Xe(m) = maxXi(n) —hoy/ = (2) “indifferent” to which of these is selected, leading to the
term indifference-zone (1Z) formulation.
whereX; (n) is the sample mean of the (firstoutputs from The procedure is as follows: From each system, take
systemi, andh is a constant whose value will depend on -
k and 1—- «. The proof that rule (2) provides guarantee (1) n—= [Zh o —‘ (4)
is instructive and shows what the valuetothould be: 82
Prik € I} outputs, whereh is an appropriate constant (determined
below) and [x] means to roundk up; then select the
= Pr{Xk(n) > maxX;(n) — ha\/? system with the largest sample mean as the best. Assuming
£k n [k — fk-1 > 8,
_ _ 2
= Pr{Xg(n) > Xj(n) — ha\/;, Vi #£ k} Pr{selectk}
. . = Pr{Xx(n) > Xj(n),Vi # k}
Xi(n) — Xk(n) — (uj — .
— Pr l( ) Uk( )Z/n(ul /’Lk) — Pr{ Xi(n)_x{f(nz)/_nwi_ﬂk)<*(Zi\/_zl/;ﬁ)’w#k}
“h_ (Wi ;7k)’Vi " k} > Pr{ Xi (”>‘X§(”2>/‘n"‘i O g/n,vi;ék}
o/2/n - _
Xi(n) — Xk(n) — (uj — .
> Pr{Zi<hi=12..k-1=1-«a > Pr{ L) = X = (i = 1) _ ;ék}
o4/2/n
where(Z1, Zo, . .., Zx_1) have a multivariate normal dis- = PriZi<hi=12.. . k-1=1-«
tribution with means 0, variances 1, and common pairwise ) o
correlations 12. Therefore, to provide the guarantee (1), Where againZi, Z, ..., Zx-1) has a multivariate normal

h needs to be the 1 « quantile of the maximum of such a distribution with means 0, variances 1, and common pairwise

multivariate normal random vector, a quantile that turns out
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correlations 12, implyingh needs to be the-1« quantile of Large deviation results, frequently based on the analysis

the maximum of such a multivariate normal random vector. of approximating Brownian motion processes, are central
Notice that the first inequality results from the assump- to the design of fully sequential procedures that involve

tion that uk — uk—1 > 8, while the second occurs because frequent looks at the data.

/N > +/2ho /8. Both of these tricks are standard: the first The approach in this case is to bound the probability of

frees the probability statement of dependence on the true anincorrect selectior{ICS). An ICS event occurs if system

means, while the second frees it of dependence on the valuek is eliminated at some point during the procedure. Let

of the variance. Pr{ICS} be the probability of an incorrect selection if only
It is worth noting that, over all configurations of the systems andk are included in the competition.

true means such thaix — uk—1 > 8, the configuration The first key inequality is

wi = uk — 8, Vi # k minimizes the PCS; it is therefore

known as thdeast-favorable configuratiofLFC). In this k-1

paper we break from the statistics literature in that we will P{ICS} < Z Pr{ICS}. (7)

not be concerned with identifying the LFC; our only interest i=1

is insuring that (3) is met.

Bechhofer’s procedure is essentially a power calcula-
tion: how large a sample is required to detect differences
of at leasts? When true differences are greater thn
Bechhofer'sn may be much larger than needed. By taking
observations and making decisions sequentially, it is often
possible to reach an earlier decision. Sequential selection PrICS}
procedures can be traced back at least to Wald (1947), but < Pr{Xk(r) < Xi(r) + 1 —a/r, for somer <n+ 1}
here we present a procedure due to Paulson (1964) that better _ pr{ i(r) — Xk(r) + A > a/r, for somer <n+ 1)

{

Decomposition into some form of paired comparisons is a
key step in many sequential procedures.

