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ABSTRACT

We develop an automated wavelet-based spectral meth
for constructing an approximate confidence interval on th
steady-state mean of a simulation output process. This pr
cedure, calledWASSP, determines a batch size and a warm-
up period beyond which the computed batch means form
an approximately stationary Gaussian process. Based
the log-smoothed-periodogram of the batch means,WASSP

uses wavelets to estimate the batch means log-spectrum a
ultimately the steady-state variance constant (SSVC) of th
original (unbatched) process.WASSP combines the SSVC
estimator with the grand average of the batch means in
sequential procedure for constructing a confidence-interv
estimator of the steady-state mean that satisfies user-specifi
requirements on absolute or relative precision as well a
coverage probability. An extensive performance evaluatio
provides evidence ofWASSP’s robustness in comparison
with some other output analysis methods.

1 INTRODUCTION

In a nonterminating simulation, we are interested in long
run (steady-state) average performance measures. L
{Xi : i = 1, 2, . . .} denote a stochastic process representin
the sequence of outputs generated by a single run of a no
terminating probabilistic simulation. If the simulation is in
steady-state operation, then the random variables{Xi } will
have the same steady-state cumulative distribution functio
(c.d.f.) FX(x) = Pr{Xi ≤ x} for i = 1, 2, . . . , and for all
real x.

Usually in a nonterminating simulation, we are inter-
ested in constructing point and confidence interval (CI
estimators for some parameter of the steady-state c.d
FX(x). In this work, we are primarily interested in estimat-
ing the steady-state mean,µX = E[X] = ∫∞

−∞ x d FX(x);
and we limit the discussion to output processes for whic
E[X2

i ] <∞ so that the process meanµX and process vari-
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X = Var[Xi ] = E[(Xi −µX)2] are well defined. We

let n denote the length of the time series{Xi } of outputs
generated by a single, long run of the simulation.

The sample mean,X = 1
n

∑n
i=1 Xi , is an intuitively

appealing point estimate ofµX. Furthermore, if{Xi } is
weakly stationary, then the covariance of the process at la
l is γX (l ) = E[(Xi − µX)(Xi+l − µX)] for all i ≥ 1 and
l = 0,±1,±2, . . .; and the steady-state variance constan
(SSVC) of the process is

γX =
∑∞

l=−∞ γX (l ). (1)

If
∑∞

l=−∞ |γX (l )| <∞ andn is sufficiently large, then the
variance ofX can be approximated by Var[X] ≈ γX/n;
and for 0< β < 1, an asymptotically valid 100(1− β)%
CI for µX is given byX ± z1−β/2

√
γX/n, wherez1−β/2 is

the 1− β/2 quantile of the standard normal distribution.
At the frequencyω expressed in cycles per time unit,

the power spectrumpX(ω) of the output process{Xi :
i = 1, 2, . . . , n} is defined as the cosine transform of the
covariance functionγX (l ),

pX(ω) =∑∞l=−∞ γX (l ) cos(2πωl ) for − 1
2 ≤ ω ≤ 1

2 (2)

(Heidelberger and Welch 1981). At frequencies of the
form l

n for l = 0, 1, . . . , n− 1, an asymptotically unbiased
estimate of the spectrumpX

( l
n

)
is given by the periodogram,

I
( l

n

) = 1

n

{[∑n
j=1 X j cos

(
2π( j−1)l

n

) ]2

(3)

+
[∑n

j=1 X j sin
(

2π( j−1)l
n

) ]2}
= |(FX)l |2

/
n for l = 0, 1, . . . , n− 1,

whereFX is the fast Fourier transform of the simulation-
generated time seriesX = {X1, . . . , Xn}. Letting {χ2

l (2) :
l = 1, 2, . . .} denote independent and identically distributed
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(i.i.d.) chi-square random variates each with two degree
of freedom, we see the periodogram has the followin
asymptotic properties for largen:

E
[
I
( l

n

)] ≈ pX
( l

n

)
, if 0 < l < n

2 ,

Var
[
I
( l

n

)] ≈ p2
X

( l
n

)
, if 0 < l < n

2 ,

I
( l

n

)
, I
( j

n

)
independent if 0< l 6= j < n

2,

I
( l

n

) ·∼ pX
( l

n

)
χ2

l (2)/2, if 0 < l < n
2


. (4)

Instead of working in the time domain with the original
output process{Xi }, we are able to work in the frequency
domain if we exploit a spectral analysis approach to stead
state simulation output analysis. Atω = 0, we have

pX(0) = γX =
∞∑

l=−∞
γX (l ); (5)

and consequently the goal of any spectral analysis meth
is to estimatepX(0) from the values of the periodogram in
a neighborhood of zero frequency.

