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ABSTRACT with certainty. Instead, selection procedures provide some
measure of the quality of a selection.
Selection procedures help identify the best of a finite set This note focuses on two stage sampling procedures

of simulated alternatives. The indifference-zone approach where the simulation output is normally distributed. The
focuses on the probability of correct selection, but the ex- main contribution is to provide an alternate guarantee for
pected opportunity cost of a potentially incorrect decision the quality of a correct selection. Much of the extensive
may make more sense in business contexts. This paper pro-frequentist ranking and selection and multiple comparisons
vides the first selection procedure that guarantees an upperliterature provides results to guarantee that the probability
bound for the expected opportunity cost, in a frequentist of a correct selection, P(CS), exceeds some prespecified
sense, of a potentially incorrect selection. The paper there- thresholdP*, subject to the condition that the best system
fore bridges a gap between the indifference-zone approach be at least* better than the other systems (Dudewicz and
(with frequentist guarantees) and the Bayesian approach to Dalal 1975, Rinott 1978, Bechhofer, Santner, and Golds-
selection procedures (which has considered the opportunity man 1995). More recent results provide guarantees for the
cost). An expected opportunity cost guarantee is provided probability of a good selection, P(GS), the probability that
for all configurations of the mean, and need not rely upon the selected system is within some specifiédf the best

an indifference zone parameter to determine a so-called (Matejcik and Nelson 1995, Nelson, Swann, Goldsman, and
least favorable configuration. Further, we provide expected Song 2001), for all configurations of the unknown means.
opportunity cost guarantees for two existing indifference In both cases, the probability statements are made with
zone procedures that were designed to provide probability respect to repeated applications of the procedure.

of correct selection guarantees. These guaranteed lower bounds on P(CS) do not, how-
ever, reflect how poor a potentially incorrect selection might
1 INTRODUCTION be. The expected opportunity cost does penalize particularly

bad choices. For example, it may be better to be wrong
Statistical selection procedures provide a mechanism to 99% of the time if the penalty for being wrong is $1 (an
identify the best of a finite set of simulated alternatives, expected opportunity cost of 0.9%1 = $0.99) rather than
where best is defined in terms of the maximum (or minimum) being wrong only 1% of the time if the penalty is $1,000
expected value of each alternative. A sample application is (an expected opportunity cost of 0.0%1,000 = $10).
the selection of one of several design proposals for a supply New selection procedures that are based on a Bayesian
chain when simulation is used to evaluate the performance decision-theoretic foundation provide a mechanism to al-
of each alternative. located second stage samples to reduce the expected op-

Many selection procedures identify the best system by portunity cost (Chick and Inoue 2001a, Chick and Inoue

running an initial stage of simulations of each system to 2001b). That work also provides a measure of the posterior
get a rough estimate of the mean and variance of each probability of correct selection, or posterior expectation of
system, then additional sampling occurs before making a the potential opportunity costs, based on a single application
final decision. The additional sampling can occur all at once of the procedure. But frequentist P(CS) guarantees have
in a second stage, or sequentially. Because simulation outputnot yet been provided for those procedures.
has randomness, the best alternative cannot be selected This paper merges ideas from both the indifference

zone and decision-theoretic literature to provide what is
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believed to be the first selection procedure with a frequentist
expected opportunity cost guarantee. We indicate that the
least favorable configuration (LFC) for the procedure is not

necessarily the slippage configuration for a givin In

fact an expected opportunity cost guarantee can be provided

for all configurations of the mean without reference to
indifference zone parametéf. We also provide expected
opportunity cost guarantees for the procedure in Rinott
(1978) and a procedure in Nelson and Banerjee (2001).

2 SELECTION PROCEDURES AND
OPPORTUNITY COST

This section recalls the formal description of the selection
problem from a classical, indifference-zone perspective,

then presents a new procedure that provides a guaranteed['e

upper bound on the expected opportunity cost of potentially
selecting the wrong system.

2.1 Setup for Selection Problem

The best ok simulated alternatives is to be identified using
a two-stage selection procedure. The simulation output
for replication j of systemi is is presumed independent
and normally distributed for =1,2,...,k; j =1,2,...,
with unknown meang = (u1, uo, ..., ux) and variances
0?=(02,0%,...,07). Best here is defined by the system
with the maximal mean (the minimum is handled similarly).
Let upy < pe) < ... < up—1 < pxg be the unknown
ordering, so systerfk] is best.

