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ABSTRACT

conductb independent replications, each only of lengif
The trade-offs between the two alternatives are well known:

When designing steady-state computer simulation exper- Batching ameliorates the effects of initialization bias (if it is

iments, one is often faced with the choice of batching present), but produces batch means that often are correlated;
observations in one long run or replicating a number of replicationyields independent sample means, but may suffer
smaller runs. Both methods are potentially useful in simu- from initialization bias at the beginning of each of the runs.
lation output analysis. In its simplest form, the choice boils So what should we use for steady-state simulation output

down to: Should we divide one long run intbadjacent,
nonoverlapping batches, each of sia® Or should we
conductb independent replications, each of lengt?

We give results and examples to lend insight as to when

one method might be preferred over the other. In the steady-

analysis — the method of independent replications (IR) or
batch means (BM)?

There is a wide literature on the subject, outlined in
Alexopoulos and Goldsman (2003). Our analysis com-
plements Whitt (1991), who also studied the problem of

state case, batching and replication perform about the sameone long run versus independent replications based on the
in terms of estimating the mean and variance parameter, efficiency of the estimator of..

though replication tends to do better than batching when it
comes to the performance of confidence intervals for the

The organization of the rest of the article is as follows.
Section2 gives some relevant background and notation,

mean. On the other hand, batching can often do better than while Sections3 and 4 provide our main findings. Our

replication when it comes to point and confidence-interval

claims are supported in Sectibpwhich providesillustrative

estimation of the steady-state mean in the presence of anexamples. We end up showing that IR does just fine in

initial transient. This is not particularly surprising, and is
a common rule of thumb in the folklore.

1 INTRODUCTION

The purpose of this article is to compare the methods of

the steady-state case, but certain initial transients ruin the
performance of IR without straining that of BM too badly.
Section6 wraps up the discussion with some final thoughts.

2 BACKGROUND

batch means and independent replications in the context of In this section we define the problem of interest and present

steady-state simulation output analysis.

When designing steady-state computer simulation ex-
periments, one is often faced with the choice of batch-
ing observations in one long run or replicating a number
of smaller runs. Both methods are potentially useful in
simulation output analysis, where we might be interested
in obtaining confidence intervals (CI's) for the unknown
steady-state mean, or at least in obtaining estimates for

the notation to be used in the sequel.

The goal is to estimate the mean of a stationary
stochastic processSy, ¢ > 1}, e.g., a steady-state simula-
tion output process. The natural point estimatorifds the
sample mean based onobservationsS, = n—1 Z?zl S.

A wise, statistically sound practice is to supplement the
sample mean with a measure of its precision. Relevant
steady-state performance measuressgre= n Var(S,) and

the variance of the sample mean, the obvious point estimator the associategariance parameters? = limp_, o2, Es-

for w.

Inits simplest form, the choice of batching or replicating
boils downto: Should we divide one long runirtadjacent,
nonoverlapping batches, each of sim® Or should we
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timators fore? ando? can subsequently be used to obtain
CI's for i, among other things. The two simplest and most
widely used approaches for estimating and 2 are IR
and BM. For good introductory references on these and
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other variance estimators, see Alexopoulos and Seila (1998),

Fishman (2001), or Law and Kelton (2000).
2.1 Some Notation and Definitions

We use some additional notation and definitions throughout
the paper.

The quantitiesS;, &, ... always denote stationary ob-
servations. By contrasi1, Xo, ... denote generic obser-
vations — sometimes they will be stationary (Sect@)n
sometimes not (Sectiot). Sometimes the observations will
be divided into independentreplications, and sometimes into
batches. We generally use the notatidfg,, Y2.m, ... and

Y, for the replicate sample means and grand sample mean

from all of the replicates, respectively; the analogous no-
tations X1.m, Xa.m, ... and X, are reserved for the batch
sample means and grand mean from all of the batches.