In this paper we develop an automated wavelet-base
spectral method for constructing an approximate CI on th
steady-state meanµX of a simulation output process{Xi }.
This procedure, calledWASSP, uses wavelets to obtain an
estimator̂γX of γX ; and thenWASSP combineŝγX with a
version of the overall sample meanX that has been suitably
truncated if necessary to eliminate initialization bias so a
to deliver an approximate 100(1− β)% CI of the form

X ± t1−β/2,ν

√
γ̂X/n, (6)

where ν is the “effective” degrees of freedom associated
with γ̂X and t1−β/2,ν is the 1− β/2 quantile of Student’s
t-distribution with ν degrees of freedom.WASSP is a
sequential procedure and may request additional data ite
atively before it delivers a final CI of the form (6) that has
approximate coverage probability 1− β and that satisfies a
user-specified absolute or relative precision requirement.

The rest of this paper is organized as follows. A brie
overview of WASSP is given in §2; and the major steps
of WASSP are elaborated in §§2.1–2.4. Some results from
our performance evaluation ofWASSP are presented in
§3. Finally in §4 we summarize the main findings of this
research. Lada (2003) provides a complete development
the results summarized in this paper.

2 OVERVIEW OF WASSP

WASSP requires the following user-supplied inputs:
• a simulation-generated output process{Xi : i =

1, . . . , n} from which the steady-state expected
responseµX is to be estimated;
-

f

• the desired CI coverage probability 1− β, where
0 < β < 1; and

• an absolute or relative precision requirement spec
ifying the final CI half-length in terms of (a) a
maximum acceptable half-lengthh∗, or (b) a max-
imum acceptable fractionr ∗ of the magnitude of
the midpoint of the final CI.

WASSP delivers the following outputs:
• a nominal 100(1− β)% CI for µX that satisfies

the specified precision requirement, provided n
additional data are required; or

• a new, larger sample sizen to be supplied toWASSP

when it is executed again.
Figure1 depicts a high-level flowchart of the operation

of WASSP. The algorithm begins by dividing the initial
simulation-generated output process into a fixed number
batches of uniform size. Batch means are computed for a
batches, and a randomness test is applied to the set of ba
means. The randomness test serves two purposes:

• It is used to construct a set of spaced batch mea
such that the interbatch spacer preceding each bat
is sufficiently large to ensure all computed batch
means are approximately i.i.d. so that subsequent
the batch means can be tested for normality.

• It is used to determine an appropriate data
truncation point—that is, the interbatch spacer pre
ceding the first batch—beyond which all computed
batch means are approximately independent of th
simulation model’s initial conditions.

Once the randomness test is passed, the set of appr
imately i.i.d. spaced batch means is tested for normalit
Each time the normality test is failed, the following steps
are executed: (a) the batch size is increased; (b) a new set of
spaced batch means is computed using the final spacer s
determined by the randomness test; and (c) the normality
test is repeated for the new set of spaced batch means.

Once the normality test is passed, all simulation
generated data beyond the warm-up period are used
compute adjacent (nonspaced) batch means of the ba
size determined by the normality test; then the periodogra
of the approximately normal batch means is computed an
smoothed by taking a moving average ofA points on the
periodogram of the batch means.WASSP allows the user
to specify the value ofA in the set{5, 7, 9, 11}, with the
default taken asA = 7.

To obtain an estimator of the SSVC of the origina
(unbatched) process, we compute a wavelet-based estima
of the batch means log-spectrum by taking the discre
wavelet transform of the log of the smoothed periodogram
of the batch means over the frequency range

(−1
2, 1

2

)
. The

estimated wavelet coefficients are thresholded using a varia
of the thresholding algorithm of Gao (1997). From the
thresholded wavelet approximation to the log-spectrum o
the batch means, we compute an estimate of the spectr
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Figure 1: High-Level Flowchart ofWASSP
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of the original (unbatched) process at zero frequency (tha
is, the SSVC); and finally we compute a CI of the form (6),
where the midpoint of the CI is the grand average of all the
adjacent (nonspaced) batch means that are computed af
skipping the initial spacer.