A correct selection occurs when the system selected
by the procedure, system, is the same as the true best,
[k]. The system selected is commonly the system with the
highest overall sample mean (e.g. Rinott 1978, Nelson,
Swann, Goldsman, and Song 2001, although see Dudewicz
and Dalal 1975). Since the output is variabig,is the
realization of a random variabl@ that identifies the selected
system. The probability of correct selection, P(CS), is the
probability thatD = [k], the probability taken over repeated
applications of the procedure to the same problem:

P(CS)= E [Lip=ikp]

wherel, is the indicator function (1 if the argument is true,

0 otherwise), and the distribution of the selected system,
D, is determined by structure of the selection procedure.
The validity of an indifference zone procedure is established
by showing that a bound on the P(CS) is available, given
some conditions. For example, the well-known two-stage
procedure of Rinott (1978), which we call Procedure R, takes
two parameters to specify a minimum desired probability of
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correct selectiorP*, and the minimum differenc&* worth
detecting between the best and the others:

min P(CS)> P*
HeR(5*)

whereQ(6*) = {n : upy — 8" = wi, i # [k]}. Procedure R
provides this guarantee by allocating a total number (both
stages) of replications that is proportional to the first stage
sample variance.

The new procedure below, Procedud s, is similar
in structure to Procedure R, but differs in that the expected
opportunity cost of a potentially incorrect selection is guar-
anteed to be less than some user-specified upper bound,
A. The name Procedur@C s comes from thifrequentist
Xpectedpportunitycost guarantee. Recall that the oppor-
unity cost of selecting systemh is

OC = uk) — Ma-

If the best system is correctly selected, theg = 0. If

not, then OC increases with the difference in the mean
performance of the best and the mean performance of the
selected system. The expected opportunity cost E[OC] of a
selection procedure is a frequentist measure of the expected
opportunity cost associated with selecting a system, where

E[OC] = E [ux) — ]

is the expectation of)C taken over repeated applications
of the procedure.
Procedure OCy
Specify the expected opportunity cost guarantee
A, and first-stage sample sizgg > 3. Setg =
g(A, k,ng) as described in Section 4.

n

First stage. Observe the outpyt, x; 2, ..., X g
of independent simulation runs foe= 1, 2, .. . , k.

3. For each system, compute the first-stage sample
meanx; = Z’;O:lx,"j/l’lo and sample variance,
sf = Y2y (i — )%/ (no — ).

4. Compute the total number of runs for each system,

n; = max[no, (gzsﬂ}.

5. Second stage. Obtain independent simulation out-
PUt X} ng+1s Xisng+2s - - -5 Xip; TOr i =1,2, ... k.

6. Compute the overall sample means for each system,
Xj = Z;{'zlxi,j/ni.

7. Select systerd = argmax x; as best.

ProcedureOC; does not need an indifference zone
parameter, and therefore has one less parameter in Step 1
than Procedure R, usimgrather tharP* ands*. The choice
of A should be tied to the economic value associated with
the simulated systems. If simulation is used to select the
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best of a set of manufacturing system designs, for example, overall E[OC] guarantee is provided. We proceed along
the simulation output can be taken to be realizations of the lines analogous to Rinott (1978). For alt~ [k], define
revenue minus the cost over the usable lifetime of those

systems. Smaller values af require more replications. (X — i) — ():( )
The cost of more replications can be traded off with a lower Zi = 5 2 1/2 ’
upper bound forE[OC]. This is similar to the tradeoff [Z—I + %]
between increasin@* and running more replications. X ’
l
3 ANALYSIS ki [(,12 gél]l/Z'
ni k)

This section shows how to select the parametar Step 4

of ProcedureOC so that the expected opportunity cost  Condition on the first stage sample variancg%s = s2
is bounded above by the maximum desired expected op- (Rinott 1978), so that the; can be considered fixed. Then

portunity cost,E[OC] < A, for all configurations of the 1 - = 1.z~ and Z; is a standard normal random

means. First we simplify the case of selecting from 2 (Xi>Xiu) e
systems to the case &f= 2 systems by considering the variable. Note thab; > g% implies R; > Q;, where
k — 1 pairwise comparisons between systenasd k] (hot 5
the k(k — 1)/2 comparisons between all pairs). 0; = 8%

