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ABSTRACT

Selection procedures help identify the best of a finite s
of simulated alternatives. The indifference-zone approa
focuses on the probability of correct selection, but the e
pected opportunity cost of a potentially incorrect decisio
may make more sense in business contexts. This paper p
vides the first selection procedure that guarantees an up
bound for the expected opportunity cost, in a frequenti
sense, of a potentially incorrect selection. The paper the
fore bridges a gap between the indifference-zone approa
(with frequentist guarantees) and the Bayesian approach
selection procedures (which has considered the opportun
cost). An expected opportunity cost guarantee is provid
for all configurations of the mean, and need not rely upo
an indifference zone parameter to determine a so-call
least favorable configuration. Further, we provide expect
opportunity cost guarantees for two existing indifferenc
zone procedures that were designed to provide probabil
of correct selection guarantees.

1 INTRODUCTION

Statistical selection procedures provide a mechanism
identify the best of a finite set of simulated alternatives
where best is defined in terms of the maximum (or minimum
expected value of each alternative. A sample application
the selection of one of several design proposals for a sup
chain when simulation is used to evaluate the performan
of each alternative.

Many selection procedures identify the best system b
running an initial stage of simulations of each system
get a rough estimate of the mean and variance of ea
system, then additional sampling occurs before making
final decision. The additional sampling can occur all at onc
in a second stage, or sequentially. Because simulation out
has randomness, the best alternative cannot be selec
-
r

t
d

with certainty. Instead, selection procedures provide som
measure of the quality of a selection.

This note focuses on two stage sampling procedure
where the simulation output is normally distributed. The
main contribution is to provide an alternate guarantee fo
the quality of a correct selection. Much of the extensive
frequentist ranking and selection and multiple comparison
literature provides results to guarantee that the probabilit
of a correct selection, P(CS), exceeds some prespecifie
thresholdP ∗, subject to the condition that the best system
be at leastδ∗ better than the other systems (Dudewicz and
Dalal 1975, Rinott 1978, Bechhofer, Santner, and Golds
man 1995). More recent results provide guarantees for th
probability of a good selection, P(GS), the probability that
the selected system is within some specifiedδ∗ of the best
(Matejcik and Nelson 1995, Nelson, Swann, Goldsman, an
Song 2001), for all configurations of the unknown means
In both cases, the probability statements are made wit
respect to repeated applications of the procedure.

These guaranteed lower bounds on P(CS) do not, how
ever, reflect how poor a potentially incorrect selection migh
be. The expected opportunity cost does penalize particular
bad choices. For example, it may be better to be wron
99% of the time if the penalty for being wrong is $1 (an
expected opportunity cost of 0.99×$1 = $0.99) rather than
being wrong only 1% of the time if the penalty is $1,000
(an expected opportunity cost of 0.01×$1,000 = $10).

New selection procedures that are based on a Bayesi
decision-theoretic foundation provide a mechanism to al
located second stage samples to reduce the expected o
portunity cost (Chick and Inoue 2001a, Chick and Inoue
2001b). That work also provides a measure of the posterio
probability of correct selection, or posterior expectation of
the potential opportunity costs, based on a single applicatio
of the procedure. But frequentist P(CS) guarantees hav
not yet been provided for those procedures.

This paper merges ideas from both the indifference
zone and decision-theoretic literature to provide what is
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believed to be the first selection procedure with a frequenti
expected opportunity cost guarantee. We indicate that th
least favorable configuration (LFC) for the procedure is no
necessarily the slippage configuration for a givenδ∗. In
fact an expected opportunity cost guarantee can be provid
for all configurations of the mean without reference to
indifference zone parameterδ∗. We also provide expected
opportunity cost guarantees for the procedure in Rino
(1978) and a procedure in Nelson and Banerjee (2001).

2 SELECTION PROCEDURES AND
OPPORTUNITY COST

This section recalls the formal description of the selectio
problem from a classical, indifference-zone perspective
then presents a new procedure that provides a guarante
upper bound on the expected opportunity cost of potential
selecting the wrong system.

2.1 Setup for Selection Problem

The best ofk simulated alternatives is to be identified using
a two-stage selection procedure. The simulation outputxi,j
for replication j of systemi is is presumed independent
and normally distributed fori = 1,2, . . . , k; j = 1,2, . . .,
with unknown meansµ = (µ1, µ2, . . . , µk) and variances
σ 2 = (σ 2

1 , σ
2
2 , . . . , σ

2
k ). Best here is defined by the system

with the maximal mean (the minimum is handled similarly)
Let µ[1] ≤ µ[2] ≤ . . . ≤ µ[k−1] < µ[k] be the unknown
ordering, so system[k] is best.