The CI (6) is then tested to determine if it satisfies a
user-specified absolute or relative precision requirement.
the precision requirement is satisfied, thenWASSP delivers
the latest CI and terminates. Otherwise, the following step
are executed:

a) The total required sample size is estimated; an
on the assumption that the current batch size i
maintained, the estimated batch count is expresse
as the largest power of two yielding a total delivered
sample size not exceeding the required sample siz

b) If the estimated batch count exceeds 4,096, the
the batch count is reduced to 4,096. Given the
batch count, we adjust the batch size if necessar
so that the total delivered sample size is not les
than the total required sample size.

c) The required additional observations are obtaine
(by restarting the simulation if necessary); and the
batch means are recomputed using the latest batc
size after skipping the initial spacer.

d) The log of the smoothed periodogram for the new
set of batch means is computed.

e) A new estimate of the SSVC is obtained from a
wavelet-based estimate of the log of the smoothe
periodogram for the latest set of batch means.

f ) The CI (6) is recomputed and the precision re-
quirement (stopping condition) is retested.
t

er

.

Note that if the CI (6) in step f ) above fails to satisfy the
precision requirement, then it is not necessary to repeat
independence test or the normality test; instead stepsa)–f )
are repeated until the precision requirement is satisfied.

2.1 Eliminating Initialization Bias

WASSP begins by dividing the initial sample{Xi : i =
1, . . . , n} into k = 256 batches of sizem= 16. Let

X j = X j (m) = 1

m

mj∑
i=m( j−1)+1

Xi (7)

denote thej th batch mean forj = 1, . . . , k; and let

X(m, k) = 1

k

k∑
j=1

X j (m) (8)

denote the grand average of thek batch means.
The von Neumann test for randomness is applied to t

batch means
{
X1(m), . . . , Xk(m)

}
by computing the ratio

of the mean square successive difference of the batch me
to the sample variance of the batch means; see von Neum
(1941). At the level of significanceαind = 0.2, we test
the null hypothesis of independent, identically distribute
batch means,

Hind :
{
X j (m) : j = 1, . . . , k

}
are i.i.d., (9)
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by computing the test statistic,

Ck = 1−
∑k−1

j=1

[
X j (m)− X j+1(m)

]2
2
∑k

i=1

[
Xi (m)− X(m, k)

]2 , (10)

which is a relocated and rescaled version of the ratio o
the mean square successive difference to the variance
the batch means. SinceWASSP’s test for randomness
always involves at least 25 batch means, we use a norm
approximation to the null distribution of the test statistic
(10). If

|Ck| ≤ z1−αind/2

√
k− 2

k2− 1
, (11)

then the hypothesis (9) is accepted; otherwise the hypothesis
(9) is rejected so thatWASSP must increase the spacer size
before retesting (9). Through extensive experimentation,
we found that settingαind = 0.2 works well in practice and
provides an effective balance between errors of type I an
II in testing the hypothesis (9).

If the k = 256 adjacent batch means defined by (7)
pass the randomness test (9)–(12) at the level of significance
αind, then we set the number of batch means retained f
the normality test according tok′ ← 256; and we proceed
to perform the normality test as detailed in §2.2 below.
On the other hand, if thek = 256 batch means fail the
test for randomness, then we insertspacersconsisting of
one ignored batch between thek′ ← 128 remaining batch
means that are to be retested for randomness; and thus
initial spacer size isS ← m observations. That is, every
other batch mean, beginning with the second batch mea
is retained and the alternate batch means are ignored.

Thek′ = 128 remaining spaced batch means
{
X2(m),

X4(m), . . . , X256(m)
}

are retested for randomness. If the
randomness retest is passed, then we proceed to perform
normality test in §2.2with the current value ofk′; otherwise
we add another ignored batch to each spacer so that t
spacer size and number of remaining batches are upda
according to

S← S+m and k′ ←
⌊

n

m+ S

⌋
. (12)

Thus we now havek′ = 85 remaining spaced batch means{
X3(m), X6(m), . . . , X255(m)

}
; and again the remaining

batch means are retested for randomness. This process
continued until one of the following conditions occurs: (a)
the randomness test is passed; or (b) the randomness test
is failed and in the update step (12), the batch countk′
drops below the lower limit of 25 batches. If condition (a)
occurs, then we proceed to the normality test in §2.2 with
f
of

al

d

r

he

,

he

e
d

is

the current value ofk′. On the other hand if condition (b)
occurs, then the batch sizem is increased according to

m←
⌊√

2m
⌋
; (13)

the initial sample{Xi : i = 1, . . . , n} is rebatched into
k← 256 adjacent (nonspaced) batches of sizem; and the
k batch means are recomputed. Ifn < km, then more data
must be collected andn must be updated before the adjacen
(nonspaced) batch means can be recomputed and retes
for randomness.