0’2 U[k] 1/2
. 5+
3.1 Opportunity Cost Bounds [?.-Z ?ﬁﬂ

Let X = (X1, X2,..., X)) and §2 = (52, 52,..., 5%) be forall i # [k]. Thereforelz,~r) < 1(z;>0;)- Let®(-) be
the vector of first stage sample means and variances. Ran-the cumulative distribution function of a standard normal
dom quantities are written in upper case and realizations random variable, and lep(:) be its probability density
are in lower case. The selected systdm,depends upon function. Then

the overall sample mean¥, = (X1, Xo, ..., Xz).
E[0C:] < E[E[iliz=g, | 7 S5l
D=arg max X; i
g jell2 k) ! s
- = E|&? gzl 1/2
Let D; = arg ma§e{i,[k]}_)_([ be the ra_ndom variable that [%; + %]
selects a system in a pairwise comparison between systems L i t
and[k], and define; = i — i to be the difference in the i
means of the best system and systefior all i # [k]. The — Elso —86; @)
E[OC] for k systems is bounded from above by the sum N ' 3
of the expected losses from the- 1 pairwise comparisons i [(”0 - ( + ym>]
(the best versus each alternative) becaugg — up <
Z{F:ll k) — o, for each realization. where the final expectation is taken with respect to the
- independent random variablés = (ng — 1)512/01.2 which
E[OoC] = E):( [/,L[k] MD] are known to have qf _4 distribution.
Chooseg so that the right hand side of Equation (2)
< Z Sk — 1D, ) equalsA/(k —1) to gu.arante.e an expected IoEBOCi]_g
A /(k—1) for a comparison with two systems. Inequality (1)
in turn implies that the overall expected opportunity cost is
- Z E):(ij[k] 87,55 [6’ 1(Xi>?:([k])] less thanA.
i #£[k]
J - .
lef Z E[OC;] 3.2 Finding g Given A
i £[k]

Section 3.1 might suggest that we identify a parameter
The implication is that if we can guarant&g0C;] < for a given maximum expected opportunity cast along
A/(k — 1) in each ofk — 1 pairwise comparisons, then an with a value of§; that corresponds to an indifference-zone
parameter. Here, we turn the problem around and show
that for a giveng, we can determine thkeast favorable
8i = py — wi- The least favorablg; then determines a

467



Chick

bound onE[OC;] for each pairwise comparison. Since
g determinesE[OC;], we take a given bounad for the
expected opportunity cost, and find the smallgsthat
delivers the guarantee. The guarantee is deliveredlfor
configuration of the means. That explains why Procedure
OCy does not have an indifference-zone parameter.

Let f(8;) be the upper bound in the right hand side of
Equation (2), viewed as a function 8f. Then

—8éi
((no — D(1/ Y1+ 1/Y2))1/?
E[§;D(W)].

w
J (@)

= 3)
The derivative of f with respect tos; gives a first order
optimality condition for the least favorabb.

d
d—g = E[®(W) + Wp(W)] = 0

4)
Both the distribution of the random variable W and the
optimality condition areinvariant to transformationsof
(g, d;) to any (ga, 8; /), wherea > 0 is real-valued. The
implication is that knowing the LFC for any one value of
g immediately leads to a knowledge of the LFC for any
other value ofg. Similarly, the expected opportunity cost
bound for the comparison scales wih(see Equation (2)).
Since W depends upon th&;, and the distribution of the
Y; changes as a function afy, numerical solutions fos;
may be required for different values af.

Figure 1 illustrates the scaling properties transforma-
tions from (g, §;) to (g«, 8; /). Doublingg from 0.5 to 1
halves the least favorabde from 2.66 to 1.33, and the max-
imum pairwise loss drops from 0.576 to 0.288. &s— 0
the probability of an incorrect selection approaches 1/2, but
the penalty for choosing the wrong system goes to zero with
8;. As§; — oo the penalty for an incorrect selection grows
without bound, but the probability of incorrect selection

0.7, \

--g=05

—g=10
0.67,,,9:2.0 o 1
0.5 ‘\\\ ]
0.4t / E

E[5 ®W)]

Figure 1: The Upper Boun&[s; ®(W)] for the Expected
Opportunity Cost, Given Several Values of the Allocation
Parameteg (k = 2, no = 5)

3.3 Opportunity Cost And Existing Procedures

This section shows that two previously proposed
indifference-zone procedures implicitly provide expected
opportunity cost guarantees, even though they were initially
designed to provide guarantees for the selection probability.