For a stationary proces§&}, the autocovariance func-
tion is denotedRj = Cov(S;, Si+j), | = 0,£1, £2,....
This leads to the well-known alternative expressions

n—-1 .
[
Ro+2y" <1—H)R
i=1
and, if 372, jIRj| < oo,

o2 = iRﬁ.

|=—00

2
On

In addition, we define the related “center-of-gravity” con-
stanty = -2 Z‘j’o:l JRj (Songand Schmeiser 1995). Along
the way, we will also assume that the procesg-isixing
(Billingsley 1968). Informallyg-mixing means that events
in the distant future are approximately independent of those
in the past.

The “little-oh” notation f (m) = o(g(m)) means that
f(my/g(m) — 0 asm — oo. The “big-oh” notation
f (m) = O(g(m)) means that f (m)/g(m)| < C for some
constantC and allm > 1.

2.2 Independent Replications

Here we condudb independent replications of a simulation
procesg X,}. We will assume that the replication length

is fixed and common among thereplications. Denoting
by Xi,j the jth observation from replication we have the
following allocation of then = bm observations.

Replication 1: X1.1, X1.2, ..y X1.m
Replication 2: X2.1, X2.2, ..., Xom
Replicationb: Xb.1, Xb.25 - - - » Xb.m
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For each of these replications, we calculate a replicate
(sample) meal; m =m~* > 1L Xij,i =1,2....b. By
the way in which the replications are run, we see that the
replicate means are independent and identically distributed
(i.i.d.) random variables (r.v.’s); and if the procegs§} is
stationary with meagp, then the replicate means have mean
w and variancevar(Y; m) = o2/m.
The IR estimator for the steady-state meais simply
the grand sample mean from théndependent replications,
Yo =b 1YL Yim. If (X} is stationary with mean,
thenE[Y,] = i, and so the grand mean is unbiased for
The IR estimator fow? is

o~

b
__m vi 7 12
VR = m;(“,m—Yn) .

Since Vg is m times the sample variance of the replicate
means, it follows thatVg is an unbiased estimator for
mVar(Yim), i.e.,

E[VRr]

= mvar(Yim). 1)

In addition, if {X,} is stationary, therE[VR] = 0.2
2.3 Batch Means

Here we conduct one long run of the simulation, say of
lengthn, and we divide the observations<y, Xo, ..., Xj
into b adjacent, nonoverlapping batches, each of size
(assuming thah = mb).

Batch 1: X1, X2, ..., Xm
Batch 2: Xm+1, Xm+2, ey X2m
Batchb: Xb—nm+1s Xb—1m+2; - - -» Xn

For each of these batches, we calculate th&ch mean
)_(i,m =m1 Zrkn=1 Xi—pm+k, fori =1,2,...,b.

The BM estimator foy: is the grand sample mean from
the b batch meansXn = b 13 P, Xim=n"13"1_ X,.
Stationarity implies thaE[Xn] = 1, So the grand mean is
unbiased forw; and the variance of the grand mean is, by
definition, Var(Xn) = o2/n.

The BM estimator foro? is

b
m — _
= m Z(Xi,m - Xn)z-

i=1

Vg

For large batch sizen, the experimenter assumes that the
batch means are approximately i.i.d. normal r.v.'s with mean
u and unknown variancer%/m = Var(Xj m); this assump-
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tion motivates estimation @f2 = 2 by mtimes the sample
variance of the batch means.

3 IR/ BM STEADY-STATE COMPARISON

In this section, we assume that the process starts off and
remains in steady state. For comparison purposes, we
will assume that the IR and BM competitors use equivalent
replication/batch sizen and numbers of replications/batches
b. We will compare the IR and BM estimators as applied to
the point estimation ofc (Section3.1), the point estimation

of o2 (Section3.2), and confidence interval estimation for

u (Section3.3).