The process of testing for randomness is repeate
starting with thek = 256 recomputed adjacent (nonspaced
batch means of the current batch sizem. If the randomness
test is passed, then we setk′ ← k and proceed to the
normality test in §2.2; otherwise the steps outlined in the
two immediately preceding paragraphs are repeated. On
the randomness test is passed, there will be a set ofk′
approximately i.i.d. batch means, where 25≤ k′ ≤ 256.
At this point, the spacer sizeS is finalized; and the first
S observations{X1, . . . , XS} will henceforth be regarded
as the warm-up period to be ignored in all subsequen
calculations.

2.2 Testing Batch Means for Normality

Because the Shapiro-Wilk test for normality (Shapiro and
Wilk 1965) requires a data set consisting of i.i.d. observa
tions, we apply this test to thek′ batch means that were
retained after passing the preceding test for randomness.
assess the normality of the sample

{
X1(m), . . . , Xk′(m)

}
, we

start by sorting the observations in ascending order to obta
the order statisticsX(1)(m) ≤ X(2)(m) ≤ · · · ≤ X(k′)(m).
The Shapiro-Wilk test statistic is then computed as follows

W =
{∑bk′/2c

l=1 δk′−l+1
[

X(k′−l+1)(m)− X(l)(m)
]}2

∑k′
l=1

[
Xl (m)− X(m, k)

]2 , (14)

where the coefficients{δk′−l+1 : l = 1, . . . , bk′/2c} are
tabulated in Shapiro and Wilk (1965). The test statistic
W is then compared to the appropriate lower 100αnor%
critical valuewαnor of the distribution ofW under the null
hypothesis of i.i.d. normal batch means,

Hnor :
{
X j (m) : j = 1, . . . , k′

} i.i.d.∼ N
[
µX, σ 2

X̄(m)

]
. (15)

If W ≤ wαnor, then at the level of significanceαnor we
reject the hypothesisHnor that the retained batch means{
X j (m) : j = 1, . . . , k′

}
are i.i.d. normal.

For the first iteration of the normality test, the iteration
counter is set toi ← 1 and the level of significance for the
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Shapiro-Wilk test isαnor(1)← 0.05. In general if on the
i th iteration of the normality test (14)–(15) the hypothesis
(15) is accepted at the level of significanceαnor(i ), then we
proceed to estimate the SSVC as outlined in §2.3; otherwise,
we perform the following steps:

a) The iteration counteri is increased,i ← i + 1,
and the batch sizem is increased,m← ⌊√

2m
⌋
.

b) The overall data set{X1, . . . , Xn} is redivided into
k′ batches of sizem so that each batch of size
m is separated byS observations, where the final
spacer sizeS was fixed in the preceding test for ran-
domness; and if necessary, additional simulation
generated data is collected to allow computatio
of k′ spaced batch means with the new batch siz
m and the fixed spacer sizeS.

c) The spaced batch means
{
X j (m) : j = 1, . . . , k′

}
are recomputed.

d) The level of significanceαnor(i ) for the current
iteration i of the Shapiro-Wilk test is set as

αnor(i ) ← αnor(1) exp
[
−τ (i − 1)2

]
(16)

for i = 1, 2, . . . , whereτ = 0.184206.
e) The k′ spaced batch means

{
X j (m) : j = 1,

. . . , k′
}

are retested for normality at the level of
significanceαnor(i ).

If the normality hypothesis (15) is rejected in stepe), then
stepsa)–e) above are repeated until the hypothesis is finall
accepted so that we can proceed to estimating the SSV
as outlined in §2.3.

2.3 Estimating the SSVC via a Wavelet-Based
Spectral Method

Once the normality test is passed, independence of t
batch means is no longer required. Therefore, the fir
spacer consisting of the observations{X1, X2, . . . , XS} is
skipped (to eliminate initialization bias), and the remaining
n′ = n − S observations are rebatched intok adjacent
(nonspaced) batches of sizem. To construct the wavelet-
based estimate of the log-spectrum of the batch means in
neighborhood of zero frequency, we see that the number
points in the log-periodogram (that is, the number of batc
meansk) must be a power of two. Therefore,k is set to
the largest power of two less than or equal ton′/m,

k = 2blog2(n
′/m)c, (17)

wherem is the final batch size required for the batch mean
to pass the normality test. Forj = 1, . . . , k, the j th
adjacent (nonspaced) batch meanX j (m) is computed. The
next step inWASSP is to do the following: (a) smooth the
periodogram of the batch means

{
X1(m), . . . , Xk(m)

}
by
e
t

a
f

computing a moving average with a sufficient number o
points on the batch means periodogram; and (b) apply the
logarithmic transformation to the smoothed periodogram
the batch means so as to obtain a reasonably stable estim
of the batch means log-spectrum.