Like ProcedureOCy, Procedure R of Rinott (1978)
allocates a total number of observations that is proportional
to the first-stage sample variance and selects the system with
the best overall sample mean. This suggests that Procedure
R also provides an expected opportunity cost guarantee.

Lemma 2  Procedure R provides an expected op-
portunity cost guarantee for all configurations of the means,
not just those in the indifference-zone.

Proof: Recall that Procedure R obtains a minimum

goes to 0 so fast that expected opportunity cost approachesprobability of correct selection aP* when the best system

0. This discussion justifies the following characterization
of the least favorablé;, relative to Equation (2).

Lemmal  Chooses,a > 0. Lets; = pup — ui be
the LFC for a comparison between systenasd [k] when
g = B, relative to Equation (2), so the resulting bound on
the expected opportunity cost §(5;). Then the LFC if
g = Ba is §; /o and the corresponding expected opportunity
cost bound isf (§;)/a.

The least favorablé; for a giveng can be determined
numerically. We did this for several valuesmaf, and report
the results below in Section 4. Section 4 also indicates how
to use a table to choogefor Step 4 of Procedur@C; to
guarantee that the overall expected opportunity E§s2C]
is less than the specified boundd,
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is at leasts* better than the others by setting

I}

where h = h(k, P*,ng — 1) is the solution to Rinott’s
integral (e.g., see Bechhofer, Santner, and Goldsman 1995).
Setg = h/8*. By the results in Section 3, the choice&sf
and P* implicitly determine anE[OC] guarantee foll
configurations of the means. Conversely, the choice of an
E[OC] guarantee determines the valuegofwhich in turn
determines an implied indifference-zone paramétefor
each desired’*. O
Nelson and Banerjee (2001) present procedures that
provide a probability ofyood selection, P(GS), guarantee,
meaning that a lower bound for the probability of selecting a

2

h\2
n; = max{ ng, 5 ) S

®)

1
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system withins* of the best is provided for any configuration Table 1: Least Favorablg = (k) —

of the mean. One of them, Procedure S, allocates a total pi for ProcedureOCy and Loss for
number of samples proportional to the first stage sample Given Number of First Stage Replica-
mean, and selects the system with the largest overall sample tions, no, Assumingg =1, k =2
mean as best. Therefore Procedure S also provides an no LF&§ E[OCi] SEEg[oc
implicit expected opportunity cost guarantee. 3 1767 0.3524 0.0004

Lemma 3  Procedure S (Nelson and Banerjee 2001) 4 1449 0.3078 0.0003
provides an expected opportunity cost guarantee for all 5 1.330 0.2886 0.0002
configurations of the means. 6 1.267 0.2779 0.0002

Proof: Same as for Lemma 2, except= \/iv”o 1/8* 7 1.227 0.2711 0.0001
is the analogous factor for Procedure S. 8 1.201 0.2663 0.0001

Interestingly, the LFC for Procedure R and Procedure 9 1.182 0.2629 0.0001
S with respect to the probability of correct selectimay 10 1.167 0.2602 0.0001
or may notbe the same as the LFC for those procedures 11 1.156  0.2581 0.0001
with respect to the expected opportunity cost. Section 5.4 12 1147 0.2564 0.0001
explores this issue in more detail. 13 1.139  0.2550 0.0001

Procedure R and Procedure S may require more repli- 14 1.133 0.2539 0.0001
cations than are needed because it they are statistically 15 1.128 0.2529 0.0001
conservative. Both procedures ignore first stage informa- 16 1.123 0.2520 0.0001
tion about the sample mean. All systems have a total 17 1119 0.2513 0.0001
number of observations proportional to the first stage sam- 18 1.116  0.2506 0.0001
ple variance, even if the first stage sample means of some 19 1.113  0.2500 0.0001
systems are significantly inferior (with high probability). 20 1.110 0.2495 0.0001

ProcedureOC suffers from the same criticism. Nelson,

Swann, Goldsman, and Song (2001) proposed combined each alternate and the best, so the acceptable maximal
screening and selection procedures to address the statisticaloss per paired comparison i&/(k — 1) = 0.1. The

conservatism of indifference zone procedures. The idea is Opportunity cost entry in Table 1 Correspondingqtpz 10
to screen out systems whose first stage sample mean ands £[0C;] = 0.2602. By setting
variance indicate that they are not likely contenders for the

