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ABSTRACT 

Diffusion-based Credit Default Swap (CDS) pricing models 
produce zero spreads for very short-term contracts, which 
contradict empirical data. We introduce a simulation-based 
CDS pricing approach that avoids the zero short-term 
spreads problem through a jump-diffusion process. 

 
1 INTRODUCTION 

In deriving default probabilities, there are two broad model-
ing approaches: structural approach (see e.g. Merton (1974), 
Merton (1976), Black and Cox (1976), Longstaff and 
Schwartz (1995)), and reduced form approach (see e.g. Duf-
fie and Singleton (1995), Jarrow, Lando and Turnbull (1994), 
Jarrow. and Turnbull (1995), Madan and Unal (1994)). Zhou 
(1997) characterizes the two approaches as follows: 

1.  Structural approach proposes that the evolution of 
the firm’s asset value follows a diffusion process, 
as proposed by Merton (1974). Defaults occur 
when the value of the asset becomes lower than 
the debt. According to the structural approach, 
firms never default by surprise due to the diffu-
sion process, which is continuous. 

2.  Reduced-form approach assumes that there is no 
relation between the firm value and default. De-
fault is seen as an unpredictable Poisson event in-
volving a sudden loss in market value. Thus, ac-
cording to reduced-form approach, firms never 
default gradually.  

 As Zhou (1997) argues, in reality, default can occur in 
both ways: firms can default either gradually or by surprise 
due to unforeseen external shocks. The philosophies behind 
the structural and reduced form approaches can be combined 
by using a jump diffusion model that allows both gradual 
and sudden defaults (see e.g. Merton (1976), Ahn and 
Thompson (1988), Kou (2001) and Zhou (1997, 2001)).  
 Deriving default probabilities is a crucial part in pric-
ing credit derivatives whose market is growing rapidly. 
CDS is the most popular contract type among credit de-
rivatives.  The aim of this paper is to present a simulation-
based CDS pricing approach based on jump-diffusion pro-
cess and demonstrate how the approach overcomes some 
difficulties encountered in a traditional diffusion-based 
pricing approach. In particular, a CDS pricing approach 
based on a diffusion-process produces zero credit spreads 
for very short maturities. This happens because, if there is 
a finite distance to the default point (barrier), a continuous 
process cannot reach it in a very short-time period. This is 
problematic because in reality the credit spreads would not 
go to zero even for contracts with very short maturities. 
This paper will show that the zero short-term spreads prob-
lem can be avoided through jump-diffusion process. 
 The rest of the paper is organized as follows. Section 
two discusses deriving default probabilities under diffusion 
and jump-diffusion processes. Section three explains how 
CDS can be priced in practice. Section four introduces our 
approach and Section five presents a real-life numerical 
example. Section six concludes the paper. 

 
2 MODELING DEFAULT PROBABILITIES 

Let τ represent the time when a default occurs. When the 
default occurs only at the maturity T (hereafter, maturity 
default), τ is defined as 

 

  (1) 



∞

<
=

else
DVT T

:
:

τ

 
where  is the asset value at T and D the default point 
(e.g., amount of outstanding debt). When the default can 
occur anytime t ∈ [0,T] until the maturity, as the asset 
value crosses the default point (hereafter, first-passage-
time default), 
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First, like in Merton (1974), let V follow a Geometric 

Brownian motion 
 

 VdwVdtdV σµ +=  (3) 
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where µ ∈ ℜ is a constant growth rate of the asset value, σ 
> 0 is a constant volatility coefficient, and W  is a standard 
Brownian motion (Wiener process) defined on a filtered 
probability space (Ω, F, P).  
 By Ito’s lemma, 
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is solution to Equation (3). Then, the risk-neural default 
probability under maturity default is 

~~
 

 

( ) ( )

        
T

T
2

r
V
D

DWT
2

rVP

DVPTP

2

0

T

2

0

T






























−−









Φ=











<+










−=

<==

σ

σ

σσ

τ

ln

exp~  (5) 

 
where r is risk-free rate and Φ(•) the cumulative standard 
normal distribution. 
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 The risk-neural default probability under first-passage-
time default is 
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For the derivation, refer to Musiela and Rutkowski 
(1997) and Giesecke (2003).  
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Now, following Merton (1976), let V follow a jump-
diffusion process 
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where κ = E(J – 1), ln(J) ~ N(ν,γ2), and dp is a Poisson 
process generating the jumps with the intensity of λ. By 
Ito’s lemma,  
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is the solution to Equation (7). n is Poisson distributed with 
parameter λT. Then, the risk-neural default probability un-
der maturity-default is 
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A closed-form solution for the first-passage-time default 
probability under jump-diffusion is not known (see Abra-
hams (1986)) but can be determined by Monte Carlo 
simulation. 
  
