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ABSTRACT anceo? = Var[Xi] = E[(Xj — ux)?] are well defined. We

let n denote the length of the time seri€X;} of outputs
We develop an automated wavelet-based spectral methodgenerated by a single, Iong run of the simulation.
for constructing an approximate confidence interval on the The sample meanX = i Z, 1 Xi, is an intuitively
steady-state mean of a simulation output process. This pro- appealing point estimate qix Furthermore, if{X;} is
cedure, calledNass®, determines a batch size and a warm- weakly stationary, then the covariance of the process at lag
up period beyond which the computed batch means form | is y, (1) = E[(Xj — ux)(Xit1 — ux)] for all i > 1 and

an approximately stationary Gaussian process. Based onl = 0,+1, +2,...; and the steady-state variance constant
the log-smoothed-periodogram of the batch measags» (SSVC) of the process is

uses wavelets to estimate the batch means log-spectrum and

ultimately the steady-state variance constant (SSVC) of the Yx = 2im—oo ¥x (- (1)

original (unbatched) proces3¥ass® combines the SSVC

estimator with the grand average of the batch means in a If 2= ., |¥x ()| < oo andn is sufficiently large, then the
sequential procedure for constructing a confidence-interval variance of X can be approximated by Va¢] ~ VAL
estimator of the steady-state mean that satisfies user-specifiecand for 0< g < 1, an asymptotically valid 10Q — 8)%
requirements on absolute or relative precision as well as CI for ux is given byX +z1_g/2, /v, /n, wherezy_g» is
coverage probability. An extensive performance evaluation the 1— /2 quantile of the standard normal distribution.

provides evidence oWWAS8S?’s robustness in comparison At the frequencyw expressed in cycles per time unit,
with some other output analysis methods. the power spectrunpx(w) of the output proces$X; :

i =1,2,...,n} is defined as the cosine transform of the
1 INTRODUCTION covariance functiory, (1),

NI

2

—~
Sl—
N—

run (steady-state) average performance measures. Let -
terminating probabilistic simulation. If the simulation is in estlmate ofthe spectrum(('ﬁ) is given by the periodogram,
(c.d.f) Fx(x) = Pr{X; < x} fori =1,2,..., and for all |
ested in constructing point and confidence interval (Cl)
|(FXnl?/n for 1 =0,1,...,n—1,
ing the steady-state meanyx = E[X] = ffooox dFx(x);

In a nonterminating simulation, we are interested in long- Px(@) = 312 _ vx () cos2rwl) for — 3 <w <
{Xi :i =1,2,...} denote a stochastic process representing (Heldelberger and Welch 1981). At frequencies of the
the sequence of outputs generated by a single run of a non-form L for| = 0,1, —1, an asymptotically unbiased
steady-state operation, then the random variapte$ will
have the same steady-state cumulative distribution function 1 | 2 (D) 2
EH:ZJ-:]_XJ' cos(in )} 3)

real X. 5

Usually in a nonterminating simulation, we are inter- + [ZT X Sin(zn(jn—m)} }
estimators for some parameter of the steady-state c.d.f.
Fx (x). In this work, we are primarily interested in estimat-
and we limit the discussion to output processes for which whereJF X is the fast Fourier transform of the simulation-
E[Xiz] < 00 S0 that the process meary and process vari-

generated time series = {X1, ..., Xp}. Letting {X|2(2) :
| =1,2,...} denote independent and identically distributed
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(i.i.d.) chi-square random variates each with two degrees
of freedom, we see the periodogram has the following
asymptotic properties for large

E[1(5)]~ px(§) o<l <1,
Varll ()]~ pk(5),  ifo<I<3, “
I(5). 1(}) independent if 0<1 5 j <3,

n

I))(|2(2)/2, ifo<l <3

[
(5 n

Instead of working in the time domain with the original
output proces$X;}, we are able to work in the frequency
domain if we exploit a spectral analysis approach to steady-
state simulation output analysis. At= 0, we have

)~ px(

PxO) =y = Y vy (5)

|=—00

and consequently the goal of any spectral analysis method
is to estimatepx (0) from the values of the periodogram in
a neighborhood of zero frequency.