This decomposition allows us to focus only oIS }.
Notice that

illustrates the approach that has had the mostimpact in com-

puter simulation. Paulson’s procedure takes observations

fully sequentially—meaning one at a time—araliminates _ exp((“' pk + A) )

systems from continued sampling when it is statistically -

clear that they are inferior. Thus, a problem with a single (L —9)

dominant alternative may terminate very quickly. = exp( a)
Using the same notation as above, ¥t(r) be the

IA

Pr{Xi(r) — Xk(r) + 1 > a/r, for somer < oo}

sample mean of the first outputs of system. At each The third inequality comes from the large deviation result (6),
stager =1,2,...,n, one output is taken from each system while the fourth inequality exploits the indifference-zone
whose index is inl, where initially | = {1,2,...,k}. At assumption. If we set
stager, system¢ is retained inl only if
k—1\ o2
Xe(r) = maxX;(r) — max0, a/r — A} (5) a:ln( o ) PRy (8)
iel

wherea > 0 and O< A < § are constants to be determined, then P{ICS} < «/(k —1) and
andn = |a/A], with [-] meaning round down. The pro-
cedure ends whefl | = 1, which requires no more than PHICS} < (k—-1)
n+ 1 stages. Parallels with Gupta’s subset selection and
Bechhofer’s I1Z ranking are obvious: At each stage a subset
selection is performed, with the hedging factayr — i)
decreasing as more data are obtained. In the end, if the
procedure makes it that far, the system with the largest
sample mean is selected.

The following result is used to establish the PCS: Sup-
poseZi, Zo, ... are i.i.d. Nu, 02) with 4 < 0. Then it
can be shown that

= .

(k 1)
2.3 Connection to Multiple Comparisons

MCPs approach the comparison problem by providing simul-
taneous confidence intervals on selected differences among
the systems’ parameters. Hochberg and Tamhane (1987)
and Hsu (1996) are good comprehensive references. As
noted by Hsu (1996, pp. 100-102), the connection between
R&S and MCPs comes through multiple comparisons with

_ a 24 the best (MCB). MCB forms simultaneous confidence in-
PY[Z(f) > = for somer < 00} < exp<?a>. (6) tervals forpui — maxi ue,i = 1,2, ..., k, the difference
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between each system and the best of the rest. Specialized(1995) establish very mild conditions under which these
to the known-variance case, the intervals take the form results hold for far more general R&S procedures.

_ _ 2\ 3 SIMULATION ISSUES AND KEY RESULTS
Mi — T;?XM el—1Xi(n - I'?EXX@(I’]) —ho ~
| |

In the previous section we illustrated different approachesto
_ _ 2 * the R&S problem under assumptions such as independence,
(Xi (n) — rggxxtg(n) + h”\/%) ] (9)  normality, and known and equal variances. Unfortunately,
such assumptions rarely hold in simulation experiments.
There are also opportunities available in simulation exper-
iments that are not present in physical experiments. In the
following subsections we describe these issues and opportu-
nities, and present key theorems and results that have been

useful in deriving R&S procedures that overcome or exploit
them.

whereh is the same critical value used in Bechhofer’s and
Gupta’s procedures;x~ = min{0, x} andx™ = max0, x}.
Under our assumptions these confidence intervals are
simultaneously correct with probability 1 — «.

Consider the selt containing the indices of all systems
whose MCB upper confidence bound is greater than 0. Thus,

foriel, .
3.1 Unknown and Unequal Variances

Xi(n) > maxXe(n) - ha\/; Unknown and unequal variances across alternatives is a fact
) of life in system simulation problems, and the variances can
meaning these are the same systems that would be re-gjtfer dramatically. In the simple inventory model presented

tained by Gupta's subset-selection procedure.  Since in Section 5 the ratio of the largest to smallest variance is
puk — maxzk e > 0, and these intervals are simultane- gimost 4.

ously correct with probability> 1 — «, systemk will be There are many subset-selection procedures that permit
in the subset identified by the MCB upper bounds with the  an unknown, common variance (see Goldsman and Nelson
required probability. 1998 for one). When variances are unknown and unequal,
Now suppose thah has been selected such timat however, the subset-selection problem is essentially equiv-
2252 /82, implying that alent to the famous Behrens-Fisher problem. One approach
is to work with the standardized random variables
2
h“\/; =9 Xi () = Xie) = (i — ) .

i=12...., k=1 (10)

5 o\ 1/2
as in Bechhofer’s procedure. L& be the index of the <% + %)
system with the largest sample mean. Then the MCB lower

bounds guarantee with probability 1 — o that Neither the joint nor marginal distributions of these quanti-

_ ties are conveniently characterized. If you break the required
v v 2 joint probability statement up into statements about the in-
- — | Xe(n) — maxX.(n) — ho /= join : . .

