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ABSTRACT

We develop fully sequential procedures for comparison wi
a standard. The goal is to find systems whose expec
performance measures are larger or smaller than a sin
system referred to as a standard and, if there is any,
find the one with the largest or smallest performance. O
procedures allow for unequal variances across systems,
use of common random numbers and known or unknow
expected performance of the standard. Experimental res
are provided to compare the efficiency of the procedure w
other existing procedures.

1 INTRODUCTION

Comparison with a standard is one of the general compa
son problems we encounter in simulation. For the details
different types of comparison problems in simulation, se
Goldsman and Nelson (1998). The goal of comparison w
a standard is to find systems whose expected performa
measures are larger (smaller) than a standard and, if th
is any, to find the one with the largest (smallest) expect
performance measure. For this type of problem, each alt
native needs to be compared to the standard as well as o
alternative systems. Nelson and Goldsman (2001) propo
two-stage procedures for comparison with a standard t
account for the known or unknown performance measure
a standard and allow for unequal variances and the use
common random number (CRN). Their procedures provi
multiple comparisons with the best (MCB) confidence inte
vals at the end of procedures so that users can compare
significant observed differences are. Their procedures wo
well when the number of systems is small, say fewer than 2
Otherwise, they become very conservative. This proble
occurs with many two- or three-stage ranking and selecti
procedures that are developed to find the best system am
a number of simulated systems (see Boesel et al. 200
All of these procedures, including those due to Nelson a
Goldsman (2001), employ a special assumption known
a slippage configuration for the proof of the validity of th
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procedures. The slippage configuration assumes that the
performances of inferior systems are all close to the best
system, which is rarely true when there are many systems.
It is natural to believe that for more than 20 systems, the
mean configurations are likely to be spread out rather than
all be close to the best.

Many researchers have worked on how to overcome this
inefficiency of two- or three-stage procedures. Boesel et al.
(2002) and Nelson et al. (2002) introduced an elimination
step after the first stage by combining a subset-selection
method and two-stage procedures. Chick (1997) and Chick
and Inoue (2001ab) proposed completely different proce-
dures from a decision-theoretic point of view, and Chen
et al. (1997, 2000) proposed a procedure to find a system
that maximizes the probability of correct selection under a
budget constraint. Kim and Nelson (2001) proposed a fully
sequential procedure that takes only one basic observation
at each stage and eliminates a system when there is a clea
evidence that it is inferior. All these procedures were shown
to be highly efficient compared to classic two- or three-stage
procedures. Boesel et al. (2002) and Nelson et al. (2002)
showed that their procedures can be successfully applied to
very large number of systems, say 500 systems. Among
these various remedies, we will take fully sequential ap-
proach to develop efficient procedures for comparison with
a standard.

In this paper, we propose fully sequential type pro-
cedures that find the best of alternatives if there is any
system with larger expected performance than a standard
and choose the standard otherwise. We also show that the
procedures are capable of handling a relatively large number
of systems by experiments.

This paper is organized as follows: In Section 2, we
define our problem and provide assumptions for simulation
output data. Generic and customized procedures for specia
cases are provided in Section 3. In Section 4, we compare
our procedures with the procedures due to Nelson and
Goldsman (2001), followed by conclusion in Section 5.
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2 PROBLEM

In this section, we define the problem of interest and stat
assumptions for output data. We have the designated sta
dard denoted as system 0 andk alternative systems. LetXi j

be the j th output data from systemi and we assume that
Xi1, Xi2, . . . are independent and identically distributed and
normal. As long asXi j ’s are either within-replication aver-
ages or batch means, the i.i.d. normality assumption is plaus
ble (see Law and Kelton 2000). Systemi has the expected
performanceµi = E[Xi j ] and varianceσ 2

i = Var[Xi j ].
Without loss of generality, we can assume that

µ1 ≤ µ2 ≤ · · · ≤ µk.

We do not need the assumption of equal variances acro
system.

Depending on the situation at hand, the expected perfo
mance of the standard,µ0, can be either known or unknown.
Nelson and Goldsman (2001) give two examples of known
µ0 cases. When an existing system has been in place s
long that its average performance is well known, this is
considered as knownµ0. Or when alternative systems are
compared to a target value that the existing system is re
placed with a new system only when the performance o
the new system exceeds the target value, this can be al
considered as knownµ0. For knownµ0, we do not simu-
late the standard but we do need to simulate the standa
when its performance is unknown. However, sometime
people might want to simulate the standard even thoughµ0
is known for sharper comparison since simulations provide
better estimates of relative difference than they do absolut
performance since the same simplifications go into all the
models.