A correct selection occurs when the system selecte
by the procedure, systemd, is the same as the true best,
[k]. The system selected is commonly the system with th
highest overall sample mean (e.g. Rinott 1978, Nelson
Swann, Goldsman, and Song 2001, although see Dudew
and Dalal 1975). Since the output is variable,d is the
realization of a random variableD that identifies the selected
system. The probability of correct selection, P(CS), is th
probability thatD = [k], the probability taken over repeated
applications of the procedure to the same problem:

P(CS)= E [1(D=[k])] ,
where1(·) is the indicator function (1 if the argument is true,
0 otherwise), and the distribution of the selected system
D, is determined by structure of the selection procedure
The validity of an indifference zone procedure is establishe
by showing that a bound on the P(CS) is available, give
some conditions. For example, the well-known two-stag
procedure of Rinott (1978), which we call Procedure R, take
two parameters to specify a minimum desired probability o
ith
he
d

d

z

correct selectionP ∗, and the minimum differenceδ∗ worth
detecting between the best and the others:

min
µ∈�(δ∗)P(CS)≥ P ∗

where�(δ∗) = {µ : µ[k] − δ∗ ≥ µi, i 6= [k]}. Procedure R
provides this guarantee by allocating a total number (bo
stages) of replications that is proportional to the first sta
sample variance.

The new procedure below, ProcedureOCf , is similar
in structure to Procedure R, but differs in that the expect
opportunity cost of a potentially incorrect selection is gua
anteed to be less than some user-specified upper bou
1. The name ProcedureOCf comes from thisfrequentist
expectedopportunitycost guarantee. Recall that the oppo
tunity cost of selecting systemd is

OC = µ[k] − µd.

If the best system is correctly selected, thenOC = 0. If
not, thenOC increases with the difference in the mea
performance of the best and the mean performance of
selected system. The expected opportunity cost E[OC] o
selection procedure is a frequentist measure of the expec
opportunity cost associated with selecting a system, wh

E[OC] = E [µ[k] − µD]
is the expectation ofOC taken over repeated application
of the procedure.

ProcedureOCf
1. Specify the expected opportunity cost guarant

1, and first-stage sample sizen0 ≥ 3. Setg =
g(1, k, n0) as described in Section 4.

2. First stage. Observe the outputxi,1, xi,2, . . . , xi,n0

of independent simulation runs fori = 1,2, . . . , k.
3. For each system, compute the first-stage sam

mean x̄i = ∑n0
j=1 xi,j /n0 and sample variance,

s2
i =

∑n0
j=1(xi,j − x̄i )2/(n0 − 1).

4. Compute the total number of runs for each syste

ni = max
{
n0,

⌈
g2s2

i

⌉}
.

5. Second stage. Obtain independent simulation o
put xi,n0+1, xi,n0+2, . . . , xi,ni for i = 1,2, . . . , k.

6. Compute the overall sample means for each syste
¯̄xi =∑ni

j=1 xi,j /ni .

7. Select systemd = arg maxi ¯̄xi as best.
ProcedureOCf does not need an indifference zon

parameter, and therefore has one less parameter in Ste
than Procedure R, using1 rather thanP ∗ andδ∗. The choice
of 1 should be tied to the economic value associated w
the simulated systems. If simulation is used to select t
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best of a set of manufacturing system designs, for examp
the simulation output can be taken to be realizations of th
revenue minus the cost over the usable lifetime of thos
systems. Smaller values of1 require more replications.
The cost of more replications can be traded off with a lowe
upper bound forE[OC]. This is similar to the tradeoff
between increasingP ∗ and running more replications.

3 ANALYSIS

This section shows how to select the parameterg in Step 4
of ProcedureOCf so that the expected opportunity cos
is bounded above by the maximum desired expected o
portunity cost,E[OC] ≤ 1, for all configurations of the
means. First we simplify the case of selecting fromk ≥ 2
systems to the case ofk = 2 systems by considering the
k−1 pairwise comparisons between systemsi and[k] (not
the k(k − 1)/2 comparisons between all pairs).

3.1 Opportunity Cost Bounds

Let X̄ = (X̄1, X̄2, . . . , X̄k) and S2 = (S2
1, S

2
2, . . . , S

2
k ) be

the vector of first stage sample means and variances. R
dom quantities are written in upper case and realizatio
are in lower case. The selected system,D, depends upon

the overall sample means,¯̄X = ( ¯̄X1,
¯̄X2, . . . ,

¯̄Xk).