In this paper we develop an automated wavelet-based
spectral method for constructing an approximate CI on the
steady-state meamy of a simulation output procegs;}.

This procedure, calledVass®, uses wavelets to obtain an
estimatory, of y, ; and thenWAss» combinesy, with a
version of the overall sample me&nthat has been suitably
truncated if necessary to eliminate initialization bias so as
to deliver an approximate 100— 8)% CI of the form

X E£tig/20 VIx/Ns

wherev is the “effective” degrees of freedom associated
with yy andty g2, is the 1— /2 quantile of Student's
t-distribution with v degrees of freedom. WAass® is a
sequential procedure and may request additional data iter-
atively before it delivers a final Cl of the forn6) that has
approximate coverage probability-18 and that satisfies a
user-specified absolute or relative precision requirement.

The rest of this paper is organized as follows. A brief
overview of WAsSs? is given in 82; and the major steps
of WASsP are elaborated in 81-2.4 Some results from
our performance evaluation oWAS8SP are presented in
83. Finally in 8 we summarize the main findings of this
research. Lada (2003) provides a complete development of
the results summarized in this paper.

(6)

2 OVERVIEW OF Wass?

WAssP requires the following user-supplied inputs:
e a simulation-generated output procds§ : i =
1,...,n} from which the steady-state expected
responseauy is to be estimated,;
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e the desired Cl coverage probability-18, where
0<pB<1;and

e an absolute or relative precision requirement spec-
ifying the final CI half-length in terms ofa) a
maximum acceptable half-lengtfi, or (b) a max-
imum acceptable fraction* of the magnitude of
the midpoint of the final CI.

Wass? delivers the following outputs:

e anominal 1001 — 8)% CI for ux that satisfies
the specified precision requirement, provided no
additional data are required; or

e anew, larger sample singo be supplied tAVASsP
when it is executed again.

Figurel depicts a high-level flowchart of the operation

of Wass®?. The algorithm begins by dividing the initial
simulation-generated output process into a fixed number of
batches of uniform size. Batch means are computed for all
batches, and a randomness test is applied to the set of batch
means. The randomness test serves two purposes:

e ltis used to construct a set of spaced batch means
such that the interbatch spacer preceding each batch
is sufficiently large to ensure all computed batch
means are approximately i.i.d. so that subsequently
the batch means can be tested for normality.

e It is used to determine an appropriate data-
truncation point—that s, the interbatch spacer pre-
ceding the first batch—beyond which all computed
batch means are approximately independent of the
simulation model’s initial conditions.

Once the randomness test is passed, the set of approx-
imately i.i.d. spaced batch means is tested for normality.
Each time the normality test is failed, the following steps
are executed:a) the batch size is increased) & new set of
spaced batch means is computed using the final spacer size
determined by the randomness test; acdtiie normality
test is repeated for the new set of spaced batch means.

Once the normality test is passed, all simulation-
generated data beyond the warm-up period are used to
compute adjacent (nonspaced) batch means of the batch
size determined by the normality test; then the periodogram
of the approximately normal batch means is computed and
smoothed by taking a moving average Afpoints on the
periodogram of the batch mean¥vass? allows the user
to specify the value ofA in the set{5, 7, 9, 11}, with the
default taken aA = 7.

To obtain an estimator of the SSVC of the original
(unbatched) process, we compute a wavelet-based estimator
of the batch means log-spectrum by taking the discrete
wavelet transform of the log of the smoothed periodogram
of the batch means over the frequency rafigé, 3). The
estimated wavelet coefficients are thresholded using a variant
of the thresholding algorithm of Gao (1997). From the
thresholded wavelet approximation to the log-spectrum of
the batch means, we compute an estimate of the spectrum
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Figure 1: High-Level Flowchart oiNA8s?

of the original (unbatched) process at zero frequency (that Note that if the CI ) in stepf) above fails to satisfy the
is, the SSVC); and finally we compute a CI of the for@), ( precision requirement, then it is not necessary to repeat the
where the midpoint of the Cl is the grand average of all the independence test or the normality test; instead sig9
adjacent (nonspaced) batch means that are computed afterare repeated until the precision requirement is satisfied.
skipping the initial spacer.