2.3.1 Computing the Log-Smoothed-Periodogram
of the Batch Means

The periodogram of the batch means process is computed
taking the fast Fourier transform of the adjacent (nonspace
batch meansX = {X1(m), . . . , Xk(m)

}
,

(FX)l =
k∑

j=1

X j (m) exp
[
−2π(

√−1)( j − 1)l/k
]

for l = 1, 2, . . . , k − 1. (18)

Since we will be interested in obtaining an estimate of th
log-spectrum of the batch means in a neighborhood of ze
frequencyusing the values of the log-smoothed-periodogra
of the batch means in a neighborhood of zero, we will use
full set of points of the periodogram on both sides of zero
The periodogram is symmetric about the origin, so that fo
l = 1, 2, . . . , k

2 − 1,

I X̄(m)

( l
k

) = I X̄(m)

(− l
k

) = ∣∣(FX)l
∣∣2/k. (19)

To compute the smoothed periodogram of the batc
means based on a moving average ofA= 2a+1 periodogram
values, we first must determine appropriate values for th
periodogram atl = 0 andl = k

2. Using the definition (19),
we see that the value of the periodogram atl = 0 is simply a
scaled sum of the batch means and provides no informati
about the spectrum of the batch means at zero frequen
As an alternative, we take the value of the periodogram
l = 0 as follows,

I X̄(m)(0) ≡ 1

a

a∑
l=1

I X̄(m)

( l
k

)
. (20)

Moreover, we assume that forl 6= 0 and fora sufficiently
small relative tok, the periodogram values

{
I X̄(m)

( l+u
k

) :
u = 0,±1, . . . ,±a

}
have expected values approximately

equal topX̄(m)

( l
k

)
.

By the same reasoning that led to (20), we make the
following definition of the periodogram at frequency1

2:

I X̄(m)

(1
2

) ≡ 1

a

a∑
l=1

I X̄(m)

( {k/2}−l
k

)
. (21)
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We define the periodogram at frequency1
2 for the sole

purpose of facilitating wavelet-based estimation of the log
spectrum of the batch means, as described in Section2.3.2
below.

We see that forl = 1, 2, . . . ,
( k

2 − 1
)
,

I X̄(m)

( {k/2}+l
k

)
= I X̄(m)

( {k/2}−l
k

)
; (22)

and therefore for the frequency index set defined by

Gk ≡
{
0,±1, . . . ,± ( k

2 − 1
)
, k

2

}
, (23)

the smoothed periodogram of the batch means
{
Ĩ X̄(m)

( l
k

) :
l ∈ Gk

}
can be computed as a moving average ofA = 2a+1

points,

Ĩ X̄(m)

( l
k

) = 1

A

a∑
u=−a

I X̄(m)

( l+u
k

)
for l ∈ Gk. (24)

WASSP allows the user to select the value of the smoothin
parameterA from the set of values{5, 7, 9, 11}. We selected
A = 7 as the default since we found through extensiv
experimentation that settingA = 7 works well for a variety
of types of simulation applications.

The natural log of the smoothed periodogram of the
batch means,

L̃X̄(m)

( l
k

) ≡ ln
[

Ĩ X̄(m)

( l
k

) ]
for l ∈ Gk, (25)

is used as an estimator of the log-spectrum of the corr
sponding batch means process,

ζX̄(m)(ω) ≡ ln
[

pX̄(m)(ω)
]

for ω ∈ [−1
2, 1

2

]
. (26)

However, upon applying the properties of the periodogra
in (4), we find that the expected value of our estimator (25)
is

E
{
ln
[
Ĩ X̄(m)

( l
k

)]}
(27)

≈ E

{
ln

[ a∑
u=−a

pX̄(m)

( l
k

)
wu

χ2
u(2)

2

]}

= ζX̄(m)

( l
k

)+ E

{
ln

[
1

2

a∑
u=−a

wuχ2
u (2)

]}
,

where {χ2
u(2) : u = 0,±1, . . . ,±a} are i.i.d. chi-square

random variables with two degrees of freedom and th
{wu : u = 0,±1, . . . ,±a} are nonnegative deterministic
weights such that