D = arg max
j∈{1,2,...,k}

¯̄Xj

Let Di = arg maxj∈{i,[k]} ¯̄Xj be the random variable that
selects a system in a pairwise comparison between systemi

and[k], and defineδi = µ[k] −µi to be the difference in the
means of the best system and systemi, for all i 6= [k]. The
E[OC] for k systems is bounded from above by the sum
of the expected losses from thek−1 pairwise comparisons
(the best versus each alternative) becauseµ[k] − µD ≤∑k−1
i=1 µ[k] − µDi for each realization.

E[OC] = E ¯̄X,S2

[
µ[k] − µD

]
≤ E ¯̄X,S2

[
k−1∑
i=1

µ[k] − µDi
]

(1)

=
∑
i:i 6=[k]

E ¯̄Xi, ¯̄X[k],S2
i ,S

2[k]

[
δi1( ¯̄Xi> ¯̄X[k])

]
def=

∑
i:i 6=[k]

E[OCi]

The implication is that if we can guaranteeE[OCi] ≤
1/(k − 1) in each ofk − 1 pairwise comparisons, then an
,

-

n-
s

s

overall E[OC] guarantee is provided. We proceed along
lines analogous to Rinott (1978). For alli 6= [k], define

Zi = ( ¯̄Xi − µi)− ( ¯̄X[k] − µ[k])[
σ2
i

ni
+ σ2[k]

n[k]

]1/2 ,

Ri = δi[
σ2
i

ni
+ σ2[k]

n[k]

]1/2 .

Condition on the first stage sample variancesS2 = s2

(Rinott 1978), so that theni can be considered fixed. Then
1
( ¯̄Xi> ¯̄X[k]) = 1(Zi>Ri) andZi is a standard normal random

variable. Note thatni ≥ g2s2
i impliesRi ≥ Qi , where

Qi = gδi[
σ2
i

s2i
+ σ2[k]

s2[k]

]1/2

for all i 6= [k]. Therefore1(Zi>Ri) ≤ 1(Zi>Qi). Let8(·) be
the cumulative distribution function of a standard norma
random variable, and letφ(·) be its probability density
function. Then

E[OCi] ≤ E[E[δi1(Zi≥Qi) | S2
i , S

2[k]]]

= E

δi8
 −gδi[

σ2
i

S2
i

+ σ2[k]
S2[k]

]1/2




= E

δi8
 −gδi[
(n0 − 1)

(
1
Yi
+ 1

Y[k]

)] 1
2


(2)

where the final expectation is taken with respect to th
independent random variablesYj = (n0 − 1)S2

j /σ
2
j which

are known to have aχ2
n0−1 distribution.

Chooseg so that the right hand side of Equation (2)
equals1/(k− 1) to guarantee an expected lossE[OCi] ≤
1/(k−1) for a comparison with two systems. Inequality (1)
in turn implies that the overall expected opportunity cost i
less than1.

3.2 Finding g Given 1

Section 3.1 might suggest that we identify a parameterg

for a given maximum expected opportunity cost1, along
with a value ofδi that corresponds to an indifference-zone
parameter. Here, we turn the problem around and sho
that for a giveng, we can determine theleast favorable
δi = µ[k] − µi . The least favorableδi then determines a
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bound onE[OCi] for each pairwise comparison. Since
g determinesE[OCi], we take a given bound1 for the
expected opportunity cost, and find the smallestg that
delivers the guarantee. The guarantee is delivered forall
configuration of the means. That explains why Procedu
OCf does not have an indifference-zone parameter.

Let f (δi) be the upper bound in the right hand side o
Equation (2), viewed as a function ofδi . Then

W = −gδi
((n0 − 1)(1/Y1+ 1/Y2))1/2

f (δi) = E[δi8(W)]. (3)

The derivative off with respect toδi gives a first order
optimality condition for the least favorableδi .

df

dδi
= E[8(W)+Wφ(W)] = 0 (4)

Both the distribution of the random variable W and th
optimality condition areinvariant to transformationsof
(g, δi) to any (gα, δi/α), whereα > 0 is real-valued. The
implication is that knowing the LFC for any one value o
g immediately leads to a knowledge of the LFC for an
other value ofg. Similarly, the expected opportunity cost
bound for the comparison scales withδi (see Equation (2)).
SinceW depends upon theYi , and the distribution of the
Yi changes as a function ofn0, numerical solutions forδi
may be required for different values ofn0.