The CI ) is then tested to determine if it satisfies a 2.1 Eliminating Initialization Bias
user-specified absolute or relative precision requirement. If

the precision requirement is satisfied, tiatss® delivers WASs?P begins by dividing the initial sampléX; : i =
the latest Cl and terminates. Otherwise, the following steps 1, ..., n} into k = 256 batches of sizen = 16. Let
are executed:
a) The total required sample size is estimated; and L 1 mj
on the assumption that the current batch size is Xj=Xjm = — YoX (7)
maintained, the estimated batch count is expressed i=m(j—D+1
as the largest power of two yielding a total delivered
sample size not exceeding the required sample size. denote thejth batch mean foj = 1,....k; and let

b) If the estimated batch count exceeds 4,096, then
the batch count is reduced to 4,096. Given the
batch count, we adjust the batch size if necessary
so that the total delivered sample size is not less
than the total required sample size.

¢) The required additional observations are obtained
(by restarting the simulation if necessary); and the
batch means are recomputed using the latest batch
size after skipping the initial spacer.

d) The log of the smoothed periodogram for the new
set of batch means is computed.

e) A new estimate of the SSVC is obtained from a
wavelet-based estimate of the log of the smoothed
periodogram for the latest set of batch means.

f) The CI @) is recomputed and the precision re-
quirement (stopping condition) is retested.

_ 1K
X(m, k) = 3 3" X;(m) (®)
i1

denote the grand average of thébatch means.

The von Neumann test for randomness is applied to the
batch meangX1(m), ..., Xk(m)} by computing the ratio
of the mean square successive difference of the batch means
to the sample variance of the batch means; see von Neumann
(1941). At the level of significanceing = 0.2, we test
the null hypothesis of independent, identically distributed
batch means,

Hind : {Yj (my:j=1, ...,k} are i.i.d, (9)
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by computing the test statistic,

LXK = Xjam |

Ck — — 5
2%, [Xi(m) —X(m, k)]

(10)

which is a relocated and rescaled version of the ratio of
the mean square successive difference to the variance of
the batch means. Sinc®ass?’s test for randomness
always involves at least 25 batch means, we use a normal
approximation to the null distribution of the test statistic
(10). If

k—2

o1 D

[Ckl < Z1-ging/2

then the hypothesi§) is accepted; otherwise the hypothesis
(9) is rejected so thaWassP must increase the spacer size
before retesting9). Through extensive experimentation,
we found that settinging = 0.2 works well in practice and
provides an effective balance between errors of type | and
Il in testing the hypothesis9}.

If the k = 256 adjacent batch means defined By (
pass the randomness te3)-{(12) at the level of significance
aind, then we set the number of batch means retained for
the normality test according t < 256; and we proceed
to perform the normality test as detailed 2.2 below.

On the other hand, if th& = 256 batch means fail the
test for randomness, then we insepacersconsisting of
one ignored batch between tke < 128 remaining batch

the current value ok’. On the other hand if conditiorb)

occurs, then the batch size is increased according to
m < Lx/émj ; (13)

the initial sample{X; : i = 1,...,n} is rebatched into

k < 256 adjacent (nonspaced) batches of sigzeand the

k batch means are recomputednl& km, then more data

must be collected amidmust be updated before the adjacent

(nonspaced) batch means can be recomputed and retested

for randomness.

The process of testing for randomness is repeated,
starting with thek = 256 recomputed adjacent (nonspaced)
batch means of the current batch sme If the randomness
test is passed, then we skt < k and proceed to the
normality test in 8.2 otherwise the steps outlined in the
two immediately preceding paragraphs are repeated. Once
the randomness test is passed, there will be a sé of
approximately i.i.d. batch means, where 25k’ < 256.