Note that Goldsman and Nelson (1998) call compar
ison with unknownµ0 “comparison with a default” and
comparison with knownµ0 “comparison with a standard.”
However, in this paper we call both cases comparison with
a standard. Customized versions for various cases will b
presented in Section 3.

We assume that we want to find a system with the
largest expected performance measure. Then, our goal is
provide selection procedures that guarantee the following

Pr{select system 0} ≥ 1 − α wheneverµ0 ≥ µk (1)

and

Pr{select systemk} ≥ 1 − α

wheneverµk ≥ µ0 + δ andµk ≥ µk−1 + δ. (2)
-
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We first provide a generic procedure then provide cus
tomized versions whenµ0 is known or unknown, and when
systems are simulated independently or with CRN.

3 PROCEDURES

In this section, we provide a generic fully sequential proce-
dure for comparison with a standard followed by customized
versions.

The following procedure finds a system with the largest
expected performance measure but multiplying each obse
vation Xi j by −1 will solve a minimization problem.

3.1 Generic and Customized Procedures

Generic Procedure
Setup: Select confidence level 1−α, indifference zone

δ and first-stage sample sizen0 ≥ 2. Calculateη
andc as described below inConstants.

Initialization: Let I = {0, 1, 2, . . . , k} be the set of
systems still in contention.
Obtainn0 observationsXi j , j = 1, 2, . . . , n0 from
each systemi = 0, 1, 2, . . . , k.
For all i 6= `, i , ` = 0, 1, 2, . . . , k computeS2

i`, the
sample variance of the difference between system
i and system̀ , and let

ai` = η(n0 − 1)S2
i`

δi`
andλi` = δi`

2c

where

δi` =
{

δ/2, if i = 0 or ` = 0
δ, otherwise.

Screening:For eachi 6= `, i ∈ I , and` ∈ I ,

if
∑r

j =1(X i j − X` j ) < max{0,−ai` + λi` r },

then eliminatei from I , where

Xq j =
{

Xqj + δ/2, if q = 0
Xqj , otherwise.

Stopping Rule: If |I | = 1, then stop and select the
system whose index is inI .
Otherwise, setr = r + 1 and take one additional
observationXi,r from each systemi ∈ I .
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Constants: The constantc may be any nonnegative
integer. The constantη is the solution to the
equation

c∑
`=1

(−1)`+1
(

1 − 1

2
I(` = c)

)
×

(
1 + 2η(2c − `)`

c

)−(n0−1)

2 = β

whereI is the indicator function andβ is selected
so that the overall confidence is 1− α.

The generic procedure can be easily applied to variou
situations by adjusting some parameters of the procedu
Here are some examples.

Case A: Whenµ0 is known and systems are simulated
independently,S2

0` = S2
` , X0 j = µ0 + δ/2, and

β = 1 − (1 − α)1/k whereS2
` is the usual sample

variance of system̀.
Case B: Whenµ0 is unknown and systems are sim-

ulated independently, use the procedure as is wit
β = 1 − (1 − α)1/k.

Case C:Whenµ0 is unknown and CRN is used, use
the procedure as is withβ = α/k.

We do not provide a customized version for the cas
whenµ0 is known and CRN is used. Nelson and Goldsma
(2001) showed that using CRN only for alternative system
whenµ0 is known can be counterproductivesince all inferio
alternatives will tend to show a good performance whe
an inferior alternative happens to show good performanc
which increases the chance of incorrect selection. Therefo
it is safer to simulate all systems independently whenµ0
is known.

We do not provide the statistical validity of the generic
procedure but Kim (2002) proves that ifXi j , j = 1, 2, . . . ,

are i.i.d. normally distributed andX0 j , j = 1, 2, . . . , are
either constant or i.i.d. normally distributed, then the Generi
Procedure guarantees (1) and (2) with or without CRN.

4 EXPERIMENTAL RESULTS

In this section we summarize the results of experimen
performed to compare the following procedures:

1. A two-stage procedure due to Nelson and Golds
man (2001): their generic procedure (NG) allows
for unknown and unequal variances across system
and the use of CRN. They proposed two versions fo
the case where CRN is employed: one is based o
the assumption of sphericity and the other uses th
Bonferonni inequality. We tested the version estab
lished under the assumption of sphericity since i
is shown to be more efficient than the other. How
ever, there could be a severe degradation in PC
s
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if the sphericity assumption does not hold, which
is often the case when there are many alternativ
systems.