Figure 1 illustrates the scaling properties transform
tions from(g, δi) to (gα, δi/α). Doublingg from 0.5 to 1
halves the least favorableδi from 2.66 to 1.33, and the max-
imum pairwise loss drops from 0.576 to 0.288. Asδi → 0
the probability of an incorrect selection approaches 1/2, b
the penalty for choosing the wrong system goes to zero w
δi . As δi →∞ the penalty for an incorrect selection grows
without bound, but the probability of incorrect selection
goes to 0 so fast that expected opportunity cost approac
0. This discussion justifies the following characterizatio
of the least favorableδi , relative to Equation (2).

Lemma 1 Chooseβ, α > 0. Let δi = µ[k] −µi be
the LFC for a comparison between systemsi and [k] when
g = β, relative to Equation (2), so the resulting bound on
the expected opportunity cost isf (δi). Then the LFC if
g = βα is δi/α and the corresponding expected opportunit
cost bound isf (δi)/α.

The least favorableδi for a giveng can be determined
numerically. We did this for several values ofn0, and report
the results below in Section 4. Section 4 also indicates ho
to use a table to chooseg for Step 4 of ProcedureOCf to
guarantee that the overall expected opportunity costE[OC]
is less than the specified bound,1.
a

s
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Figure 1: The Upper BoundE[δi8(W)] for the Expected
Opportunity Cost, Given Several Values of the Allocation
Parameterg (k = 2, n0 = 5)

3.3 Opportunity Cost And Existing Procedures

This section shows that two previously proposed
indifference-zone procedures implicitly provide expecte
opportunity cost guarantees, even though they were initial
designed to provide guarantees for the selection probabili

Like ProcedureOCf , Procedure R of Rinott (1978)
allocates a total number of observations that is proportion
to the first-stage sample variance and selects the system w
the best overall sample mean. This suggests that Proced
R also provides an expected opportunity cost guarantee

Lemma 2 Procedure R provides an expected op
portunity cost guarantee for all configurations of the means
not just those in the indifference-zone.

Proof: Recall that Procedure R obtains a minimum
probability of correct selection ofP ∗ when the best system
is at leastδ∗ better than the others by setting

ni = max

{
n0,

⌈(
h

δ∗

)2

s2
i

⌉}
, (5)

where h = h(k, P ∗, n0 − 1) is the solution to Rinott’s
integral (e.g., see Bechhofer, Santner, and Goldsman 199
Setg = h/δ∗. By the results in Section 3, the choice ofδ∗
andP ∗ implicitly determine anE[OC] guarantee forall
configurations of the means. Conversely, the choice of a
E[OC] guarantee determines the value ofg, which in turn
determines an implied indifference-zone parameterδ∗ for
each desiredP ∗. 2

Nelson and Banerjee (2001) present procedures th
provide a probability ofgoodselection, P(GS), guarantee,
meaning that a lower bound for the probability of selecting
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system withinδ∗ of the best is provided for any configuration
of the mean. One of them, Procedure S, allocates a to
number of samples proportional to the first stage sam
mean, and selects the system with the largest overall sam
mean as best. Therefore Procedure S also provides
implicit expected opportunity cost guarantee.

Lemma 3 Procedure S (Nelson and Banerjee 2001
provides an expected opportunity cost guarantee for
configurations of the means.

Proof: Same as for Lemma 2, exceptg = √2vP
∗

n0−1/δ
∗

is the analogous factor for Procedure S. 2

Interestingly, the LFC for Procedure R and Procedu
S with respect to the probability of correct selectionmay
or may notbe the same as the LFC for those procedur
with respect to the expected opportunity cost. Section 5
explores this issue in more detail.

Procedure R and Procedure S may require more re
cations than are needed because it they are statistic
conservative. Both procedures ignore first stage inform
tion about the sample mean. All systems have a to
number of observations proportional to the first stage sa
ple variance, even if the first stage sample means of so
systems are significantly inferior (with high probability)
ProcedureOCf suffers from the same criticism. Nelson
Swann, Goldsman, and Song (2001) proposed combin
screening and selection procedures to address the statis
conservatism of indifference zone procedures. The idea
to screen out systems whose first stage sample mean
variance indicate that they are not likely contenders for t
‘best’. A second stage then allocates samples proportio
to the sample variances of the remaining systems in a w
that guarantees P(CS)≥ P ∗. An area for future work is the
development of a combined screening/selection proced
that can provide an expected opportunity cost guaran
with potentially fewer replications.

4 TABLE FOR PROCEDURE OCf

Table 1 gives the LFC for a comparison betweenk = 2
systems,[k] andi, as a function of the number of first stag
replicationsn0 of each system. The table presumesg = 1,
and defines the LFC to be the value ofδi = µ[k] − µi
that maximizes the upper boundE[OCi] for the expected
opportunity cost of a comparison in Equation (2). The tab
also gives the value of that bound when the means are
the LFC. If g 6= 1, Lemma 1 says that the correspondin
values of the LFC andE[OCi] are obtained by dividing
the appropriate values in the table byg.