∑a
u=−a wu = 1. Therefore, when we take

the log of the smoothed periodogram, bias is introduce
and must be removed.
Table1 shows the biasηl ≡ E
[
L̃X̄(m)

( l
k

) ]− ζX̄(m)

( l
k

)
at frequencyl

k , wherel ∈ Gk. For the “effective” degrees
of freedomν j that are inherent in the estimator̃LX̄(m)

( l
k

)
,

we use the following result,

ν#
j =

2a A2

4a2− 2aj + 4a− 2 j + 1
andν j =

⌊
ν#

j

⌋
. (28)

Note that in Table1, the digamma function9(z) is defined
in terms of the gamma function0(z) as follows,9(z) ≡
d
dz ln [ 0(z) ] = 0′(z)

0(z) for all z with Re(z) > 0. For a
complete derivation of the bias terms in Table1, see Lada
(2003).

Table 1: Biasηl ≡ E
[
L̃X̄(m)

( l
k

) ]−ζX̄(m)

( l
k

)
of the Log-

Smoothed-Periodogram at Frequencyl
k , Wherel ∈ Gk

Frequency Indexl Bias ηl

l = 0, k
2 9(a)− ln(a)

1 ≤ |l | ≤ a 9
(ν|l |

2

)
− ln

(ν|l |
2

)
a < |l | < k

2 − a 9(A)− ln(A)

k
2 − a ≤ |l | ≤ k

2 − 1 9
(νk/2−|l |

2

)
− ln

(νk/2−|l |
2

)
2.3.2 Using Wavelets to Estimate the Spectrum of the

Batch Means

The next step inWASSP is to expand
{
L̃X̄(m)

( l
k

) : l ∈ Gk
}

as a wavelet series to obtain a wavelet-based estimate
the log-spectrum of the batch means (26). To compute the
discrete wavelet transform (DWT) of the log-smoothed-per
iodogram (25) of the batch means, we must have a power o
two for the total number of points in (25) (Vidakovic 1999).
To obtain such a sample size, we include the endpoint
frequency1

2 as discussed in (21) above.
To compute the DWT of the batch means log-smooth

ed-periodogram (25) using k data points, we first correct
for the bias in each of the components of (25) so that we
can compute the DWT

W̃ = 2 L̃, (29)

where the vector̃L has elements
{
L̃X̄(m)

( l
k

)−ηl : l ∈ Gk
}
;

and the matrix2 defines the DWT associated with thes8
symmlet (Bruce and Gao 1996).

Since the total number of points in the bias-correcte
log of the smoothed periodogram of the batch means ha
the form k = 2J , we found in practice that an excellent
wavelet approximation to

{
L̃X̄(m)

( l
k

)− ηl : l ∈ Gk
}

can be
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obtained by setting the number of resolution levelsL in the
wavelet approximation as follows,

L ≡
⌊

J

2

⌋
=
⌊

log2(k)

2

⌋
; (30)

and the coarsest level of resolutionj0 is then given by
j0 = J − L. This will give a total of 2j0 coefficients at the
coarsest level of resolution.

After computing the DWT of the bias-corrected log-
smoothed-periodogram of the batch meansL̃ as given
by (29), we threshold the resulting wavelet coefficient{
d̂ j ,l : j = j0, . . . , J − 1; l = 0, . . . , 2 j − 1

}
using Gao’s

(1997) thresholding scheme with the soft threshold

λ j = max

[
π√
6k

√
2 ln(k), 2−(J− j−1)/4 ln(2k)

]
(31)

on the magnitude of the retained wavelet coefficients at lev
j for j = j0, . . . , J−1 to obtain the coefficients

{
d̂∗j ,l

}
. The

empirical scaling coefficients
{̂
cj0,l : l = 0, . . . , 2 j0 − 1

}
are

not thresholded since it is presumed they contain informatio
about the coarse features of the log-spectrum of the bat
means.