‘best’. A second stage then allocates samples proportional E[OC;]  0.2602
to the sample variances of the remaining systems in a way §= A/k—1) 01
that guarantees P(CS) P*. An area for future work is the

development of a combined screening/selection procedure we can guarantee thE[OC] bound.
that can provide an expected opportunity cost guarantee The E[OC;] estimates in Table 1 were determined by

= 2.602

with potentially fewer replications. generating 200,000 values @fy, Y»2) for Equation (3) using
CRN across the values o and have a standard error given
4 TABLE FOR PROCEDURE OCy by SErioc,). The least favorablé; = ) — w; for each
ng was determined by sample path optimization with the
Table 1 gives the LFC for a comparison betwéen= 2 fminsearch  function of Matlab. The estimation process
systems(k] andi, as a function of the number of first stage was repeated several times for the smaller valueggpf
replicationsng of each system. The table presunges 1, which have a larger standard error. The estimated values
and defines the LFC to be the value &f= up — wi of the least favorablé; varied within+0.003 of the values

that maximizes the upper bourftf O C;] for the expected reported in the table.
opportunity cost of a comparison in Equation (2). The table
also gives the value of that bound when the means are in 5 EXPERIMENTAL RESULTS
the LFC. If g # 1, Lemma 1 says that the corresponding
values of the LFC andZ[OC;] are obtained by dividing This section examines Procedufa” s with simulation.
the appropriate values in the table py
Table 1 is straightforward to use. Suppose that there 5.1 Tightness of Bound and the Variance
arek = 5 systems, thatg = 10 replications are to be run
for each system during the first stage, and that the maximum The LFC in Table 1, relative to the opportunity cost bound,
acceptableE[OC] is A = 0.4. The correct factog for does not depend upon the variance of each system. This
ProcedureOC to guaranteeE[OC] < A is determined raises the question of how tight the bound may be as a
as follows. There ard — 1 = 4 comparisons between  function of the size of the variances of each system. As the
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Figure 2: Expected Opportunity Cost as Function of a Com- Figure 3: Expected Opportunity Cost in Comparison, Com-
mon Variances? (k = 2, 8; = 1.33,ng =5, g = 1) pared with Bound, Common? (k =2, n9 =5, g = 1)

variances go to 0, the chance of an incorrect selection and the Figure 3 suggests that a smaller value goimay be
expected opportunity cost go to 0, becausenthérst stage used in a variation of Procedur@C, that requires the
replications will accurately identify the relative order of the variance of each system be less than or equal to a threshold
means, and additional replications will be required extremely (an indifference-zone like constraint on the variances rather
rarely. The bound is expected to be tighter if all systems have than the means). Losses appear to be smaller for smaller
larger variances, as the? approximation is better when the  values of the variance, and the least favorableeems to
total number of replications is less likely to be constrained decrease as the maximum allowable variance is decreased.
by the first stage sample size; (= maxno, [g%s?1}).

Figure 2 illustrates the tightness of the bound improves 5.3 Slack in Bound fork > 2
as the variance increases for a comparisoh ¢f2 systems
with g = 1,n9 = 5, 8; = 1.33 (the least favorablg relative The upper bound foE[OC] in Equation (1) may be loose
to the bound for losses in Equation (3)). The graph presumes when more than two systems are being compared because
a common variance? = o, = o7, and was generated  the bound adds the sum of maximum losses fiom 1
with 50,000 applications of the selection procedure for each comparisons with 2 systems. That bound is therefore analo-
value of 2. The 90% ClI is demarcated with the dotted gous to a P(CS) bound with the Bonferroni inequality. This
lines. For small values of the variance the expected loss section examines how loose the bound is with a numerical
well below the bound, but when the variance is on the experiment fork = 2, 3,5 and 10 systems.
order of 100 the expected opportunity cost is quite close Figure 4 illustrates the expected opportunity cost as
to the theoretical upper bound. The majority of the loss a function of the difference between the best system and
increases occurs as rises in the range from 1 to 10. The the performance of each of the other systems (50,000 ap-
same qualitative phenomenon was observed in numerical plications of the selection procedure for each combination