Table 1 is straightforward to use. Suppose that the
arek = 5 systems, thatn0 = 10 replications are to be run
for each system during the first stage, and that the maxim
acceptableE[OC] is 1 = 0.4. The correct factorg for
ProcedureOCf to guaranteeE[OC] ≤ 1 is determined
as follows. There arek − 1 = 4 comparisons between
al
e
le
n

l

s
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Table 1: Least Favorableδi = µ[k] −
µi for ProcedureOCf and Loss for
Given Number of First Stage Replica-
tions,n0, Assumingg = 1, k = 2
n0 LF δ̂i ˆE[OCi] ˆSEE[OCi ]
3 1.767 0.3524 0.0004
4 1.449 0.3078 0.0003
5 1.330 0.2886 0.0002
6 1.267 0.2779 0.0002
7 1.227 0.2711 0.0001
8 1.201 0.2663 0.0001
9 1.182 0.2629 0.0001

10 1.167 0.2602 0.0001
11 1.156 0.2581 0.0001
12 1.147 0.2564 0.0001
13 1.139 0.2550 0.0001
14 1.133 0.2539 0.0001
15 1.128 0.2529 0.0001
16 1.123 0.2520 0.0001
17 1.119 0.2513 0.0001
18 1.116 0.2506 0.0001
19 1.113 0.2500 0.0001
20 1.110 0.2495 0.0001

each alternate and the best, so the acceptable maxim
loss per paired comparison is1/(k − 1) = 0.1. The
opportunity cost entry in Table 1 corresponding ton0 = 10
is E[OCi] = 0.2602. By setting

g = E[OCi]
1/(k − 1)

= 0.2602

0.1
= 2.602,

we can guarantee theE[OC] bound.
TheE[OCi] estimates in Table 1 were determined by

generating 200,000 values of(Y1, Y2) for Equation (3) using
CRN across the values ofn0 and have a standard error given
by ˆSEE[OCi ]. The least favorableδi = µ[k] − µi for each
n0 was determined by sample path optimization with the
fminsearch function of Matlab. The estimation process
was repeated several times for the smaller values ofn0,
which have a larger standard error. The estimated valu
of the least favorableδi varied within±0.003 of the values
reported in the table.

5 EXPERIMENTAL RESULTS

This section examines ProcedureOCf with simulation.

5.1 Tightness of Bound and the Variance

The LFC in Table 1, relative to the opportunity cost bound
does not depend upon the variance of each system. Th
raises the question of how tight the bound may be as
function of the size of the variances of each system. As th
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Figure 2: Expected Opportunity Cost as Function of a Com
mon Varianceσ 2 (k = 2, δi = 1.33, n0 = 5, g = 1)

variances go to 0, the chance of an incorrect selection and th
expected opportunity cost go to 0, because then0 first stage
replications will accurately identify the relative order of the
means, and additional replications will be required extremely
rarely. The bound is expected to be tighter if all systems hav
larger variances, as theχ2 approximation is better when the
total number of replications is less likely to be constrained
by the first stage sample size (ni = max{n0,

⌈
g2s2

i

⌉}).
Figure 2 illustrates the tightness of the bound improves

as the variance increases for a comparison ofk = 2 systems
with g = 1,n0 = 5, δi = 1.33 (the least favorableδi relative
to the bound for losses in Equation (3)). The graph presume
a common varianceσ 2 = σ 2[k] = σ 2

i , and was generated
with 50,000 applications of the selection procedure for eac
value of σ 2. The 90% CI is demarcated with the dotted
lines. For small values of the variance the expected los
well below the bound, but when the variance is on the
order of 100 the expected opportunity cost is quite close
to the theoretical upper bound. The majority of the loss
increases occurs asσ 2 rises in the range from 1 to 10. The
same qualitative phenomenon was observed in numeric
experiments withn0 = 10.