At this point, the spacer siz8 is finalized; and the first

8 observationg X1, ..., Xg} will henceforth be regarded
as the warm-up period to be ignored in all subsequent
calculations.

2.2 Testing Batch Means for Normality

Because the Shapiro-Wilk test for normality (Shapiro and
Wilk 1965) requires a data set consisting of i.i.d. observa-
tions, we apply this test to thi batch means that were
retained after passing the preceding test for randomness. To

means that are to be retested for randomness; and thus theassess the normality of the sampie (), . ..., Xie (M)}, we

initial spacer size i < m observations. That is, every
other batch mean, beginning with the second batch mean,
is retained and the alternate batch means are ignored.
Thek’ = 128 remaining spaced batch megdd&(m),
Xa(m), ..., Xose(m)} are retested for randomness. If the

randomness retest is passed, then we proceed to perform theywy =

normality test in 8.2with the current value df’; otherwise

we add another ignored batch to each spacer so that the
spacer size and number of remaining batches are updated
according to

Thus we now havé’ = 85 remaining spaced batch means
{Xa(m), Xe(m), ..., Xzs5(m)}; and again the remaining

S<S+m and K < | — (12)
m

+8

start by sorting the observations in ascending order to obtain
the order statistics{(;)(m) < Xy(m) < --- < Xy (M).
The Shapiro-Wilk test statistic is then computed as follows,

{

[K'/2]

— _ 2
2L s [ Xt m) = Xoy ]

K [Kim - Xan. ko]

. (14)

where the coefficient$d 141 : 1 = 1,...,|kK'/2]} are
tabulated in Shapiro and Wilk (1965). The test statistic
W is then compared to the appropriate lower &Q%
critical valuewy,,,, of the distribution ofW under the null
hypothesis of i.i.d. normal batch means,

Hoor: {Xjm): j =1,....K} = N[Mx,o§(m)]. (15)

batch means are retested for randomness. This process is

continued until one of the following conditions occurs) (
the randomness test is passed; lorthe randomness test
is failed and in the update sted3), the batch counk’
drops below the lower limit of 25 batches. If conditica) (
occurs, then we proceed to the normality test }128with

425

If W < wg,,, then at the level of significancenor we
reject the hypothesi8{yo; that the retained batch means
{Xjm):j=1,...,K} areiid. normal.

For the first iteration of the normality test, the iteration
counter is set td < 1 and the level of significance for the
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Shapiro-Wilk test isanor(1) < 0.05. In general if on the computing a moving average with a sufficient number of
ith iteration of the normality testlé)—(15) the hypothesis points on the batch means periodogram; andapply the

(15) is accepted at the level of significangg,(i ), then we logarithmic transformation to the smoothed periodogram of
proceed to estimate the SSVC as outlined2r38otherwise, the batch means so as to obtain a reasonably stable estimator
we perform the following steps: of the batch means log-spectrum.
a) The iteration counter is increasedj <« i + 1,
and the batch sizen is increasedm « Lﬁmj 2.3.1 Computing the Log-Smoothed-Periodogram
b) The overall data s€tX1, ..., Xp} is redivided into of the Batch Means

k' batches of sizem so that each batch of size

m is separated by observations, where the final  The periodogram of the batch means process is computed by
spacer siz&€ was fixed in the preceding test for ran-  taking the fast Fourier transform of the adjacent (nonspaced)
domness; and if necessary, additional simulation- batch means< = {X1(m), ..., Xx(m)},

generated data is collected to allow computation

of k spaced batch means with the new batch size . k
m and the fixed spacer siZ& (FX) = Z X (m) exp[—Zn(\/—_l)(j — 1)I/k]
¢) The spaced batch meafX;(m): j =1,...,k} j=1
are recomputed. for =1,2,...,k—1. (18)
d) The level of significancexno (i) for the current
iterationi of the Shapiro-Wilk test is set as Since we will be interested in obtaining an estimate of the
log-spectrum of the batch means in a neighborhood of zero
anor(i) < anor(l) exp[—t(i — 1)2] (16) frequency using the values of the log-smoothed-periodogram
of the batch means in a neighborhood of zero, we will use a
fori = 1,2, ..., wherer = 0.1842086. full set of points of the periodogram on both sides of zero.
e The k' spaced batch mean{s?,- m:j =1 The periodoglj(ram is symmetric about the origin, so that for
k/} are retested for normality at the level of l=%2...3-1
significanceonor(i). .,
If the normality hypothesisl®) is rejected in ste), then Ixam (k) = Tk (=) = | FXn [ /K. (19)