experiments withig = 10. of §; andk). The variance of each system is presumed to
be 100. The figure suggests that the values,ofor the
5.2 Bound: §; and Variance Interaction least favorable slippage configuration (each of the nonbest

systems has the same mean, so&hare the same for all
The bound orE[OC;] is relatively tight for large variances i # [k]) appears to increase as a functionkof A proof
(e.g. on the order of 100 or more) when the difference in of this, and a proof of the conjecture that the LFC is a
means is close to the least favoralsle Figure 3 shows slippage configuration when the variance of each system
how tight the bound foE[OC;] is to the actual opportunity is the same, is an area for future work. If the conjecture

cost lost in a comparisork (= 2) over a range of; for is true, tables for the least favorakigand the worst case
‘small’, ‘medium’ and ‘large’ values of the variance of both  E[OC] would be straightforward to construct.

systems (25000 applications of the selection procedure for Figure 4 also confirms the looseness in the bound due
each combination of; ando?). to the Bonferroni-like summation of losses. The maximum
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Figure 4: Estimate of Expected Opportunity Cost with 2
Simulated Systems (For Comme#A = 100,19 = 5,g = 1)

loss whenk = 3 systems are compared (two comparisons
of two systems) is approximately.4b, and is less than
two times the loss from one comparison of two systems,
2 x 0.288 ~ 0.576. More starkly, the worst-case when
k = 10, which has nine comparisons with 2 systems, is
certainly less than nine times the worst case loss with
k = 2. Slepian’s inequality is a tool for improving upon the
Bonferonni inequality for P(CS) bounds. The development
of better bounds wheih > 2 for more general loss functions,
like the expected opportunity cost, is an area of future work.
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Figure 5: Expected Opportunity Cost with= 3
Simulated Systems (Different?, no = 5, g = 1)

Consider the caské = 2. The second stage alloction
of Procedure R witlkg = 5 and P* = 0.95 depends upon
the constant = h(2,0.95,5— 1) = 3.107 (see Bechhofer,
Santner, and Goldsman 1995, p. 63). §ff = 1, that
corresponds to a value ¢f = h/8* = 3.107. The LFC
for Procedure R under these assumptions;is= 1, with
expected opportunity costx (1 — 0.95) = 0.05. But the
LFC for Procedure C y with g = 3.107 is§; = 1.330/¢g =
0.428. The associate| O C] bound is 02886/¢g = 0.0929,

The analysis above presumes that each system has thewhich is greater than th&[OC] of 0.05 that occurs in the

same variance. Figure 5 describes one situation when the
variances are different in a comparisonioft= 3 systems
(40,000 applications of the selection procedure for each
combination ofs;, with o2 = 5, 02 = 10, 07 = 10).

The figure presents a contour plot of the estimated expected
opportunity cost lost as a function of the differences between
the best system. The LFC still appears to be near the slippage
configuration. Analytically one would suspect this when
the variances are all large, since the ‘max’ operator for the
second stage allocation would have less effect, soxthe
distribution approximation in Equation (2) improves. When
one variance is particularly small the second stage allocation
will most likely be zero. This may cause the LFC to not be
a slippage configuration if the variance of different systems
are constrained to be small with different upper bounds.

5.4 P(CS) ands* versus E[OC]

Specifying a P(CS) of* and indifference zone parameter
8* for Procedure R leads to an expected opportunity cost of
§*(1— P*) when the means are in the LFC for Procedure R.
But this is not the LFC for Procedur@C s, so theE[OC]

may differ froms*(1 — P*).
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LFC for Procedure R. More generally, the LFC for Procedure
OCy may lead to a more severe E[OC] than the E[OC]
associated with the LFC of Procedure R. The implication
is that specifyingP* and §* with Procedure R doesot
give an accurate bound for an expected opportunity cost
guaranteei.

Onthe other hand, iP* ands* are selected by a decision
maker with the idea that a maximum expected opportunity
cost of A = §*(1 — P¥) is tolerable, then Procedu@C s
can be used with thaA. Typically this will require more
replications than required by an indifference-zone procedure
with parameterg*, §*, becausé&[OC] < A is guaranteed
overall configurations of the means, not just for the slippage
configuration determined b§*.