5.2 Bound: δi and Variance Interaction

The bound onE[OCi] is relatively tight for large variances
(e.g. on the order of 100 or more) when the difference in
means is close to the least favorableδi . Figure 3 shows
how tight the bound forE[OCi] is to the actual opportunity
cost lost in a comparison (k = 2) over a range ofδi for
‘small’, ‘medium’ and ‘large’ values of the variance of both
systems (25000 applications of the selection procedure fo
each combination ofδi andσ 2).
-

e

e
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s

l

r
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Figure 3: Expected Opportunity Cost in Comparison, Com
pared with Bound, Commonσ 2 (k = 2, n0 = 5, g = 1)

Figure 3 suggests that a smaller value ofg may be
used in a variation of ProcedureOCf that requires the
variance of each system be less than or equal to a thresh
(an indifference-zone like constraint on the variances rath
than the means). Losses appear to be smaller for sma
values of the variance, and the least favorableδi seems to
decrease as the maximum allowable variance is decrea

5.3 Slack in Bound for k > 2

The upper bound forE[OC] in Equation (1) may be loose
when more than two systems are being compared beca
the bound adds the sum of maximum losses fromk − 1
comparisons with 2 systems. That bound is therefore ana
gous to a P(CS) bound with the Bonferroni inequality. Th
section examines how loose the bound is with a numeri
experiment fork = 2,3,5 and 10 systems.

Figure 4 illustrates the expected opportunity cost
a function of the difference between the best system a
the performance of each of the other systems (50,000
plications of the selection procedure for each combinati
of δi and k). The variance of each system is presumed
be 100. The figure suggests that the value ofδi for the
least favorable slippage configuration (each of the nonb
systems has the same mean, so theδi are the same for all
i 6= [k]) appears to increase as a function ofk. A proof
of this, and a proof of the conjecture that the LFC is
slippage configuration when the variance of each syst
is the same, is an area for future work. If the conjectu
is true, tables for the least favorableδi and the worst case
E[OC] would be straightforward to construct.

Figure 4 also confirms the looseness in the bound d
to the Bonferroni-like summation of losses. The maximu
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Figure 4: Estimate of Expected Opportunity Cost withk ≥ 2
Simulated Systems (For Commonσ 2 = 100,n0 = 5,g = 1)

loss whenk = 3 systems are compared (two comparison
of two systems) is approximately 0.45, and is less than
two times the loss from one comparison of two system
2 × 0.288 ≈ 0.576. More starkly, the worst-case when
k = 10, which has nine comparisons with 2 systems,
certainly less than nine times the worst case loss w
k = 2. Slepian’s inequality is a tool for improving upon the
Bonferonni inequality for P(CS) bounds. The developme
of better bounds whenk > 2 for more general loss functions,
like the expected opportunity cost, is an area of future wor

The analysis above presumes that each system has
same variance. Figure 5 describes one situation when
variances are different in a comparison ofk = 3 systems
(40,000 applications of the selection procedure for ea
combination ofδi , with σ 2

1 = 5, σ 2
2 = 10, σ 2

3 = 10).
The figure presents a contour plot of the estimated expec
opportunity cost lost as a function of the differences betwe
the best system. The LFC still appears to be near the slipp
configuration. Analytically one would suspect this whe
the variances are all large, since the ‘max’ operator for t
second stage allocation would have less effect, so theχ2

distribution approximation in Equation (2) improves. Whe
one variance is particularly small the second stage allocat
will most likely be zero. This may cause the LFC to not b
a slippage configuration if the variance of different system
are constrained to be small with different upper bounds

5.4 P(CS) andδ∗ versus E[OC]

Specifying a P(CS) ofP ∗ and indifference zone paramete
δ∗ for Procedure R leads to an expected opportunity cost
δ∗(1−P ∗) when the means are in the LFC for Procedure
But this is not the LFC for ProcedureOCf , so theE[OC]
may differ fromδ∗(1− P ∗).
e
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Figure 5: Expected Opportunity Cost withk = 3
Simulated Systems (Differentσ 2
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Consider the casek = 2. The second stage alloction
of Procedure R withn0 = 5 andP ∗ = 0.95 depends upon
the constanth = h(2,0.95,5−1) = 3.107 (see Bechhofer,
Santner, and Goldsman 1995, p. 63). Ifδ∗ = 1, that
corresponds to a value ofg = h/δ∗ = 3.107. The LFC
for Procedure R under these assumptions isδi = 1, with
expected opportunity cost 1× (1− 0.95) = 0.05. But the
LFC for ProcedureOCf with g = 3.107 isδi = 1.330/g =
0.428. The associatedE[OC] bound is 0.2886/g = 0.0929,
which is greater than theE[OC] of 0.05 that occurs in the
LFC for Procedure R. More generally, the LFC for Procedur
OCf may lead to a more severe E[OC] than the E[OC
associated with the LFC of Procedure R. The implication
is that specifyingP ∗ and δ∗ with Procedure R doesnot
give an accurate bound for an expected opportunity co
guarantee1.