3.1 Estimators for the Mean

We compare the mean squared errors (MSE'&haind Xy,
the IR and BM estimators, respectively, for the steady-state
meanu. As pointed out in Sectiora2and2.3, bothY,, and
X, are unbiased fop. Thus,MSE(Yy; 1) = Var(Ys) and
MSE (Xn; ) = Var(Xn). The following lemma provides
relevant expressions for these variances.

Lemma 1l (Songand Schmeiser 1995; Titus 1985).
If {X,} is stationary withE[X7] < oo, and¢-mixing with
¢k = O(k=4=¢) for somee > 0, then

_ 1
02 = mVar(Y,m) = 02+%+0<m).

(2)
Using Lemmal and the fact that the replications are
independent, we eventually have
1
nm)’

implying that the difference in MSE’s is very small.
Remark 1 Most queue waiting processes tend to
have a positive autocorrelation structure, for which it turns
out thaty < 0, ands? converges ta? from below. So in
this case MSE(Yy; 1) is a tad smaller thaMSE(Xp; ).

V(b_1)+0

MSE (Vn; ;1) = MSE (Xn: 1) -

3.2 Estimators for the Variance Parameter

We divide the analysis into three portions: Derivations for
IR, derivations for BM, and then a comparison.

3.2.1 Independent Replications

Suppose thatX,} is stationary and satisfies the conditions
of Lemmal. Then Equationsl) and @) imply

E[VR]

oh 3)

2 Y
— 4+ 0(1/m),
G+m+(/)
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which yields an explicit expression for the bias & as
an estimator o2
Assuming the replicate means have finite and well-
defined fourth moments, it can be shown that
b-3
b-1
(4)

4
— oy

bVar(Vr) m2E[(Yo.m — )]

+o()

(see Kang and Goldsman 1990 and Alexopoulos and Golds-
man 2003, among others, for details).

Actually, some more simplification is possible if we
are willing to assume tha¥y, is normal (e.g., ifm is
sufficiently large). Then we have the exact result

2bo?
b-1

1

m

4
207,

Var(VR) = Y

®)

which looks familiar — for if we assume that the replicate
means are i.i.d. normal, thés ~ 02 x2(b — 1)/(b — 1),
where x2(v) is the chi-square distribution with degrees
of freedom. If we believe this distributional assumption,
the variance from Equatiorb) follows.

3.2.2 Batch Means

We have some analogous expressions for the expected value
and variance of the BM estimator for?, the latter result
requiring a couple of additional assumptions on the process
{Xe} .

Theorem 1 If the process{X,} is stationary with
> 21 iIRjl < oo, then

~ b+1 1
E[Ve] = 02+Zi——l+o<—). ©)
n m
Theorem 2 (Goldsman and Meketon 1986; Song

and Schmeiser 1995; and Chien, Goldsman, and Melamed
1997.) Suppose that the process,} is stationary with
E[X}?] < co and¢-mixing with ¢, = O(k=®). Then
bVar(Vg) = 20+ o(1), 7)

the last equality holding as1 — co andb — oc.

In addition, for fixedb, different, but still mild, moment
and mixing conditions imply/s 3 o2x2(b— 1)/(b — 1)
asm — oo (cf. Glynn and Whitt 1991).
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3.2.3 Comparison limit theorem, as the batch siz@ becomes large (with
fixed number of batchels), we have
What about the MSE’s for the IR and BM estimators for

o2 in the steady-state case? By EquatioBjsand €), we _ —
have Priu € Xnita/Z,b—lw/VB/n - 1—«

22 i e2 7.
Bias®(Vr; 0%)—Bias® (Vi o) = n2 m2 erage probability approaches the nominal valued. But

for small values ofm, the estimatoiVg is biased foro2
By Equations 4) and (7), we haveVar(Vg) = Var(VRr) + (ands?), and so the coverage probability is often less than
o(1). So, up to the order terms, we cannot really distinguish nominal for systems with positive autocorrelation (see, e.g.,
between the IR and BM variances. And then we see that Sargent, Kang, and Goldsman 1992).