6 IS THE LFC FOR PROCEDURE 0Cy A
SLIPPAGE CONFIGURATION?

The above sections provide some analytical results, some
empirical observations, and several questions. One question
is whether or not the LFC for Procedu€C is a slippage
configuration wherk > 2. This section provides a prelim-
inary analysis that indicates that the slippage configuration
satisfies first order optimality conditions for being a LFC
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when k = 3 at least one of two special assumptions is
true—if the variances of all nonbest systems are the same
(a weak form of homoscedasticity), or when the variances
all approach infinity together (an asymptotic argument).

SinceE[OC]is not convex even it = 2 (see Figure 3),
using convexity in they; to show that the LFC is a SC
is not viable. The approach taken here is to find the LFC
subject to the constraint that tlae lie on a given simplex,
Zi#[k] 8; = c, with §; > 0 fori # [k]. If the LFC for each
simplex is a SC, then the LFC over all > 0 is then the
least favorable SC.

Suppose that there are = 3 systems, and without
loss of generality (WLOG) suppose that the best is system
[k] = 3. We proceed by first examining the loss contributed
by systems 1 and 2, and try to find the least favorable
for those two systems, subject to the constréint 5> = c.
Condition on the values ofz and each;iz. A loss of 81 is
incurred when the overall sample mean of system 1 exceeds
that of all other systems. The probability of that event can
be determined by conditioning on whether or not system 2
exceedsts. Seta; = (02/n;)~Y2. Recall thats, = ¢ — 81

and that theX; are conditionally independent and normally
distributed, given thel.z, to obtain

Pr():(l > )%3, ):(1 > }:(2) (6)
- E[l():(1>§3>):(2) T 1():(1>):(2>§3)]
= O[—(X3+ 81)a1]P[(X3 + ¢ — d1)az]
+E; 15, ®l-(X2+ sp)ail]
and
Pr():(Z > X3, ):(2 > ):(1) @

®[(¥3 + 81)a1]P[— (X3 + ¢ — d1)az]

HEZ (13,5, @l (X1 + ¢ = 8p)az]]
The expected losg (¥3, 81), conditional on; and the

a; = (62/n;)~Y2, due to systems 1 and 2 is

81 Pr():(1 > )%3, ):(1 > ):(2) (8)
+(c — 81) Pr(X2 > X3, X2 > X1),

H (X3, 81)

so the unconditional loss contributed by systems 1 and 2 is

9)

X SZ[H(x& 81) | X3 —_ x3, S2 == Sl-z].

The first order optimality condition for the LFC, givén+
82 =c¢,is 0E[H]/381 = 0. The functionH is sufficiently
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‘nice’to interchange the derivative and expectation, resulting
in the conditionE[d H/d581] = 0, where

oH - _

9. = O[—(x3 + 81)a1]P[(X3 + ¢ — 1)az] (10)
—  a181¢(—(¥3 4 81)a1) P[(X3 + ¢ — 81)az]
— ab1®(—=(¥3 + 81)aD)$l(¥3 + ¢ — 1)az]
+ Eg 1z, 5, ®l-(X2+ 8Dal]
— @hiEg 15 - ¢l—(Xz+dall
- ®[(X3+ d1)a1]P[— (X3 + ¢ — S1)az]
+  ai(c — 81)¢((X3 4 81)a1) P[— (X3 + ¢ — S1)az]
+ az(c — 8P ((¥3+ 81)a)g[— (X3 + ¢ — b1)az]
— E; [z : @l-(X1+c—8all
+ aalc—SE; (15 _+ #l—(X1+c—dnazl]

Lemma 4  Supposé = 3. Iftheq; are independent

and identically distributedi(.d.) for all i # [k], then the
slippage configuration satisfies the first order optimality
conditions for being a LFC of Procedu@C/ .

Proof: Suppose that the;, are independent and identi-
cally distributed, for alli # [k], and letc > O be arbitrary.
WLOG assumek] = 3. If §1 = 82 = ¢/2, the first and sixth
terms of Equation (10) cancel when the expectation over
ai, az is taken (which is equivalent to taking the expectation
over s2, 52). Similarly the fourth and ninth terms cancel,
and the fifth and tenth terms cancel in expectation. Some
algebra indicates that the sum of the remaining four terms is
also 0 in expectation. This is true for ai, and therefore
this first order optimality condition also holds when the
expectation overs is taken. i

Further mspectlon indicates thEt[H(xg, 81) | X3l =
E[H(X3, c—41) | xg] so E[H(x:g, 81) | X3] is symmetric
abouts; = ¢/2 when theq; arei.i.d.. We hypothesize but
do not prove further optimality properties fér> 2.