stepsa)—e) above are repeated until the hypothesis is finally
accepted so that we can proceed to estimating the SSVC To compute the smoothed periodogram of the batch

as outlined in 8.3 means based on amoving averagéef 2a+1 periodogram
values, we first must determine appropriate values for the
2.3 Estimating the SSVC via a Wavelet-Based periodogram at = 0 andl = k. Using the definition 19),
Spectral Method we see that the value of the periodograrmat0 is simply a

scaled sum of the batch means and provides no information
Once the normality test is passed, independence of the about the spectrum of the batch means at zero frequency.
batch means is no longer required. Therefore, the first As an alternative, we take the value of the periodogram at
spacer consisting of the observatiop¢;, Xo, ..., Xg} is | =0 as follows,
skipped (to eliminate initialization bias), and the remaining
n" = n— § observations are rebatched inkoadjacent 13 |
(nonspaced) batches of sime To construct the wavelet- @m0 = a Z '>’<(m)(R)~
based estimate of the log-spectrum of the batch means in a I=1
neighborhood of zero frequency, we see that the number of
points in the log-periodogram (that is, the number of batch
meansk) must be a power of two. Therefork,is set to

(20)

Moreover, we assume that for~ 0 and fora sufficiently
small relative tok, the periodogram valuefl g, (42) :

the largest power of two less than or equahtgm, u=0%+l.. .,Iia} have expected values approximately
equal topgm (k)-
K — 2Uogz(n’/m)J’ (17) By the same reasoning that led 0), we make the

following definition of the periodogram at frequenéy

wherem is the final batch size required for the batch means a

to pass the normality test. For = 1,...,k, the jth lo (;) — }Z ls ({k/Z}—I). 1)
adjacent (nonspaced) batch mé&nm) is computed. The X2/ = g ~ Xmy  k

next step iNWAss? is to do the following: &) smooth the a

periodogram of the batch meafX1(m), ..., Xk(m)} by
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We define the periodogram at frequenéyfor the sole
purpose of facilitating wavelet-based estimation of the log-
spectrum of the batch means, as described in Se2t@2
below.
We see that fot = 1,2, ..., (§ — 1),
) = |>‘<<m)<{k/i}

Is {k/2}+l I .
X(m) k ’

and therefore for the frequency index set defined by
k k
(z-1)-3}

the smoothed periodogram of the batch mefiRg, (i) :

| € gk} can be computed as a moving averagéef 2a+1
points,

(22)

Gk=1{0%1,.... & (23)

i

+

T forI € Gk.

Z I qm (

u——a

(24)

><T
XI

Wass? allows the user to select the value of the smoothing
parameteA from the set of valuet, 7, 9, 11}. We selected
A = 7 as the default since we found through extensive
experimentation that settingg = 7 works well for a variety
of types of simulation applications.

The natural log of the smoothed periodogram of the
batch means,

m) (k) = '”['NS((m)

is used as an estimator of the log-spectrum of the corre-
sponding batch means process,

Ly (1) ] for leGe,  (25)

However, upon applying the properties of the periodogram
in (4), we find that the expected value of our estima$) (

E{in[Txm (1]}
<] X pemtt 257]
E{ In[% Z wuxf(Z)“,

u=-a

(27)