2. The fully sequential procedure (FSP) proposed in
Section 3, both with and without CRN.

The systems were represented by various configuratio
of k normal distributions; either system 0 or system 1 wa
the true best (had the largest true mean). We evaluated ea
procedure on different variations of the systems, examinin
factors including the number of systems,k; the correlation
between systems,ρ; the true means,µ0, µ1, µ2, . . . , µk;
and the true variances,σ 2

0 , σ 2
1 , σ 2

2 , . . . , σ 2
k . The configura-

tions, the experiment design, and the results are describ
below.

4.1 Configurations and Experiment Design

To ensure the first-stage sample size is not too small, w
chose the first-stage sample size to ben0 = 10. The
number of systems in each experiment varied overk =
2, 5, 10, 25, 100.

The indifference zone,δ, was set toδ = 1/
√

n0 and
we set the variance of the best system (either system 0
1) to one, with the exception for knownµ0 case where the
variance of system 0 is zero. Roughly, we can interpretδ

as the standard deviation of the first-stage sample mean
the best system.

4.1.1 Mean Configurations

Two configurations of the true means were used for each ca
when the standard (system 0) is the best and an alternat
(system 1) is the best.

When system 1 is the best, the Slippage Configura
tion (SC) and the monotonic decreasing means (MDM
configuration were used.

• To test the statistical guarantee of proposed proce
dures, the SC configuration is used in whichµ1 was
set to δ, while µ0 = µ2 = µ3 = · · · = µk = 0.
Since all of the inferior systems are close to the
best, it will be hard to detect the true best and
inferior systems so this is a difficult configuration.

• To investigate the effectiveness of the procedure
in eliminating non-competitive systems, the MDM
were also used. In the MDM configuration, the
means of all systems were spaced evenly apa
according to the following formula: when system 1
is the best,µi = µ1−δ|i −1|, for i = 0, 2, 3, . . . , k.

When system 0 is the best, the equal mean configuratio
(EMC) and the MDM configuration were used.

• The EMC, in whichµ0 = µ1 = · · · = µk = 0,
will be the most difficult configuration instead of
SC.

• For MDM, µ0 is set toδ andµi = µ0 − δ|i |.
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Table 1: Example of Mean Configuration
whenk = 5

best Model µ0, µ1, µ2, µ3, µ4, µ5

system 1 SC 0, δ, 0, 0, 0, 0
MDM 0, δ, 0,−δ,−2δ,−3δ

system 0 EMC 0, 0, 0, 0, 0, 0
MDM δ, 0,−δ,−2δ,−3δ,−4δ

Table 2: Example of Variance Configuration whenk = 5

best Model σ0, σ1, σ2, σ3, σ4, σ5

system 1 constant 1, 1, 1, 1, 1, 1
increasing 1 + δ, 1, 1 + δ, 1 + 2δ, 1 + 3δ, 1 + 4δ

decreasing 1
1+δ , 1, 1

1+δ , 1
1+2δ , 1

1+3δ , 1
1+4δ

system 0 constant 1, 1, 1, 1, 1, 1
increasing 1, 1 + δ, 1 + 2δ, 1 + 3δ, 1 + 4δ, 1 + 5δ

decreasing 1, 1
1+δ , 1

1+2δ , 1
1+3δ , 1

1+4δ , 1
1+5δ

4.1.2 Variance Configurations

For each configuration of the means we examined the effe
of both equal and unequal variances. In the equal-varian
configurationσi was set to one. In the unequal-variancecon
figuration the variance of the best system was set both high
and lower than the variances of the other systems. In t
MDM configurations, experiments were run with the vari
ance directly proportional to the mean of each system, a
inversely proportional to the mean of each system. Speci
cally, σ 2

i = |µi − δ| + 1 to examine the effect of increasing
variance as the mean decreases, andσ 2

i = 1/(|µi − δ| + 1)

to examine the effect of decreasing variances as the me
decreases. In addition, some experiments were run w
means in the SC and the EMC, but with the variances
all systems either monotonically decreasing or monoton
cally increasing as in the MDM configuration. Whenµ0 is
known,σ 2

0 is set to zero.
The example of means and variances configurations

given in Tables 1 and 2 when there are 5 alternatives
systems including the standard). The variance of system
will be replaced with 0 whenµ0 is known in Table 2.

When CRN was employed we assumed that the assum
tion of sphericity holds and the correlation between all pair
of systems,ρ, were tested atρ = 0.02, 0.25, 0.5, 0.75.