_y2(2b+ 1) +o( 1 ) (see, e.g., Glynn and Iglehart 1990). Hence, the true cov-

MSE(Vg: o2) andMSE (Vg; o2) differ by only small-order Although we cannot give a general expression for the

terms. coverage probability, we can at least do so for the special
case ofb = 2 batches. . .

3.3 Confidence Intervals for the Mean Proposition 1 If b = 2 batch meanX1 m andXz m

are bivariate normal, both with marginal mgaand variance
The analysis on CI's fog. turns out to be difficult. On  o2/m, then the probability that the CBY will cover . is
one hand, we assumed in this section that the replicate and

batch means all have the same (steady-state) distribution. c _ v G

) . VG = Pr € Xp=xt Ve/n
On the other, we might encounter some problems since H n £ la21yVe/
neither the replicate nor batch means are necessarily nor- o
mal, or since the batch means are not even independent. = 2R (ta/Z,l\/ Gm/0n> -1

Neverthelessfor purposes of the rough-cut analysis of the

present subsectiowe shall assume for now that the repli-  whereF(;,(-) is the cumulative distribution function (c.d.f.)
cate and batch means are identically distributed from the of thet(1) (Cauchy) distribution and

steady-state normal distribution.

3.3.1 Independent Replications

Example 1  Consider the stationary first-order mov-

The well-known 1001 — «)% IR CI for w is ing average proces{; = €; + 0¢_1, £ > 1, where the
€¢'s are i.i.d. No(0, 1) r.v.’s. This process has covariance
e Yot ta/2,b—1\/\7R/n, (8) function Ry = 1+ 0%, Ry; = 6, andR = 0, otherwise.

It is easy to show that

wheretg , is the 8 quantile of Student’s distribution with 5 5
v degrees of freedom. Under the liberal assumptions of this oy = 0" +y/n,
subsection, this Cl achievgerfect coverage

Theorem 3 If the replicate means are i.i.d. normal ~ With
Wlt.h meanu, then the probability that the C8)f will cover 62 = 1+60)2 and y = —20.
wu is exactly 1— «.

Further,
3.3.2 Batch Means _ _
Cov(Xym, Xom) = 6/m?,

— 0, i
The 1001 — )% BM Cl for . is So for the case = 2m (b = 2), we see that

i € Xn%ty20-11/Ve/N. 9 52 o2 -3
O’n2 o 02—%

Unfortunately, things do not work out as smoothly for the

BM ClI as they did for the IR CI, even under the liberal 5.4 can conclude from Propositidnthat the coverage is
assumptions of this subsection, for the batch means are _ [>]1—«if 6 > [<]0. &
not independent. The good news is that under the mild

assumption that the process satisfies a functional central

484



Alexopoulos and Goldsman

3.4 Steady-State Recap Similarly, the grand sample mean of théatches of Model
(10) is Xn = S + @n, whereda, = n"1Y}_ja. Thus,
Almost all of the results in Sectiorg1and3.2indicate that the ith batch mearX; n, under Model 10) has expected
the IR and BM methods perform similarly when it comes value u + & m and variancea,%/m, fori =1,2,...,h.
to point estimation fop. ando? — except perhaps for the  Finally, the grand sample meafy, of all the batch means
meaningless case of very small sample sizes. However, the has expected valug + &, and variances2/n.
results in Sectior8.3 seem to say that IR has an advantage With our simple additive transient functiga, } in mind,
over BM in terms of the steady-state performance of the Section4.1compares the IR and BM estimators as applied
respective Cl's fop. But the victory is hollow, since some  to the point estimation oft under Model 10), Section4.2
serious problems arise if the process under study does notdoes the same for2, and Sectiord.3 is concerned with
happen to be in steady state. the CI estimation fouu.