The next step is to compute the inverse DWT,

L̃
∗ = 2TW̃∗, (32)

whereW̃
∗

is the vector containing the scaling coefficients{̂
cj0,l : l = 0, . . . , 2 j0 − 1

}
and thresholded wavelet coeffi-

cients
{
d̂∗j ,l : j = j0, . . . , J − 1; l = 0, . . . , 2 j − 1

}
. Thus

(32) yields the thresholded wavelet approximation

L̃
∗ = [

L̃∗1, . . . , L̃∗k
]T

=
[
L̃∗̄

X(m)

(
−( k

2 − 1)

k

)
, . . . , L̃∗̄

X(m)

( 1
2

)]T

to the vector̃L of the bias-corrected log of the smoothed
periodogram of the batch means. Therefore, our wavele
based estimate of the log-spectrum of the batch means

ζ̂X̄(m)

( l
k

) = L̃∗̄
X(m)

( l
k

)
for l ∈ Gk. (33)

The wavelet-based estimate of the spectrum of the bat
means process can now be computed from (33) as

p̂X̄(m)

( l
k

) = exp
[̂
ζX̄(m)

( l
k

)]
for l ∈ Gk; (34)

and a wavelet-based estimate of the SSVC for the origin
(unbatched) process is recovered from (34) as follows:

γ̂X = m · p̂X̄(m)(0). (35)
l

h

-
s

h

l

An approximate 100(1− β)% confidence interval forµX

is then given by

X(m, k)± t1−β/2,2a

√
γ̂X

n′
, (36)

wheren′ = mk and X(m, k) is the grand average of thek
batch means

{
X1(m), . . . , Xk(m)

}
.

2.4 Fulfilling the Precision Requirement

The half-length of the CI (36) is given by

H = t1−β/2,2a

√
γ̂X

n′
= t1−β/2,2a

√
p̂X̄(m)(0)

k
.

If the CI (36) satisfies the precision requirement

H ≤ H ∗, (37)

whereH ∗ is given by

H ∗ =


∞, for no prec. reqmt.,

r ∗|X(m, k)|, for rel. prec. levelr ∗,

h∗, for abs. prec. levelh∗,

(38)

thenWASSP terminates and the CI (36) is delivered.
If the precision requirement (37) is not satisfied, then

the total number of batches required to satisfy the precisi
requirement is computed as follows,

k∗ ←
⌈(

H

H ∗

)2

k

⌉
;

and thus the total sample size required to meet the precis
requirement isk∗m. However, since the number of batche
must be a power of two, the batch countk is set for the
next iteration ofWASSP as follows:

k← min
{
2blog2(k

∗)c, 4096
}

, (39)

where 4,096 is the upper bound on the number of bat
means used inWASSP.

The new batch sizem for the next iteration ofWASSP

is assigned according to

m←
⌈(

k∗

k

)
m

⌉
, (40)

so that the total sample sizen is increased approximately
by a factor of(H/H ∗)2.
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On the next iteration ofWASSP, the total sample size
including the warm-up period is thus given byn← km+S,
where the corresponding batch countk and batch sizem
are given by (39) and (40), respectively. The additional
simulation-generated observations are obtained by restar
the simulation or by retrieving the extra data from storag
and then the next iteration ofWASSP is performed.

3 PERFORMANCE EVALUATION OF WASSP

Lada (2003) details an extensive performance evaluat
of WASSP. In this section we summarize the results o
applyingWASSP to theM/M/1 queue waiting time process
HereXi is the waiting time for thei th customer in a single-
server queueing system with i.i.d. exponential interarriv
times having mean 10/9, i.i.d. exponential service tim
having mean 1, a steady-state server utilization of 90%, a
an empty-and-idle initial condition. The steady-state me
waiting time isµX = 9.0.

The M/M/1 queue waiting time process with 90%
server utilization and empty-and-idle initial condition is
particularly difficult test process for the following reasons
(a) the initial transient is pronounced and persists over
extended period of time; (b) the correlation function decays
slowly with increasing lags once the system has reach
steady-state operation; (c) the marginal distribution of wait-
ing times is markedly nonnormal; and (d) the spectrum of
the batch means process,pX̄(m)(ω), is sharply peaked in the
neighborhoodof zero frequency. This test process will allo
thorough evaluation of the robustness ofWASSP’s procedure
for eliminating initialization bias as well the robustness o
WASSP’s wavelet-based technique for estimating the SSV
of the original waiting time process{Xi }.

The parameters used to evaluate the performance
WASSP are the coverage probability of its CIs, the mea
and half-length of its CIs, and the total required samp
size. We performed independent replications ofWASSP to
construct nominal 90% CIs that satisfy a specified precisi
requirement. The following three precision requiremen
were used:

• no precision—that is, we seth∗ = ∞ in (37)
and (38) so WASSP delivers the CI (6) using the
batch count and batch size required to pass t
randomness and normality tests;

• ±15% precision—that is,WASSP delivers the CI
(6) satisfying the relative precision requiremen
given by (37) and (38) with r ∗ = 0.15; and

• ±7.5% precision—that is,WASSP delivers the CI
(6) satisfying the relative precision requiremen
given by (37) and (38) with r ∗ = 0.075.