s rlEéanW = ( B(N) rzEéaBX e U\/;) dividual terms, using techniques described below, then there
are at least two solutions available. Welch (1938) suggested
approximating each term in (10) as having alistribution,
The final inequality follows because Xg(n) — where the degrees of freedairis an approximation based
max.s Xe() = O by the definition of B, and on the values of¥? and §. Banerjee (1961) proposed a
ho/2/f < & because of our choice af. As noted by probability bound that we specialize to our case:
Nelson and Goldsman (2001), this establishes that the  1heorem 1 (Banerjee 1961) Suppose isN(O, 1)

system selected by Bechhofer's procedure is guaranteed to2d indepzendent ofi and Yk, which are themselves inde-
be within s of the true bestinder any configuration of the ~ P€Ndentx;” random variables. Then for arbitrary but fixed

> —4.

means Further, if ik — uk—1 > 8, then PEB =k} > 1—« 0=<y=1
as required. 5

As a consequence of this analysis bqth Bechhofer’s and Pr{— A < tlz—a/z 14 (11)
Gupta’s procedures can be augmented with MCB confidence Yo+ @A- V)Tk ’

intervals “for free,” and Bechhofer’s procedure is guaranteed
to select a system withifiof the best. Nelson and Matejcik
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To employ Banerjee’s inequality in our context, identify

_Xim) — Xe(n) — (i — )

Z 2 o2 1/2
B
and
S
Yo o4
y— Ay = 5
ek
_ (2 \% %\
of +of ) of of +of ) of

This inequality is used in Procedure NSGS presented in
Section 4.

For some time it has been known that it is not pos-
sible to provide a guaranteed PCS, in the 1Z sense, with
a single stage of sampling when variances are unknown
(see Dudewizc 1995 for a comprehensive discussion of
this result). Thus, practically useful 1Z procedures work
sequentially—meaning two or more stages of sampling—
with the first stage providing variance estimates that help
determine how much, if any, additional sampling is needed
in the succeeding stages. However, one cannot simply sub-
stitute variance estimators into Bechhofer’'s or Paulson’s
procedures and hope to achieve a guaranteed PCS. Instea
the uncertainty in the variance estimators enters into the
determination of the sample sizes, invariably leading to
more sampling than would take place if the variances were
known.

A fundamental result in parametric statistics is the
following: If X1, Xo, ..., Xp are i.i.d. Nu, 02), then X
andS? are independentrandom variables. The result extends
in the natural way to random vectoXs that are multivariate
normal. An extension of a different sort, due to Stein (1945),
is fundamental to R&S procedures with unknown variances:

Theorem 2 (Stein 1945) SupposeXy, Xo, ..., Xp
are i.i.d. Nu, 0?), and §? is o?x2/v and independent of
Yibi X and of Xni1, Xnt2, - - - -

1. If N >nis a function only ofs? then
X(N) — p
— ~t,. 12
sWN (12)
2. If&¢>0and
SZ
N :max”?—‘,mrl}
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then for any weightsw1, wa, ..., wn satisfying

ZEVlej =1 w1 = w2 = © = Wn, and
£y w? =£2 we have

Ly wiXj —

JT ’\'tu. (13)

In the usual case whef# is the sample variance of the first
n observationsy = n— 1. The importance of this result in
R&S is that it allows determination of a sample size large
enough to attain the desired power against differences of at
leasts without requiring knowledge of the process variance.
If comparisons of onlk = 2 systems were necessary,
then Stein’s result would be enough (at least in the i.i.d.
normal case). But our problem is multivariate, making joint
probability statements about

Xi (Ni) = Xk (Ni) = (i — i) P

1,2....,k—1 (14
S (14)

WhereSﬁ( is a variance estimate based on an initial sample
of size (say)n, and N; and Nk are the final sample sizes
from systemsi and k. The joint distribution of these
random variables is quite messy in general, even if all
systems are simulated independently (as we assume in this
section). One approach is to condition @ and Xy (N)

dand apply inequalities such as the following to bound the

joint probability:

Theorem 3 (Kimball 1951) Let Vi, Vo,..., W
be independent random variables, and et
gj(vy,v2,...,%), ] = 1,2,...,p, be nonnegative,

real-valued functions, each one nondecreasing in each of
its arguments. Then

p p
E|J]oiVe Va. ... Vi | = T E[gj(Va. Va. ... V).
=1 j=1

Kimball's theorem is actually only the cage= 1; see
Hochberg and Tamhane (1987) for the extension.