On the other hand, ifP ∗ andδ∗ are selected by a decision
maker with the idea that a maximum expected opportunit
cost of1 = δ∗(1− P ∗) is tolerable, then ProcedureOCf
can be used with that1. Typically this will require more
replications than required by an indifference-zone procedu
with parametersP ∗, δ∗, becauseE[OC] ≤ 1 is guaranteed
overall configurations of the means, not just for the slippage
configuration determined byδ∗.

6 IS THE LFC FOR PROCEDURE OCf A
SLIPPAGE CONFIGURATION?

The above sections provide some analytical results, som
empirical observations, and several questions. One questi
is whether or not the LFC for ProcedureOCf is a slippage
configuration whenk > 2. This section provides a prelim-
inary analysis that indicates that the slippage configuratio
satisfies first order optimality conditions for being a LFC
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when k = 3 at least one of two special assumptions is
true—if the variances of all nonbest systems are the sam
(a weak form of homoscedasticity), or when the variance
all approach infinity together (an asymptotic argument).

SinceE[OC] is not convex even ifk = 2 (see Figure 3),
using convexity in theδi to show that the LFC is a SC
is not viable. The approach taken here is to find the LFC
subject to the constraint that theδi lie on a given simplex,∑
i 6=[k] δi = c, with δi ≥ 0 for i 6= [k]. If the LFC for each

simplex is a SC, then the LFC over allδi ≥ 0 is then the
least favorable SC.

Suppose that there arek = 3 systems, and without
loss of generality (WLOG) suppose that the best is system
[k] = 3. We proceed by first examining the loss contributed
by systems 1 and 2, and try to find the least favorableδi
for those two systems, subject to the constraintδ1+ δ2 = c.
Condition on the values of̄̄x3 and eachs2

i . A loss of δ1 is
incurred when the overall sample mean of system 1 excee
that of all other systems. The probability of that event can
be determined by conditioning on whether or not system
exceeds̄̄x3. Setai = (σ 2

i /ni)
−1/2. Recall thatδ2 = c− δ1

and that the¯̄Xi are conditionally independent and normally
distributed, given thes2

i , to obtain

Pr( ¯̄X1 > ¯̄x3,
¯̄X1 >

¯̄X2) (6)

= E[1
( ¯̄X1> ¯̄x3>

¯̄X2)
+ 1

( ¯̄X1>
¯̄X2> ¯̄x3)

]
= 8[−( ¯̄x3+ δ1)a1]8[( ¯̄x3+ c − δ1)a2]
+E ¯̄X2

[1
( ¯̄X2> ¯̄x3)

8[−( ¯̄X2+ δ1)a1]]

and

Pr( ¯̄X2 > ¯̄x3,
¯̄X2 >

¯̄X1) (7)

= 8[( ¯̄x3+ δ1)a1]8[−( ¯̄x3+ c − δ1)a2]
+E ¯̄X1

[1
( ¯̄X1> ¯̄x3)

8[−( ¯̄X1+ c − δ1)a2]].

The expected lossH( ¯̄x3, δ1), conditional on ¯̄x3 and the
ai = (σ 2

i /ni)
−1/2, due to systems 1 and 2 is

H( ¯̄x3, δ1) = δ1 Pr( ¯̄X1 > ¯̄x3,
¯̄X1 >

¯̄X2) (8)

+(c − δ1)Pr( ¯̄X2 > ¯̄x3,
¯̄X2 >

¯̄X1),

so the unconditional loss contributed by systems 1 and 2

E ¯̄X3,S
2
i

[H( ¯̄x3, δ1) | ¯̄X3 = ¯̄x3, S
2
i = s2

i ]. (9)

The first order optimality condition for the LFC, givenδ1+
δ2 = c, is ∂E[H ]/∂δ1 = 0. The functionH is sufficiently
e
s

s

is

‘nice’ to interchange the derivative and expectation, resultin
in the conditionE[∂H/∂δ1] = 0, where

∂H

∂δ1
= 8[−( ¯̄x3+ δ1)a1]8[( ¯̄x3+ c − δ1)a2] (10)

− a1δ1φ(−( ¯̄x3+ δ1)a1)8[( ¯̄x3+ c − δ1)a2]
− a2δ18(−( ¯̄x3+ δ1)a1)φ[( ¯̄x3+ c − δ1)a2]
+ E ¯̄X2

[1
( ¯̄X2> ¯̄x3)

8[−( ¯̄X2+ δ1)a1]]
− a1δ1E ¯̄X2

[1
( ¯̄X2> ¯̄x3)

φ[−( ¯̄X2+ δ1)a1]]
− 8[( ¯̄x3+ δ1)a1]8[−( ¯̄x3+ c − δ1)a2]
+ a1(c − δ1)φ(( ¯̄x3+ δ1)a1)8[−( ¯̄x3+ c − δ1)a2]
+ a2(c − δ1)8(( ¯̄x3+ δ1)a1)φ[−( ¯̄x3+ c − δ1)a2]
− E ¯̄X1

[1
( ¯̄X1> ¯̄x3)

8[−( ¯̄X1+ c − δ1)a2]]
+ a2(c − δ1)E ¯̄X1

[1
( ¯̄X1> ¯̄x3)

φ[−( ¯̄X1+ c − δ1)a2]].