Corollary 5 Supposec = 3. The slippage config-
uration satisfies the first order condition for the LFC of
ProcedureOCy if the variance of each system is the same,
i.e. o2 =02 foralli # [k].

Proof: Assume that? = 2 for all i # [k]. Then the
distributions of thesl.2 are the same, so the distribution of
then; = max{no, [gs?]} are the same (for all # [k]), as
are the distributions of the; = (o2/n;)~Y/2. O

The conclusions of Corollary 5 are therefore also true
for the homoscedastic case, whahsystems, including the
best, have the same variance. The conclusions of Corollary 6
asymptoticallycover the heteroscedastic case.

Corollary 6 Supposek = 3. The slippage con-
figuration satisfies the first order conditions to be a LFC
of ProcedureOC; asymptotically as the variances of all
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systems go to infinity together, i.e. whéar([X; ;] = Kaiz Chick, S. E., and K. Inoue. 2001b. New procedures for

for eachi, in the limitk — oo. identifying the best simulated system using common
Proof: Under the assumption of the hypothesis, as random numbersManagement Sciencé/ (8): 1133—

k — oo, the distribution ofa?(ng — 1)/g? approaches a 1149.

ano—l distribution, for alli (Section 3 or Rinott 1978)0 Dudewicz, E. J., and S. R. Dalal. 1975. Allocation of obser-
If the slippage configuration eventually is shown to be vations in ranking and selection with unequal variances.

the LFC fork = 3 (not just satisfying first order condi- SanhkyaB37 (1): 28-78.

tions) and eventually fok > 3, subject to the constraint ~ Matejcik, F. J., and B. L. Nelson. 1995. Two-stage multiple

Zi#k] 8; = ¢, as we hypothesize, this transformg a- 1 comparisons with the best for computer simulation.

dimensional problem involving ad}; into a one dimensional Operations Research3 (4): 633-640.

problem of finding the least favorable slippage configura- Nelson, B. L., and S. Banerjee. 2001. Selecting a good

tion. Tables for the least favorable as a function ofig system: Procedures and inferenkE. Transactions33

andk could be constructed on that basis. Checking second (3): 149-166.

order optimality conditions is an area for future work. Nelson, B. L., J. Swann, D. Goldsman, and W. Song. 2001.

Simple procedures for selecting the best simulated sys-
7 CONCLUSIONS tem when the number of alternatives is lar@perations

Research9 (6): 950-963.

This paper appears to provide the first selection procedure Rinott, Y. 1978. On two-stage selection procedures and
that guarantees an upper bound for the expected opportunity ~ related probability-inequalities Communications  in
cost, taken in a frequentist sense. The analysis shows StatisticsA7 (8): 799-811.
that the indifference-zone parametr can be dispensed
with for this procedure. Further, we proved that some AUTHOR BIOGRAPHY
existing indifference-zone procedures have implicit expected
opportunity cost guarantees for all configurations of the STEPHEN E. CHICK is Associate Professor of Technol-
means, even though the LFC with respect to the probability ogy Management at INSEAD in Fontainebleau, France. He
of correct selection may not be the same as the LFC for is on leave from the Department of Industrial and Operations
the expected opportunity cost. Engineering at the University of Michigan, Ann Arbor. In

The paper identified several potential areas for future addition to stochastic simulation, his research focuses on
research in the area of frequentist style guarantees for the Bayesian statistics, public health, decision analysis and com-
expected opportunity cost or other loss functions. A proof putational methods in statistics. His research is motivated by
that the LFC is a slippage configuration would facilitate problems in manufacturing, operations, and health care. He
the development of tables when > 2 that would im- can be contacted atstephen.chick@insead.edu>
prove sampling efficiency. Further improvements would
be anticipated if combined screening/selection procedures
could be developed. Extensions to handle common ran-
dom numbers are also of interest. Alternately, developing
variations of Bayesian decision-theoretic procedures in or-
der to provide frequentist guarantees is an alternate route
for cross-fertilization. Allocating replications proportional
to the first stage sample variances appears to simplify the
analysis due to the independence of the sample variance and
sample mean. The Bayesian allocations do not have that
property, so a frequentist analysis for a Bayesian allocation
appears to be more challenging.
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