Theorem 4 (Slepian 1962) Let (Z1, Zo,..., Zx)
have ak-variate normal distribution with zero mean vec-
tor, unit variances, and correlation matriR = {pjj}. Let
&1, &, ..., & be some constants. If all thg; > 0, then

|0 =)

Notice that, conditional on thﬁizk, the termsin (14) are
positively correlated (due to the commr(Nk) term), pro-
viding the opening to apply Slepian’s inequality. Kimball’s
inequality then can be applied to simplify the uncondition-

k

@z <&)

i=1

k
> [ [Pz <&}

i=1
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ing on Sizk. Both of these ideas are employed in the design
of Procedure NSGS below.

3.2 Non-Normality of Output Data

Raw output data from industrial and service simulations are
rarely normally distributed. Surprisingly, non-normality is

usually not a concern in simulation experiments that (a)
are designed to make multiple independent replications,

elimination decisions for clearly inferior systems must wait
for an entire batch to be formed. Therefore, for steady-state
simulations, selection procedures that use individual raw
outputs as basic observations are desirable.

Although no known procedures provide a guaranteed
PCS for single-replication designs, some procedures have
shown good empirical performance (e.g., Sullivan and Wil-
son 1989), while others have been shown to be asymp-
totically valid. See Law and Kelton (2000) for a general

discussion of replications versus batching, Glynn and Igle-
hart (1990) for conditions under which the batch means
method is asymptotically valid for confidence intervals, and
Section 6 for a review of asymptotic analysis of R&S pro-
cedures.

and (b) use a within-replication average of a large number

of raw simulation outputs as the basic summary measure.

This is frequently the situation for so-called “terminating

simulations” in which the initial conditions and stopping

time for each replication are an inherent part of the definition

of the system. A standard example is a store that opens

empty at 6 AM, then closes when the last customer to arrive 3.3 Common Random Numbers

before 9 PM leaves the store. If the output of interest is

the average customer delay in the checkout line over the The procedures described in Section 2 assumed that data

course of the day, and comparisons will be based on the across thek alternative systems are independent. In sim-

expected value of this average, and the average is over manyulation experiments this assumption can be made valid by

individual customer delays, then the Central Limit Theorem using different sequences of random numbers to drive the

suggests that the replication averages will be approximately simulation of each system. However, since we are making

normally distributed. comparisons, there is a potential advantage to using com-
Difficulties arise in so-called “steady-state simulations” mon random numbers (CRN) to drive the simulation of each

where the parameter of interest is defined by a limit as system because

the time index of a stochastic process approaches infinity

(and therefore forgets its initial conditions). Some steady- YalXij — X¢j1 = Var[Xij ] + Var[Xej] — 2CoMXij, Xj]-

state simulations are amenable to multiple replications of | implemented correctly (see, for instance, Banks, et al.

each e_llterr)ative_and within-replication averages as summary 2001), CRN tends to make CP¥ij, X¢j] > O thereby
statistics, in which case_the pre_cedmg dlscu_ssmn applies. reducing the variance of the difference.

Unf(_)r.tt.mately, severe est|matorb|as dueto resujual effect; of R&S procedures often need to make probability state-
the |p|t|_&1l condltl_ons sometlme§ force an experiment des_lgn ments about the collection of random variables

consisting of a single, long replication from each alternative.
The raw outputs within each replication are typically neither
normally distributed nor independent. For example, waiting
times of individual customers in a queueing system are
usually dependent because a long delay for one customer
tends to increase the delays of the customers who follow.
The best we can hope for is an approximately stationary
output process from each system, but not normality or
independence.

The most common approach for dealing with this pro
lem is to transform the raw data inb@tch meanswhich are
averages of large number of raw outputs. The batch means ; o X i ,
are often far less dependent and non-normal than the raw 1+ 2: - - -» N} with pairwise differencegXi; —Xj; i # ;| =
output data. There are problems with the batching approach 1 2 - - -» N} because the variance of the sample mean of the
for R&S, however. If a “stage” is defined by batch means difference includes the effect of the CRN-induced covari-

rather than raw output, then the simulation effort consumed 2NC€- The second is to apply the Bonferroni inequality to
by a stage is a multiple of the batch size. When a large batch break up joint statements about (15) into statements about

size is required to achieve approximate independence—andthe individual terms. Recall thatfor evewts &, . . ., &k-1,

batch sizes of several thousand are common—then the selec-th€ Bonferroni inequality states that
k-1

Pr { ﬂ & } >1-—

i=1

Xi(n) — Xk(N) — (wi — )i =1,2,...,k—1. (15)

The appearance of the common teXg(n) causes depen-
dence among these random variables, but it is often easy to
model or tightly bound. The introduction of CRN induces
dependence betweéf (n) and Xk (n) as well. Even though
the sign of the induced covariance is believed known, its
value is not, making it difficult to say anything about the
p- dependence among the differences (15).