4 IR/ BM TRANSIENT COMPARISON 4.1 Estimators for the Mean

The main reason for skepticism concerning the use of IR Under Model (0),

is the stationarity issue; and in this section, we examine

what happens in the nonstationary case. Now the observa- E[Y,] = E[Yim] = u+am and E[Xp] = u + an,
tions { X} start off polluted by a transient function, before

eventually settling down to steady state. To keep things as and (as in Sectioi.1)

simple as possible, and still make our points, we will study

the model Var(Yn) = o2/n and Var(Xn) = o2/n.

Xe = S +a, (10) Then we get

=12, ..., where{S} is astationaryprocess with mean _ _

w, and{a,} is simply a sequence of constants converging MSE (Yn; 1) — MSE(Xn; w)

to zero. _ _ _ _ é,%—éﬁJr)/(bz 1)+0<i>,

Still more notation. LetS j be the jth observation n nm

from replicationi of the stationary processS}, for i =

1,2,....,bandj = 1,2,...,m. We denote the replicate ~ AS we commented in Sectidhl, the last two terms in this

means of the procesty} by Tim. Tam. ... Tom, i.€., difference are probably very small. Thus, it may very well

-fi’m = m! Z?Ll S, fori = 1,2,...,b. Further, let be that the bulk of the difference in the MSE'’s is contained
in the first term,a2 — &2. If the underlying stochastic

procesg X;} eventually reaches steady state, then we must

havea;, — 0 ast¢ — oo. So it is reasonable to assume that

a2 > a2; and if m is small enough and is large enough,

it may even be the case thaf, > a2.

T,=b1 Zibzl'l_'i,m be the grand sample mean taken over
the b independent replications of the procg$§s}. Thus,
definingdm = m1 Z?:l a;, we can express ModelQ)'’s
replicate means in terms of those from the stationary process
{S): Yim = Tim+am,i =1,2,..., b, Similarly, the grand
sample mean of thé replicates of Model 10) is Y, =

Tn + am. We see from these definitions that the replicate
meansY1m, Y2m. . .., Yo.m under Model 10) are i.i.d. with
expected valug: + an and variances2/m. Further, the
grand sample mea¥, of all the replications has expected
value i + am and variancer2/n.

Now we define the analogous notation for the batch
means method. To begin witl§i_1ym+j is the jth ob-
servation from batchi of the stationary proces$S},
fori = 1,2,...,band j = 1,2,....,m. We denote
the batch means of this process Bym, Sm. ..., S.m,

e, Sm = m—lzrj“:ls(i,l)mﬂ, fori = 1,2,...,h. b b

Further, let§ = b 13", § . be the grand sample Vg — LZ(\K m—Yn)? = LZ(T} m— Tn)2.
mean taken over thé batches of{S}. Thus, defining b—1&="" b-14~""
&m=m71Y" a; ymj, fori =1,2,...,b, we can

express ModelX0)’s batch means in terms of those from the

stationary processs}: Xim = Sm+am i =12,...,b.

4.2 Estimators for the Variance Parameter

We divide the analysis into three portions: Derivations for
IR, derivations for BM, and then a comparison.

4.2.1 Independent Replications
Under Model (0), we can writeYim = Tim + am, for

i =1,2,...,b, and VY, = T, + an. This immediately
implies that

485
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SinceTim, Tom, ..., To,m are i.i.d. r.v.’s with mean. and wherex?(v, §) denotes the noncentrgf distribution with

variances2/m, nothing changes from the steady-state case v degrees of freedom and noncentrality paramétesing

studied in Sectior2.2 — Equation () still gives well-known moment properties of the noncentyel, we
can retrieve Equationdl®) and (3.

E[VR] = mVar(Vim) = mvar(Tim) = o2

m (1)
4.2.3 Comparison
and Equation4) still gives Var(Vg) — so bothE[Vg] and
Var(VR) are unaffected by the additive transient function For Model (L0), we can compare the expression EVs]
{a¢}. These “lucky” results make sense here because Model given by EquationX2) with that for E[VR], which is still

(10) is simply the sum of a stationarity process and a given by Equation). Assuming thatrn2 = or%, we have

deterministic transient process, the latter of which cancels
out in the calculation o/R.