= C)‘((m)(IR) +

where{x (2 :u=0,=+1,...,xa} are i.i.d. chi-square
random variables with two degrees of freedom and the
{wy : u=0,%41,...,+a} are nonnegative deterministic
weights such tha} ;,__, wy = 1. Therefore, when we take
the log of the smoothed periodogram, bias is introduced
and must be removed.
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Table1 shows the bias = E[Lg ) (k) ] = ¢xam (k)
at frequencyk, wherel € Gk. For the “effective” degrees

of freedomj that are inherent in the estimat8iy ., (£).
we use the following result,

u 2a A?
Vv, = " "
2aj+4a—-2)+1

andv;j = {uﬂ . (28)
Note that in Tablel, the digamma functiod (z) is defined
in terms of the gamma functiofi(z) as follows, ¥ (z) =

diz In[T(2)] = l;((zz) for all z with Re(z) > 0. For a

complete derivation of the bias terms in Talllesee Lada
(2003).

J 4a2 —

Table 1: Biasy = E[L g (k) ]—¢xm (k) Of the Log-
Smoothed-Periodogram at Frequed{qy\NhereI € Gk

Frequency Index Bias 7
=0 ¥(a) - In(@)
VI (20
l=lli=a w(z) 'n(2>
a<lll<&-a W(A) — In(A)

§-asilisf-1 w(MZ) (M)

2.3.2 Using Wavelets to Estimate the Spectrum of the
Batch Means

The next step iMWass? is to expand{ Ly i (k) 11 € Gk}

as a wavelet series to obtain a wavelet-based estimate of
the log-spectrum of the batch mea26), To compute the
discrete wavelet transform (DWT) of the log-smoothed-per-
iodogram @5) of the batch means, we must have a power of
two for the total number of points ir26) (Vidakovic 1999).

To obtain such a sample size, we include the endpoint at
frequency% as discussed in2@) above.

To compute the DWT of the batch means log-smooth-
ed-periodogram25) using k data points, we first correct
for the bias in each of the components @6 so that we
can compute the DWT

W=0e=%L, (29)
where the vecto£ has element§Cy . (k) — i :1 € Gk};
and the matrix® defines the DWT associated with th8
symmlet (Bruce and Gao 1996).

Since the total number of points in the bias-corrected
log of the smoothed periodogram of the batch means has
the formk = 27, we found in practice that an excellent
wavelet approximation t¢L ., (1) —m : 1 € Gk} can be
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obtained by setting the number of resolution levels the An approximate 10 — 8)% confidence interval fopx
wavelet approximation as follows, is then given by
L= \‘EJ = \\ 5 ; (30) X(M, K) £t1-p/22a+/ n—)/(, (36)

and the coarsest level of resolutigp is then given by
jo= J— L. This will give a total of 20 coefficients at the
coarsest level of resolution.

After computing the DWT of the bias-corrected log-
smoothed-periodogram of the batch meabsas given
by (29), we threshold the resulting wavelet coefficients
{diy:i=io....d—-L1=0,...,2) —1} using Gao’s
(1997) thresholding scheme with the soft threshold

H Vx Px(m) (0
. . =11-p/2,2a e t1-p/2,2a —k
Aj = max[—‘/ZIn(k), 2(311)/4In(2k)] (31)

Vek o . .
If the CI (36) satisfies the precision requirement
on the magnitude of the retained wavelet coefficients at level
jforj =jo,..., J—1to obtainthe coefficient{sffj’-ﬁI }. The H<H", (37)
empirical scaling coefficient€j, : 1 =0, ...,2/0 — 1} are o
not thresholded since it is presumed they contain information WhereH™ is given by
about the coarse features of the log-spectrum of the batch

wheren’ = mk_and?(m, k) is the grand average of the
batch meang X1(m), ..., Xk(m)}.

2.4 Fulfilling the Precision Requirement

The half-length of the CI36) is given by

means. 00, for no prec. reqgmt.