Two approaches are frequently used. The first is
to replace the basic datéXij;i = 1,2,....,k; ]

tion procedure is forced to make decisions at long intervals,
wasting outputs and time. This inefficiency becomes serious
when fully sequential procedures are employed because the
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In the R&S context; might correspond to an event like
{Xi(n) — Xk(n) — (ui — pk) < h.

Approaches based on the Bonferroni inequality make no
assumption about the induced dependence, and therefore are
very conservative. A more aggressive approach is to assume
some structure for the dependence induced by CRN. One

tive memory; and restoring previous state and seed
information for the next system. Thus, the over-
all computation effort includes both the cost of
generating simulated data and the cost of switch-
ing. Hong and Nelson (2003) look at sequential
IZ procedures that attempt to minimize the total

standard assumption is that all pairwise correlatipns
Corr Xjj, X(j] are positive, but identical, and all variances
are equal; this is known asompound symmetryNelson
and Matejcik (1995) extended Rinott’s procedure (1978)—
one of the simplest and most popular 1Z procedures—in
conjunction with CRN under a more general structure called
sphericity The specific assumption is

i=¢
i £ 0

2B + 12,

Bi + Be, (47

Cov Xjj, Xj] :{

with 72 > 0, which is equivalent to assuming that Vel —

Xejl =
This particular structure is useful because there exists an

272 for all i # ¢, a type of variance balance.

estimatorz? of z2 that is independent of the sample means
and has ay? distribution (allowing a pivotal quantity to

be formed and Stein’s theorem to be applied).

Nelson

computational cost.

« If k processors are available, then an attractive
option is to assign each system to a processor
and simulate in parallel. This is highly effective
in conjunction with R&S procedures that require
little or no coordination between the simulations
of each system, such as subset-selection proce-
dures or IZ-ranking procedures that use only vari-
ance information (and not differences among the
sample means). Unfortunately, a fully sequential
procedure with elimination would defeat much of
the benefit of parallel processing because com-
munication among the processors is required after
generating each output.

Many sequential procedures are based on results for

Brownian motion processes. Lé(t; A) be a standard
Brownian motion process with dritk. Consider the partial

and Matejcik (1995) showed that procedures based on this sum of the pairwise differencBi (r) = >~} _; (Xkj — Xij),
assumption are robust to departures from sphericity, at leastr =1, 2,.... If the Xjj are i.i.d. normal, angk — uj = 8,

in part because assuming sphericity is like assuming that all then (D;(r),r = 1,2,...} 2 {¢B(t;8/0),t = 1,2,..}

pairwise correlations equal the average pairwise correlation. \yhere 52 — Var[Xxj — Xij] (with or without CRN). In

3.4 The Sequential Nature of Simulation

other words D; (r) is a Brownian motion process with drift
observed only at discrete (integer) points in time. A great
deal is known about the probability of Brownian motion

Suppose an IZ ranking proce_dur_e is applied in t_he _study processes crossing boundaries in various ways (see, for
of k new blood pressure medications. Then “replications”
correspond to patients, and the idea of using a fully sequen- e gisplay one specific result below. Thus, it seems natural

tial procedure (assign one patient at a time to each drug, o design R&S procedures forB(t; §/) and apply them
then wait for the results before recruiting the next patient) {5 p, ().

seems absurd. In simulation experiments, however, data

instance, Siegmund 1985 or Jennison and Turnbull 2000);

Let c(t) be a symmetric (about 0) continuation region

are naturally generated sequentially, at least within each for ;5 5(t; 5/5), and let an incorrect selection correspond
simulated alternative, making multi-stage procedures much 5 the process exiting the region in the wrong direction
more attractive. However, there are some issues:

In multiple-replication designs, sequential sam-
pling is particularly attractive. All that needs to

be retained to start the next stage of sampling is
the ending random number seeds from the previ-
ous stage. In single-replication designs it can be
more difficult to resume sampling from a previous

(down, when the drift is positive).
loB(t; 8/0)| > c(1)}, then

IT = inf{t > 0 :

Pr{ICS} = Pr{oB(T;$/0) < O}.