3 PRICING CREDIT DEFAULT SWAP 

A CDS is a contract in which one party buys protection for 
possible losses of reference asset (for example,  a bond or a 
loan) due to a credit event such as default by the issuer. 
The protection buyer pays periodic payments to the protec-
tion seller until either the maturity of the contract or a 
credit event occurs. Upon the credit event, the seller pays 
the loss incurred by the credit event to the buyer and  the 
buyer usually makes a final accrual fee payment to the 
seller. A CDS can be priced by equating the sum of present 
values of the fee leg to the sum of present values of the 
contingent payment leg. 
 Suppose that the CDS rate S as a fraction of notional 
in Basis Point (BP, 1% = 100 BP) per year is paid at dates 
t1 < t2 <…< tn = T with ∆( ti-1, ti) representing the interval 
between payments dates (i.e., 0.5 for semi-annually pay-
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ments).  The sum of present values of fee leg, F, can be 
written as 
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The sum of present values of fee accruals, A, can be de-
fined as 
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where it is assumed that the default between the regular fee 
payments always occurs exactly in the middle. The error 
from this approximation gets smaller as the time step gets 
smaller.  
 The contingent leg payoff, C, can be described as  
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4 A SIMULATION-BASED  

APPROACH TO PRICE CDS 

As mentioned in Section 2, a closed-form solution for the 
first-passage-time default probability under jump-diffusion 
is not known. However, it is relatively straightforward to 
compute the default probability by simulation. In addition, 
simulation brings greater pricing accuracy because we can 
easily discount contingent payments and the accrual fees 
from the exact date when the default actually occurs, and 
there is no need for the relatively crude approximations 
used in Equations (11) and (12). 

It was also mentioned that high short-term spreads 
cannot be explained by using diffusion-process alone. In 
the following computational example, we would like to 
demonstrate that the jump diffusion process could indeed 
produce high short-term spreads that appear in the markets.  

In our approach, daily asset prices are simulated with 
Formulation (8). The example presented in this paper is 
implemented with Microsoft Excel and @Risk simulation 
add-in. The simulation of the diffusion process is straight-
forward in a spreadsheet environment, however simulating 
the jumps requires some relatively advanced modeling 
work. With one-day time step, even a one-year model be-
comes computationally rather expensive. However, a 
spreadsheet environment is ideal for prototyping and 
communicating the model, even if the final implementation 
ends up being done in some other platform.  

 
5 ILLUSTRATIVE SIMULATIONS 

A Fortune 500 company currently has an asset value of 
$285 Billion, and a default is assumed to occur when the 
asset value dips under $201 Billion. The company’s asset 
sigma is estimated to be 6%. The one-year risk-free rate is 
known to be 1%. In May 2003, a one-year CDS for the 
company is traded around 300 BP. 

We built a simulation model to price the one-year 
CDS. We assumed quarterly payment periods, and the re-
covery rate of 50%. In the diffusion model (without 
jumps), the company never defaulted (n = 50,000), leading 
to zero-spread for the CDS, which contradicts the market 
information.  

However, in the jump-diffusion model, the results 
were very different. For example, with a jump frequency of 
five jumps per year (Poisson arrival process) and jump 
amplitude of ln(J) ~ N(0, 0.0054), the spread was around 
289 BP, with default probability of 5.64% (n = 50,000). 
These figures are consistent with the market information. 

We want to emphasize that estimating the parameters 
for a jump diffusion process is a non-trivial endeavor (see, 
for example, Kou (2001)). In this computational example, 
the parameters were chosen so that the process yielded a 
CDS spread that is consistent with the market spread.  

 
6 CONCLUSION 

The first-passage-time default probability under jump-
diffusion can only be computed by simulation, whereas 
the other default probabilities can be calculated analyti-
cally. However, the first-passage-time default probability 
has the most important practical implications. The matur-
ity-default assumption is somewhat unrealistic and, as 
shown in the previous section, jump-diffusion process is 
needed to explain very high short-term spreads that can 
be frequently observed in the credit markets. Thus, al-
though the parameterization of the jump diffusion model 
is non-trivial, these models hold great promise for use in 
credit derivative pricing.  
 In literature, models with stochastic default barrier are 
presented as an alternative to jump-diffusion models (see 
Finger et al. (2002)). An interesting avenue to pursue 
might be to seek to combine jump-diffusion first-passage-
time default process with stochastic default barrier. This 
can be done with simulation as well. 