The next step is to compute the inverse DWT, H* — r*i(m, k)|, for rel. prec. lever*, (38)

L'=0"W", (32) h*, for abs. prec. leveh*,

whereW” is the vector containing the scaling coefficients thenWassz terminates and the CBg) is delivered.
{Cior :1=0,..., 2lo _ 1} and thresholded wavelet coeffi- If the precision requiremenBY) is not satisfied, then
cients{a*l Sj=jo...,d—=11=0,...2 — 1}. Thus the total number of batches required to satisfy the precision
(32) yields the thresholded wavelet approximation requirement is computed as follows,

~ ~ ~.aT 2

L* = [ T_,...,LE] k*<—’7<%> k—‘;

T
= |Lx 7_(5 -b e (3
X(m k XA and thus the total sample size required to meet the precision

requirement ik*m. However, since the number of batches
to the vectorf of the bias-corrected log of the smoothed must be a power of two, the batch couants set for the
periodogram of the batch means. Therefore, our wavelet- next iteration ofWass? as follows:
based estimate of the log-spectrum of the batch means is

K < min {2“092("*)J : 4096} , (39)
- | T x |
(m X(m where 4,096 is the upper bound on the number of batch
The wavelet-based estimate of the spectrum of the batch means used iWAass?.
means process can now be computed fr@3) as The new batch sizen for the next iteration oMASSP

is assigned according to
P (K) = & Txm (H)] for 1e G (34)

m <« R—) m—‘ , (40)
and a wavelet-based estimate of the SSVC for the original k

(unbatched) process is recovered frasd)(as follows: . ,
so that the total sample sizeis increased approximately

by a factor of(H/H*)?.

o~

Vx =M Pxm(0). (35)

428



Lada, Wilson, and Steiger

On the next iteration oWAss?, the total sample size
including the warm-up period is thus given by— km+S§,
where the corresponding batch codnand batch sizen
are given by 89 and @0), respectively. The additional

fair comparison of the performance ¥WAass with that of
Heidelberger and Welch’s sequential spectral method, we
first appliedWass® to a realization of a particular process
S0 as to obtain not only the correspondiuss»-based

simulation-generated observations are obtained by restarting Cl but also a complete data set to which we may apply

the simulation or by retrieving the extra data from storage;
and then the next iteration AMass? is performed.

3 PERFORMANCE EVALUATION OF Wass?

Lada (2003) details an extensive performance evaluation
of Wass?. In this section we summarize the results of
applyingiwass® to theM /M /1 queue waiting time process.
Here X is the waiting time for theth customer in a single-
server queueing system with i.i.d. exponential interarrival
times having mean 10/9, i.i.d. exponential service times
having mean 1, a steady-state server utilization of 90%, and
an empty-and-idle initial condition. The steady-state mean
waiting time isux = 9.0.

The M/M/1 queue waiting time process with 90%
server utilization and empty-and-idle initial condition is a
particularly difficult test process for the following reasons:
(a) the initial transient is pronounced and persists over an
extended period of timef the correlation function decays

the Heidelberger-Welch procedure. In particular on each
replication ofWass? and Heidelberger and Welch’s proce-
dure for the+15% and thet7.5% precision cases, we set
the maximum run lengthmax for Heidelberger and Welch'’s
method to the final sample size requiredWass® for that
replication. For the no precision case, we applied the Hei-
delberger and Welch method to the first 4,096 observations
of the data set used BWass® for each replication.

Based on all our computational experience Wiass®,
we believe that the results given below are typical of the per-
formance ofWass® in many practical applications. Since
each Cl with a nominal coverage probability of 90% was
replicated 1,000 times foWwass? and Heidelberger and
Welch’s method, the standard error of each coverage esti-
mator is approximately 0.95%. The coverage probabilities
for ASAP2 have a standard error of approximately 1.5%
since only 400 replications of ASAP2 were performed.

As can be seen from Tablg, 'WAa8s? outperforms
Heidelberger and Welch’s method with respect to CI cover-

slowly with increasing lags once the system has reached age for all three precision requirements. Furthermore, since

steady-state operatiorg)(the marginal distribution of wait-
ing times is markedly nonnormal; and)(the spectrum of
the batch means procegsy ., (»), is sharply peaked in the
neighborhood of zero frequency. This test process will allow
thorough evaluation of the robustnesdAifiss»’s procedure

for eliminating initialization bias as well the robustness of
WassP's wavelet-based technique for estimating the SSVC
of the original waiting time procesgsX;}.