Of courses B(t; 8/0) is only an approximation fobD; (r).
However, Jennison, et al. (1980) show that under very

stages, since the entire state of the system must be general conditions, RICS;} is no greater if the Brownian

retained and restored.

A hidden cost of using multi-stage procedures is
the computational overhead in switching among
the simulations of th& alternatives. On a single-
processor computer, switching can involve saving
output, state and seed information from the cur-
rent system; swapping the program for the current
system out of, and for the next system into, ac-
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motion process is observed at discrete times; thus, proce-
dures designed faor B(t; §/0) provide an upper bound on
the probability of incorrect selection fa;j(r). In con-
junction with a decomposition into pairwise comparisons,
as in (7), this result can be used to derive R&S procedures
for k > 2.

Fabian (1974) tightened the triangular continuation re-
gion used by Paulson, and this was exploited by Hartmann
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(1988, 1991), Kim and Nelson (2001, 2003) and Hong and
Nelson (2003).

Theorem 5 (Fabian 1974) Let{B(t, A),t > 0} be
a standard Brownian motion with drifA > 0. Let

[(t)
u(t)
for somea > 0 and A = A/(2b) for some positive integer
b. Letc(t) denote the continuation regiof(t), u(t)) and
let T be the first time thaB3(t, A) ¢ c(t). Then
b - 1
PrB(T.A) <0} =< > (-t <1— “I(j = b))
j=1 2

x exp{—2ar(2b— j)j}.

—a+ At
a— At

Fabian’s bound on RICS} is particularly useful be-
causea is the term that depends on the sample variance
(see Paulson’s in Equation (8) for intuition). Thus, ap-
propriately standardized, epa) is related to the moment
generating function of a chi-squared random variable, which
simplifies unconditioning on the sample variance.

3.5 Large Number of Alternatives

The number of alternatives of interest in simulation problems
can be quite large, with up to 100 being relatively common.
However, Bechhofer-like IZ procedures were developed for
relatively small numbers of alternatives, say no more than
20. They can be inefficient when the number of alternatives
is large because they were developed to protect against the
LFC—the configuration of system means under which it
is most difficult to correctly select the best—to free the
procedure from dependence on the true differences among
the means. The Slippage Configuration (S&G)= uk — 8

fori =1,2,...,k—1, is known to be the LFC for many
procedures.

When the number of systems is large we rarely encounter
anything remotely like the SC configuration, because large
numbers of alternatives typically result from taking all fea-
sible combinations of some controllable decision variables.
Thus, the performance measures of the systems are likely
to be spread out, rather than all clustered near the best.
Paulson-like procedures with elimination might seem to be
a cure for this ill, but the inequalities used to decompose the
problem ofk systems into paired comparisons with system
k are typically quite conservative and become much more so
with increasingdk (although Kim and Nelson’s (2001) fully
sequential proceduéN, described in the next section, has
been shown to work well for up th = 500 systems).

To overcome the inefficiency of 1Z approaches for large
numbers of alternatives, one idea is to try to gain the benefits
of screening, as in Paulson-like procedures, but avoid the
conservatism required to compensate for so many looks at the
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data. Nelson, et al. (2001) proposed spending some of the
« for incorrect selection on an initial screening stage (using

a Gupta-like subset-selection procedure), and spending the
remainder on a second ranking stage (using a Bechhofer-
like I1Z procedure). Additive and multiplicative spending

is possible, depending on the situation (see Nelson, et al.
2001 and Wilson 2001). The resulting procedure, named

NSGS, is presented in the next section.

This so-called &-spending” approach—spreading the
probability of incorrect selection across multiple stages—is
a general-purpose tool, and there is no inherent reason to
use only a single split. See Jennison and Turnbull (2000)
for a thorough discussion.

4 EXAMPLE PROCEDURES

In this section we present two specific procedures to illus-
trate the concepts described in earlier sections. The NSGS
procedure, due to Nelson, et al. (2001), and Ah¥" pro-
cedure, due to Kim and Nelson (2001), are appropriate for
terminating simulations or for steady-state simulations when
multiple replications are employed.