4.2.2 Batch Means

Unlike the case for independent replications, the BM esti-
matorVp for o2 is affected by the transient in Model@).
After some algebra,

o~

b
__m S &)
Ve = b_l{;@,m S

b b
+2) (@m—a)Sm+ Y (@m— an)z},

i=1 i=1

This leads to the following results, analogous to Theorems
land2

Theorem 4  If Model (10) holds and all necessary
moments exist, then

b
~ 2 ]/(b+l) 1 m = =32
EVe] = o+———~+o( — +—b_1§(a.,m an)”.

(12)
Theorem 5  Suppose the proces§X,} satisfies
Model (10) with bounded transient constanta,} such
thata, = o(1). Further suppose that the proc¢Sg} is sta-
tionary withE[S1?] < oo andg-mixing with ¢, = O (k).
Then

bVar(Vg) = 20%+

4no? &
(b rlagz Z(éi,m—én)2+o(1). (13)
i=1

Remark 2 Suppose, as would be the case for large
batch sizem, that the batch means are approximately in-
dependent normal r.v.'s. Then under Mod&0), a result
adapted from Equation (5) of Goldsman, Schruben, and
Swain (1994) shows that
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m

b
oo .
ElVe] = E[VR]+—b_1;<a,m &n)°,

and thusVg has the potential for a great deal of positive
(conservative) bias as an estimatorodt As explained in
Remark1 and Section3.2, Vg and Vg are often biased
for o2 from below, at least for processes with positive
autocorrelation; scE[VB]’s extra term is not necessarily
deleterious for purposes of estimatiag.

Similarly, we can compar‘e‘ar(\75) from Equation 13)
with Var(Vg), which is still given by Equationd4). Under
Model (10),

4m

2 b
S ~ om 5 =22
Var(V) = Var(VR) + (b_l)zg(a,m an)”.

Again the additional noncentrality term appears, indicating
that Var(Vg) tends to be higher thawar(Vg) for our
simple Model £0). Combining the above bias and variance
results shows that it is likely, but not always certain, that
MSE(Vg: 02) > MSE(VR: 02).

Remark 3 It may very well be the case that, under
a different transient than Model@), BM will outperform
IR in terms of the bias of the respective variance estimators.
See Alexopoulos and Goldsman (2003) for such examples.

4.3 Confidence Intervals for the Mean

As in Section3.3 we encounter difficulties with respect to
the analysis on CI's for. Sofor purposes of simplifying the
rough-cut analysiswe shall assume that the replicate and
batch means are normally distributed with the appropriate
parameters.

4.3.1 Independent Replications

Taking advantage of the liberal assumptions of this subsec-
tion, we can derive the probability of coverage for the IR



Alexopoulos and Goldsman

Cl for u under Model 10). First of all, Alexopoulos and
Goldsman (2003) show that the pivot

=Y t(b-1, Y . (14
R Vé/z om ( )

wheret (v, §) is the noncentraldistribution withv degrees of
freedom and noncentrality parameddcf. Evans, Hastings,
and Peacock 2000, Chapter 39). Thus, the probability that
the IR CI coversu is

Pr(u € Yn + ta/z,b_l,/\’/\R/n)

Frz(ta/2.0-1) — Fra(—ta/2,0-1),

(15)
where FTé(-) is the c.d.f. of T;.
4.3.2 Batch Means

In order to make a rough-cut analysis on the BM CI for
w under Model 10), we will also assume that the batch
meansXjm,i = 1,2, ..., b, are approximately independent
— probably reasonable for sufficiently large batch size
Now, Alexopoulos and Goldsman (2003) show that the pivot

(b— 1 any/n

On

wheret(v, 81, 82) is the doubly noncentral distribution
with v degrees of freedom and noncentrality parameigrs
andé, (cf. Krishman 1968), and
b

(8i.m — @n)°.
i=1
Thus, under Model 10), the probability that the BM CI
coversu is

Pf(u € Xnita/Z,bl\/vB/n>

[of [of
G (—m ta/2,b1) -G <— el ta/2,b1>,
on on

whereG(-) is the c.d.f. of the doubly noncentrakandom
variable in Equation¥6).