 



Joro and Na 

 

 
ACKNOWLEDGMENTS 

Tarja Joro acknowledges financial support from Univer-
sity of Alberta School of Business Canadian Utilities Fel-
lowship. The views expressed in this paper are those of 
the authors and do not reflect the views of Bayerische 
Landesbank.   
 
REFERENCES 

Abrahams, J. 1986. A Survey of Recent Progress on Level 
Crossing Problems, Communications and Networks: A 
Survey of Recent Advances, Springer-Verlag. 

Ahn, C. M. and H. E. Thompson. 1988. Jump-Diffusion 
Processes and the Term Structure of Interest Rates, 
Journal of Finance, 43, 155-174.  

Black, F. and J. C. Cox. 1976. Valuing corporate securi-
ties: Some effects of bond indenture provisions, Jour-
nal of Finance 31, 351-367. 

Duffie, D. and K. J. Singleton. 1995. Modeling term struc-
tures of defaultable bonds, Working paper, Stanford 
University Business School. 

Finger, C. C., V. Finkelstein, G. Pan, J.-P. Lardy, and T. 
Ta. 2001. CreditGrades: Technical Document, Risk-
Metrics, New York. 

Giesecke, K. 2003. Credit Risk Modeling and Valuation: 
An Introduction, Working Paper, Cornell University. 

Jarrow, R. A., D. Lando, and S. Turnbull. 1994. A Markov 
model for the term structure of credit risk spreads,” 
Working paper, Cornell University. 

Jarrow, R. A. and S. Turnbull. 1995. Pricing derivatives on 
financial securities, Review of Financial Studies 1, 
427-445. 

Kou, S. G. 2001. A Jump Diffusion Model for Option Pric-
ing with Three Properties: Leptokurtic Feature, Vola-
tility Smile, and Analytical Tractability, working pa-
per, Columbia University, New York. 

Longstaff, F. A. and E. S. Schwartz. 1995. A simple ap-
proach to valuing risky and floating rate debt,” Jour-
nal of Finance 50, 789-819. 

Madan, D. B. and H. Unal. 1994. Pricing the risks of de-
fault, Working paper, The Wharton School of the Uni-
versity of Pennsylvania. 

Merton, R. C. 1974. On the Pricing of Corporate Debt: the 
Risk Structure of Interest Rates, Journal of Finance, 
29, 449-470.  

Merton, R. C. 1976. Option Pricing when Underlying 
Stock Returns are Discontinuous, Journal of Financial 
Economics, 3, 125-144. 

Musiela, M. and M. Rutkowski. 1997. Martingale Methods 
in Financial Modelling, Springer, Berlin. 

Zhou, C. 1997. A Jump-Diffusion Approach to Modeling 
Credit Risk and Valuing Defaultable Securities, Fi-
nance and Economics Discussion Series 1997-15 / 
Board of Governors of the Federal Reserve System 
(U.S.). 

Zhou, C. 2001. The Term Structure of Credit Spreads with 
Jump Risk, Journal of Banking and Finance, 25, 
2015-40. 

AUTHOR BIOGRAPHIES 

TARJA JORO is an Assistant Professor in Management 
Science at the University of Alberta School of Business in 
Edmonton, Canada. She received her Ph.D. from Helsinki 
School of Economics in 2000. Her research interests are in 
productivity and efficiency studies and financial engineer-
ing. Her email and web address are <tarja.joro@ 
ualberta.ca> and <http://www.bus.ualber 
ta.ca/tjoro>.  

PAUL NA is a Vice President and Head of Credit Risk 
Methodology at Bayerische Landesbank New York 
Branch. He received his Ph.D. from University of Georgia 
in 2000. His research interests are in credit risk modeling 
and mutual fund performance. His email is <pna@ 
bayernlbny.com>.  

mailto:tarja.joro@�ualberta.ca
mailto:tarja.joro@�ualberta.ca
http://www.bus.ualber�ta.ca/tjoro
http://www.bus.ualber�ta.ca/tjoro
mailto:pna@�bayernlbny.com
mailto:pna@�bayernlbny.com
mailto:tarja.joro@ualberta.ca
mailto:tarja.joro@ualberta.ca
http://www.bus.ualberta.ca/tjoro
http://www.bus.ualberta.ca/tjoro
mailto:pna@bayernlbny.com
mailto:pna@bayernlbny.com

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 360
	02: 361
	03: 362
	04: 363