The parameters used to evaluate the performance of

WAssP are the coverage probability of its Cls, the mean
and half-length of its Cls, and the total required sample
size. We performed independent replication§8fss? to
construct nominal 90% Cls that satisfy a specified precision
requirement. The following three precision requirements
were used:

e no precision—that is, we sdt* = oo in (37)

and @8) so Wass? delivers the CI §) using the
batch count and batch size required to pass the
randomness and normality tests;

e +15% precision—that isSWass® delivers the CI

(6) satisfying the relative precision requirement
given by @7) and @8) with r* = 0.15; and

o 17.5% precision—that isWAss® delivers the ClI

(6) satisfying the relative precision requirement
given by @7) and 38) with r* = 0.075.

For the sake of comparison, we also applied ASAP2
(Steiger et al. 2002) and Heidelberger and Welch’s spectral
method (Heidelberger and Welch 1981a, 1981b, 1983) to
the sameM/M/1 queue waiting time process. To make a
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Heidelberger and Welch’s method terminates ofgg is
reached, it is possible that the Heidelberger and Welch algo-
rithm could run out of data before the precision requirement
is satisfied. Of the 1,000 Cls delivered by Heidelberger and
Welch’s method, only 767 actually satisfied the precision
requirement for thet15% precision level and only 673
satisfied the precision requirement for thé.5% precision
level.

From Table? it is also evident that the variance of the ClI
half-length is markedly higher for ASAP2 than faYass»
inthe no precision case. This suggestsWaiss? produces
much more stable Cls than ASAP2 in the no precision case.
Once a precision requirement is imposed, ASAP2 produces
Cls that exhibit the same stability as the Cls produced
by Wass®, as can be seen from the variance of the CI
half-length for thet15% and+7.5% precision cases.

4 CONCLUSIONS

WASS? is a completely automated wavelet-based spectral
procedure for constructing an approximate confidence inter-
val for the steady-state mean of a simulation output process.
Our extensive performance evaluation¥dfass® indicates
thatWass? outperforms Heidelberger and Welch’s method;
and we believéeWass? represents an advance in spectral
methods for simulation output analysis. Furthermore, we
can conclude that whildVass?» and ASAP2 produce com-
parable results in some cas8¥Ass® is in general a more
robust procedure than ASAP2. In particular, in the absence
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Table 2: Performance aNass? (Using A = 7), Heidel-
berger and Welch’s Spectral Method (H&W), and ASAP2
for the M/M/1 Queue Waiting Time Process with 90%
Server Utilization and Empty-and-ldle Initial Condition,
Where Results Are Based on Independent Replications of
Nominal 90% Cls

Precision |Performance Procedure
RequirementMeasure WASSP H&W ASAP2
# replications 1,000 1,000 400
Cl coverage 83.2% 78.6%  88%
None |Avg. sample size | 12,956 4,096 22,554
Max. sample size| 123,102 4,096 131,072
Avg. CI half-lengtﬁ 3.1776  4.0415 6.44
Var. Cl half-length| 2.5342  4.6892 167.0
# replications 1,000 1,000 400
Cl coverage 83.6% 79.6% 90%
+15% |Avg. sample size | 88,782 65,282 93,374
Max. sample size| 819,248 314,464 260,624
Avg. CI half-lengtﬁ 1.106 1.3154 1.18
Var. ClI half-length| 0.0368 0.3765 0.025
# replications 1,000 1,000 400
Cl coverage 90.8% 84.1% 92%
+7.5% |Avg. sample size | 371,380 298,860 281,022
Max. sample size |1,871,936 1,216,420 796,076
Avg. CI half-lengtﬁ 0.5914 0.6852 0.630
Var. CI half-length| 0.006 0.059  0.002

of a precision requirement, ASAP2-generated Cls can be
highly variable in their half-lengths. We are continuing the
experimental evaluation oiNass®; and future develop-
ments concerningvass? will be available on the website
<www.ie.ncsu.edu/jwilson>
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