Lemma 4 Supposek = 3. If theai are independent
and identically distributed (i.i.d.) for all i 6= [k], then the
slippage configuration satisfies the first order optimality
conditions for being a LFC of ProcedureOCf .

Proof: Suppose that theai are independent and identi-
cally distributed, for alli 6= [k], and letc ≥ 0 be arbitrary.
WLOG assume[k] = 3. If δ1 = δ2 = c/2, the first and sixth
terms of Equation (10) cancel when the expectation ove
a1, a2 is taken (which is equivalent to taking the expectation
over s2

1, s
2
2). Similarly the fourth and ninth terms cancel,

and the fifth and tenth terms cancel in expectation. Som
algebra indicates that the sum of the remaining four terms
also 0 in expectation. This is true for all¯̄x3, and therefore
this first order optimality condition also holds when the
expectation over̄̄x3 is taken. 2

Further inspection indicates thatE[H( ¯̄x3, δ1) | ¯̄x3] =
E[H( ¯̄x3, c − δ1) | ¯̄x3], soE[H( ¯̄x3, δ1) | ¯̄x3] is symmetric
aboutδ1 = c/2 when theai are i.i.d.. We hypothesize but
do not prove further optimality properties fork ≥ 2.

Corollary 5 Supposek = 3. The slippage config-
uration satisfies the first order condition for the LFC of
ProcedureOCf if the variance of each system is the same
i.e. σ 2

i = σ 2, for all i 6= [k].
Proof: Assume thatσ 2

i = σ 2 for all i 6= [k]. Then the
distributions of thes2

i are the same, so the distribution of
theni = max{n0,

⌈
g2s2

i

⌉} are the same (for alli 6= [k]), as
are the distributions of theai = (σ 2

i /ni)
−1/2. 2

The conclusions of Corollary 5 are therefore also true
for the homoscedastic case, whenall systems, including the
best, have the same variance. The conclusions of Corollary
asymptoticallycover the heteroscedastic case.

Corollary 6 Supposek = 3. The slippage con-
figuration satisfies the first order conditions to be a LFC
of ProcedureOCf asymptotically as the variances of all
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systems go to infinity together, i.e. whenV ar[Xi,j ] = κσ 2
i

for eachi, in the limit κ →∞.
Proof: Under the assumption of the hypothesis, a

κ → ∞, the distribution ofa2
i (n0 − 1)/g2 approaches a

χ2
n0−1 distribution, for all i (Section 3 or Rinott 1978).2

If the slippage configuration eventually is shown to b
the LFC for k = 3 (not just satisfying first order condi-
tions) and eventually fork > 3, subject to the constraint∑
i 6=[k] δi = c, as we hypothesize, this transforms ak − 1

dimensional problem involving allδi into a one dimensional
problem of finding the least favorable slippage configura
tion. Tables for the least favorableδi as a function ofn0
andk could be constructed on that basis. Checking seco
order optimality conditions is an area for future work.

7 CONCLUSIONS

This paper appears to provide the first selection procedu
that guarantees an upper bound for the expected opportun
cost, taken in a frequentist sense. The analysis sho
that the indifference-zone parameterδ∗ can be dispensed
with for this procedure. Further, we proved that som
existing indifference-zone procedures have implicit expect
opportunity cost guarantees for all configurations of th
means, even though the LFC with respect to the probabil
of correct selection may not be the same as the LFC f
the expected opportunity cost.

The paper identified several potential areas for futu
research in the area of frequentist style guarantees for
expected opportunity cost or other loss functions. A proo
that the LFC is a slippage configuration would facilitat
the development of tables whenk > 2 that would im-
prove sampling efficiency. Further improvements woul
be anticipated if combined screening/selection procedur
could be developed. Extensions to handle common ra
dom numbers are also of interest. Alternately, developin
variations of Bayesian decision-theoretic procedures in o
der to provide frequentist guarantees is an alternate ro
for cross-fertilization. Allocating replications proportiona
to the first stage sample variances appears to simplify t
analysis due to the independence of the sample variance
sample mean. The Bayesian allocations do not have th
property, so a frequentist analysis for a Bayesian allocati
appears to be more challenging.
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