The NSGS procedure requires that the output data from
each system are i.i.d. normal, and that outputs across sys-
tems are independent, which leaves out CRN. NSGS is the
combination of a Gupta-like subset-selection procedure, to
reduce the number of alternatives still in play after the first
stage of sampling, and a Bechhofer-like ranking procedure
applied to the systems in the subset. The procedure uses
a-spending between the subset selection and ranking to
control the overall PCS. Banerjee’s inequality allows the
subset selection procedure to handle unequal variances.

4.1 Procedure NSGS
1. Specify the overall desired probability of correct

selection 1—- «, the 1Z parameteBs, a common

initial sample size from each systemg > 2, and

the initial number of competing systeasFurther,
set

1
no—1,1—(1—ca/2) k-1

and obtain Rinott’s constaht= h(ng, k, 1—«/2)
from the tables in Wilcox (1984) or Bechoffer et
al. (1995). See also Table 8.3 in Goldsman and
Nelson (1998).

Takeng outputs from each system. Calculate the
first-stage sample meads(ng) and marginal sam-
ple variances

No

> (X = X (n0))°,

=1

1
T no-1

32

fori =1,2,...,k.
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Subset SelectiorCalculate the quantity

12
V\/ie=t< )

for all i # ¢. Form the screening subskt con-
taining every alternativé such that 1< i < k
and

2 | @
S+5
No

Xi (Ng) > X¢(no) — (Wi — 8)* forall € #1i.

If |[I] = 1, then stop and return the systemlin
as the best. Otherwise, for alle I, compute the
second-stage sample sizes

Ni = max{no. [(hs/9%].

where -] is the ceiling function.

TakeN; — ng additional outputs from all systems
iel.

Compute the overall sample meaiois(Ni)_for all

i € |. Select the system with the largest(N;)
as best.

Nelson et al. (2001) showed that any subset-selection
procedure and any two-stage |IZ ranking procedure that
satisfy certain mild conditions can be combined in this
way while guaranteeing the overall probability of correct
selection. The NGSG procedure can handle a relatively large

number of systems because the first-stage screening is pretty

tight. Nelson et al. (2001) provide a revised version of the
NGSG procedure, the Group-Screening procedure, in which
one can avoid simulating all the systems simultaneously.

2. Initialization. Let | = {1,2,...,k} be the set of
systems still in contention, and let = 21(ng—1).
Obtain ng outputs Xjj (j = 1,2,...,np) from
each system (i = 1,2,...,k) and letX;(ng) =
ng’ ZTOZl Xij denote the sample mean of the first
no outputs from system.

For alli # ¢ compute

No

1 R 2
= nO_ljZ_;(Xu Xej = [Xi(no) = X¢(no)])”,

S7

the sample variance of the difference between sys-
temsi and{. Setr = ng.
Screening.Set 94 = | . Let

| = [i:ielo'dand

Ki(1) = Xe(r) = Wie(r), Ve € 199 ¢ i,

Stopping Rulelf |I| = 1, then stop and select the
system whose index is ih as the best.
Otherwise, take one additional outpXii, 41 from
each system € I, setr r+1 and go to
Screening

The KN procedure requires simulation of all systems
simultaneously and a lot of switching among them. As
discussed in Section 3, the switching cost can overwhelm

where

1)

|

h’s;
52

Wie(r) = max:O, o

4,

Boesel et al. (2003) extended the Group-Screening procedurethe sampling cost, but this has become less of an issue in

for “clean up” after optimization via simulation.

The KN procedure idully sequentiabecause it takes
only a single basic output from each alternative still in
contention at each stage. Also, if there exists clear evidence
that a system is inferior, then it will be eliminated from
consideration immediately—unlike the NSGS procedure,
where elimination occurs only after the first stagE/N
also requires i.i.d. normal data, but does allow CRI\W
exploits the ideas of using paired differences, and controlling
the P{ICS} on pairs to control it overall. Fabian’s result
is used to bound the error of a Brownian motion process
that approximates each pair.

4.2 ProcedureKN

1. Setup.Select confidence leveldq, |Z parameter
§ and first stage sample sirg > 2. Set

(|

1

2

20
k-1

n

109

modern computing environments.
5 APPLICATION

This section illustrates NSGS andA\ using an(s, S
inventory system with the five inventory policies as described
in Koenig and Law (1985). The goal of this study is to
compare the five polices given in Table 1 and find the
one with the smallest expected average cost per month for
the first 30 months of operation. Table 1 also contains the
expected cost (in thousands of dollars) of each policy, which
can be analytically computed in this case. We &et $1
thousandng = 10 initial replications, and *+ « = 0.95.