* \/ﬁo_(n - /’L) on
Vg Om

, aB), (16)

0B

qu\)| 3

4.3.3 Comparison

One cannot make completely sweeping conclusions regard-
ing the comparative performance of the IR and BM ClI's
for the steady-state mean. Nevertheless, some interesting
findings are possible.

For Model (0) with a fixed number of batches

b, the effect of the batch sizen on the IR ClI's
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coverage depends on the form of the sequence
{aj}. In particular, the distribution noncentrality
parameter from Equatiorild), v/bméam/om, will
converge to zero if the underlying’s approach
zero sufficiently quickly, e.g.a, = o(1/v/¢). In
that case, the ClI's coverage will approach the nom-
inal value 1-« asmincreases. Ifthe,’s approach
zero more slowly, coverage degradation may re-
sult; in fact, it may very well be the case that
vbman/om approaches some non-zero constant,
whence the coverage may never converge to the
nominal value! See Sectioh

For Model @0) with fixed m, the IR ClI's non-
centrality parametex/bman, /o increases in the
number of replicationd. One would expect a
resulting adverse effect on the coverage of the IR
Cl; this is borne out in some additional examples
given in Alexopoulos and Goldsman (2003).

The BM method’s first noncentrality parameter
/Nay/on from Equation 16) behaves qualita-
tively similarly to the corresponding IR parameter
/Nam/om; but since they,’s converge to zero, the
BM'’s noncentrality parameter will likely be closer
to zero than that of IR — a potentially huge advan-
tage for BM. Not as much can be said about the
behavior of the BM method’s second noncentrality
parameteg in Equation (6), nor its effects on

Cl coverage.

4.4 Transient Recap

With respect to point estimation of the steady-state mean
the results from Sectiof lindicate that an initial transient is
more likely to be a problem for IR than for BM — patrticularly
in terms of bias when the underlying process follows Model
(10). Section4.2 shows that the comparison between the
IR and BM estimators for the steady-state parameter

is somewhat inconclusive. On the other hand, Sedlié
hints strongly that, when it comes to CI estimation for
there may be more problems on the horizon for IR than for
BM.

5 EXAMPLE
This section illustrates our findings with an example involv-
ing the first-order autoregressive [AR(1)] process.
We start off with the stationary AR(1) process
S =pSa+é&, £=1,

where the;'s arei.i.d. Not0, 1— p?) r.v.'s withp € (=1,1)
and S ~ Nor(0, 1). For this processR = p'll, and some
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easy calculations (see, e.g., Sargent, Kang, and Goldsman
1992) give

2 _
om =

_.m
524 rd=r0

m
with

(1-p)?

We now turn to Model 10), i.e., X, = § + a,, and
study the performance of the resulting IR and BM estimators
for o2. First of all, the discussion in SectioAhZ.l— in
particular, Equation 1) — implies thatE[VR] = or%;
similarly, Equations %) and @) show that

o2

dy

(b—1Var(Vr) = 204 = 20*+ O(1/m).

Further, Alexopoulos and Goldsman (2003) derive the fol-
lowing (see also Carlstein 1986, p. 1176).
b+1 m
2+M+o<p—>+
n m

E[Vg] = o

and

(b — 1) Var(Vg)

2
S ) o(iz) + ¥ (a),
n m

whereW (a) is a messy function of they’s.