For the sake of comparison, we also applied ASAP
(Steiger et al. 2002) and Heidelberger and Welch’s spect
method (Heidelberger and Welch 1981a, 1981b, 1983)
the sameM/M/1 queue waiting time process. To make
g

d

d

f

l

fair comparison of the performance ofWASSP with that of
Heidelberger and Welch’s sequential spectral method, w
first appliedWASSP to a realization of a particular process
so as to obtain not only the correspondingWASSP-based
CI but also a complete data set to which we may app
the Heidelberger-Welch procedure. In particular on eac
replication ofWASSP and Heidelberger and Welch’s proce-
dure for the±15% and the±7.5% precision cases, we set
the maximum run lengthtmax for Heidelberger and Welch’s
method to the final sample size required byWASSP for that
replication. For the no precision case, we applied the He
delberger and Welch method to the first 4,096 observatio
of the data set used byWASSP for each replication.

Based on all our computational experience withWASSP,
we believe that the results given below are typical of the pe
formance ofWASSP in many practical applications. Since
each CI with a nominal coverage probability of 90% was
replicated 1,000 times forWASSP and Heidelberger and
Welch’s method, the standard error of each coverage es
mator is approximately 0.95%. The coverage probabilitie
for ASAP2 have a standard error of approximately 1.5%
since only 400 replications of ASAP2 were performed.

As can be seen from Table2, WASSP outperforms
Heidelberger and Welch’s method with respect to CI cove
age for all three precision requirements. Furthermore, sin
Heidelberger and Welch’s method terminates oncetmax is
reached, it is possible that the Heidelberger and Welch alg
rithm could run out of data before the precision requiremen
is satisfied. Of the 1,000 CIs delivered by Heidelberger an
Welch’s method, only 767 actually satisfied the precisio
requirement for the±15% precision level and only 673
satisfied the precision requirement for the±7.5% precision
level.

From Table2 it is also evident that the variance of the CI
half-length is markedly higher for ASAP2 than forWASSP

in the no precision case. This suggests thatWASSP produces
much more stable CIs than ASAP2 in the no precision cas
Once a precision requirement is imposed, ASAP2 produc
CIs that exhibit the same stability as the CIs produce
by WASSP, as can be seen from the variance of the C
half-length for the±15% and±7.5% precision cases.

4 CONCLUSIONS

WASSP is a completely automated wavelet-based spectr
procedure for constructing an approximate confidence inte
val for the steady-state mean of a simulation output proces
Our extensive performance evaluation ofWASSP indicates
thatWASSP outperforms Heidelberger and Welch’s method
and we believeWASSP represents an advance in spectra
methods for simulation output analysis. Furthermore, w
can conclude that whileWASSP and ASAP2 produce com-
parable results in some cases,WASSP is in general a more
robust procedure than ASAP2. In particular, in the absenc
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Table 2: Performance ofWASSP (Using A = 7), Heidel-
berger and Welch’s Spectral Method (H&W), and ASAP2
for the M/M/1 Queue Waiting Time Process with 90%
Server Utilization and Empty-and-Idle Initial Condition,
Where Results Are Based on Independent Replications
Nominal 90% CIs

Precision Performance Procedure
RequirementMeasure WASSP H&W ASAP2

# replications 1,000 1,000 400
CI coverage 83.2% 78.6% 88%

None Avg. sample size 12,956 4,096 22,554
Max. sample size 123,102 4,096 131,072
Avg. CI half-length 3.1776 4.0415 6.44
Var. CI half-length 2.5342 4.6892 167.0
# replications 1,000 1,000 400
CI coverage 83.6% 79.6% 90%

±15% Avg. sample size 88,782 65,282 93,374
Max. sample size 819,248 314,464 260,624
Avg. CI half-length 1.106 1.3154 1.18
Var. CI half-length 0.0368 0.3765 0.025
# replications 1,000 1,000 400
CI coverage 90.8% 84.1% 92%

±7.5% Avg. sample size 371,380 298,860 281,022
Max. sample size 1,871,936 1,216,420 796,076
Avg. CI half-length 0.5914 0.6852 0.630
Var. CI half-length 0.006 0.059 0.002

of a precision requirement, ASAP2-generated CIs can b
highly variable in their half-lengths. We are continuing the
experimental evaluation ofWASSP; and future develop-
ments concerningWASSP will be available on the website
<www.ie.ncsu.edu/jwilson> .
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