Table 2 shows the results of the simulation study for
each procedure, including the total number of outputs taken
and the sample average cost per month for each policy.
In NSGS, policies 3, 4, and 5 were eliminated after the
first stage of sampling, so only policies 1 and 2 received
second-stage samples. AV, only policies 4 and 5 were
eliminated after the first stage, but the elimination of policies
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Table 1: The Five Alternative Inventory

Policies
Policyi | s S | Expected Cost
1 20| 40 114.176
2 20| 80 112.742
3 40| 60 130.550
4 40 | 100 130.699
5 60 | 100 147.382

Table 2: Simulation Results of ti{s, S) Inventory
Policy Example

NSGS KN
Policyi | # Obs.| Average| # Obs.| Average
1 209 | 114.243| 098 114.274
2 349 | 112.761| 98 113.612
3 10 130.257| 16 130.331
4 10 128.990| 10 128.990
5 10 147.133| 10 147.133
Total 588 232

3 and 1 occurred after they received 16 and 98 observations,
respectively. This illustrates the value of the tighter initial
screen in NSGS, which takes only one look at the data, and
the potential savings from taking many looks /a4 does.
Both procedures chose policy 2 as the best (which is in fact
correct). Since is smaller than the true difference, NSGS
and KN will choose the true best with 95% confidence.
However, in general we do not have any information about
the true differences; therefore, the best we can conclude
without prior knowledge is that policy 2 is either the true
best, or has expected cost per month within $1 thousand of
the true best policy, with 95% confidence.

6 ASYMPTOTIC VALIDITY

When normality and independence of the output from within
each system are untenable assumptions, proving that R&S
procedures provide a correct-selection guarantee for a finite
sample is largely hopeless. Nevertheless, well designed pro-
cedures have shown good empirical performanssymp-
totic analysiscan provide theoretical support for this ob-
servation. Asymptotic analysis typically means analysis as
the simulation effort (run length, number of replications, or
perhaps both) increases (conceptually) without bound. The
power of asymptotic analysis is that many of the problem-
specific details that thwart mathematical analysis in the
finite-sample case wash out in the limit. Asymptotic analy-
sis, done appropriately, can establish conditions under which
we can expect procedures to work, rather than just rely-
ing on limited empirical evidence that they do; it can also

110

establish the asymptotic superiority of one procedure over
another.

We mention two useful regimes for asymptotic analysis
of R&S procedures:
Dealing with non-normal or dependent data: In
this regime, the goal is to show that a selection
procedure does guarantee the PCS requirement if
enough simulation effortis expended. One example
is Kim and Nelson (2003), who drive the run length
to infinity by letting both the indifference zonke
and the true differences among the systems’ means
go to 0, so that the PCS approaches a meaningful
limit, rather than 1. We can interpret their result
as telling us what will happen as the problem
becomes more and more difficult, which is what
we would like to know since few errors occur in
easy problems where the means are dramatically
different.
Comparing procedures: The variance of any sen-
sible point estimator will go to zero as the sample
size goes to infinity, but that does not mean that
all point estimators are equally good. Scaling up
the variance at the same rate at which it is going
to zero can sometimes reveal important differences
among estimators. Similarly, we can look at the
rate at which the simulation effort of an 1Z proce-
dure increases aB* — 1 and compare the rates
of competing procedures to establish asymptotic
superiority of one over another. See, for instance,
Jennison, Johnstone and Turnbull (1982).

7 OTHER FORMULATIONS

Throughout this paper we have focused on the problem of
finding the best when the best is defined as the system with
the largest or smallest expected performance measure. As
discussed in Section 1, there exist other types of comparison
problems. Here we briefly visit each type of comparison
problem and provide useful references.

1. Comparisons with a standardThe goal of com-
parison with a standard is to find systems whose
expected performance measures are larger (smaller)
than a standard and, if there are any, to find the one
with the largest (smallest) expected performance.
For this type of problem, each alternative needs
to be compared to the standard as well as other
alternative systems. Nelson and Goldsman (2001)
proposed two-stage procedures and Kim (2002)
proposed fully sequential procedures.

Multinomial selection In multinomial selection
problem, the definition of the best is the system
that is mostly likelyto be the best. In the sim-
ulation context this typically means identifying
the system with the largest value ofy;, where
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