As we continue to study the nonstationary prodess,
we setp = 0.9 and consider the initialization functions
ay = 1/¢P, for p = 1and 1/2. Tablé contains experimental
results comparing the IR and BM methods; the comparison
is based on the achieved sample coverdg¥Q) of the
95% ClI's for the steady-state mean= 0 and the estimated
expected vaIueE([\?]) of the estimators for the variance
parameters? = 19. All estimators are based on 10000
independent experiments, each whih= 20 independent
replications or batches, and various valuesmf

We first examine the casa; = 1/¢, a sequence of
initialization bias constants that converges to zero relatively
quickly. In this case, both the IR and BM CI’s farappear
to achieve the nominal coverage msincreases, with BM
succeeding a bit more quickly than IR. The same good
behavior holds true for the respective estimatorsodf
These coverage results are not surprising in light of the
fact that all of the IR and BM noncentrality parameters in
Sections4.3.1and 4.3.2 die to zero asn becomes large;
nor are the variance estimation results surprising in light of
Equation (1) and Theoren.

We have a patrticularly interesting story for the case
a, = 1//¢, a sequence of bias constants that converges to
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Table 1: Experimental Results for the “Bi-
ased” AR(1) Process with = 0.9, b = 20,
and Transient Functior{sy} (Standard Er-
rors of All CVG’s Are < 0.003)

a =1/t a = 1/¢1/7

" | v ‘ E[V] | CVG ‘ E[V]

100 [ 0.918 17.23 | 0521 17.23

IR | 500 | 0.941| 18.56 | 0.514 | 18.56
1000 | 0.947 | 18.68 | 0.511 | 18.68

2500 | 0.945 | 18.77 | 0.509 | 18.77

100 | 0.940 | 17.14 | 0.914 | 17.28

BM | 500 | 0.949 | 18.53 | 0.925 | 18.67
1000 | 0.953 | 18.67 | 0.926 | 18.81

2500 | 0.950 | 18.76 | 0.927 | 18.91

zero relatively slowly. Fob = 20, the BM method nearly
(but not quite) achieves the nominal coverage, while the
coverage of the analogous IR Cl's is poagardless of
the replication sizem. Although the IR coverage results
are disappointing, the IR variance estimator nevertheless
achievesE[Vg] = 19.

This seemingly bizarre behavior of the IR coverage
when p = 1/2 has an explanation. Simply put, fay =
1/4/¢, the noncentrality parameter of thedistribution in
Equation (4) does not converge to zero as the batch size
becomes large; and although not illustrated here, it turns out
that the bad effects become more-pronounced as the number
of replicationsb increases. So in thip = 1/2 case, the
coverage probability in Equatiorl®) cannot be nominal
even if the replication lengtin becomes large! The same
phenomenon also occurs with respect to batch means, but is
much less of a problem since there is essentially one long
replication consisting ob batches. See Alexopoulos and
Goldsman (2003) for all of the surprising details.

Of course, we could attempt to ameliorate these cov-
erage problems by truncating an initial portion of each
replication (or the single batch means run), but this also has
to be done with extreme care (cf. Fishman 2001, Section
3.4).

6 CONCLUSIONS

In this paper, we presented a comparison between the IR and
BM methods. The comparison was based on several new
results as well as on illustrative examples. We focused on
nonstationary models with an additive transient, and under
the assumption that both methods use the same(lpain).
When the process under study is in steady state (or the
transient portion has been removed successfully), the IR
and BM estimators fopr ando? are practically equivalent
with regard to their MSE’s as the replication/batch size
becomes large. However, in the steady-state case, the IR
method wins with regard to the coverage of the Cl fgr
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indeed, if the replicate means are normal, the IR coverage
is exactly nominal. On the other hand, the typical presence
of an initial transient turns the tide in favor of the BM

method. This assessment — for the transient case — is

based on the slower convergence of the respective IR-based

estimators foru. See Alexopoulos and Goldsman (2003)
for additional examples.
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