Thus, we had six configurations when system 1 i
the best: SC with equal variances, MDM with equal vari
ances, MDM with increasing variances, MDM with de-
creasing variances, SC with increasing variances and S
with decreasing variances. There are another set of s
configurations when system 0 is the best: EMC with equ
variances, MDM with equal variances, MDM with increas
ing variances, MDM with decreasing variances, EMC with
increasing variances and EMC with decreasing variance
t
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We have a total of twelve configurations and each config-
uration is repeated with known and unknownµ0 and with
independence or with CRN. Note that for knownµ0, we do
not employ CRN since it is safer to simulate all alternatives
independently.

For each configuration, 1000 macroreplications (com-
plete repetitions) of the entire experiment were performed
In all experiments, the nominal probability of correct se-
lection (PCS) was set at 1− α = 0.95. To compare the
performance of the procedures we recorded the total num
ber of observations required by each procedure and th
estimated PCS.

4.2 Summary of Results

For all configurations with or without CRN, the estimated
PCS of FSP was over 0.95. For a few configurations (EMC
with increasing variances or SC with increasing variances
for k = 2), we got an estimated PCS which is slightly
lower then 0.95, like 0.944 or 0.946. However, when we
made 100, 000 macro-replications for those configurations,
we obtained an estimated PCS larger than the nomina
PCS (around 0.953). The overall experiments showed that
FSP is uniformly superior to NG under any configurations
in terms of the total number of observations. Especially
under a MDM configuration with increasing variances,FSP’s
superiority relative to NG was more noticeable as the numbe
of systems increased.

The total number of basic observations consumed by
each procedure was increasing much more slowly in FSP
than in NG ask increases.

4.3 Some Specific Results

Instead of presenting all results, we present selected resul
that emphasize the key conclusions through the following
four tables:

• Table 3: µ0 is known and system 1 is the best.
• Table 4: µ0 is known and system 0 is the best.
• Table 5: µ0 is unknown and system 1 is the best.
• Table 6: µ0 is unknown and system 0 is the best.

4.3.1 Effect of Number of Systems

In our experiments the FSP outperformed NG under any
configurations; see Tables 3 – 6 for an illustration. NG
is very sensitive to the number of systems. For example
Table 3 shows that for MDM with increasing variances NG
spent 1, 918 whenk = 5 and 772, 964 whenk = 100 while
FSP spent 419 whenk = 5 and 5, 726 whenk = 100. FSP
achieved reductions from 50% up to 97% in the number
of basic observations, as compared to NG depending o
configurations. When the number of systems is large an
the configuration is difficult such as MDM with increasing
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Table 3: Sample Average Total Number of Observations for the NG an
FSP whenµ0 is Known and System 1 is the Best (Numbers in Parenthese
Represent the Amount of Induced Correlation,ρ)

the number of procedure MDM MDM SC SC
alternatives type increasing decreasingincreasing decreasing

k = 5 NG (0) 1918 802 1932 795
FSP (0) 419 307 673 384

k = 100 NG (0) 772964 5443 774855 5444
FSP (0) 5726 1751 187093 2881
d
s

Table 4: Sample Average Total Number of Observations for the NG an
FSP whenµ0 is Known and System 0 is the Best (Numbers in Parenthese
Represent the Amount of Induced Correlation,ρ)

the number of procedure MDM MDM SC SC
alternatives type increasing decreasingincreasing decreasing

k = 5 NG (0) 2279 647 2291 644
FSP (0) 322 124 1283 365

k = 100 NG (0) 789504 4984 789973 4976
FSP (0) 5653 1268 318798 2813
FSP
ses
Table 5: Sample Average Total Number of Observations for the NG and
when µ0 is Unknown and System 1 is the Best (Numbers in Parenthe
Represent the Amount of Induced Correlation,ρ)

the number of procedure MDM MDM SC SC
alternatives type increasing decreasingincreasing decreasing

k = 5 NG (0) 4032 1773 4056 1747
FSP (0) 991 711 1225 780

NG (0.02) 3070 1319 3070 1327
FSP (0.02) 995 716 1245 799
NG (0.25) 2330 1011 2351 1013
FSP (0.25) 764 545 941 603
NG (0.50) 1576 689 1572 686
FSP (0.50) 517 374 620 412
NG (0.75) 834 355 835 354
FSP (0.75) 268 196 331 209

k = 100 NG (0) 1257089 9329 1264627 9338
FSP (0) 7262 2886 191405 3979

NG (0.02) 739163 5487 736493 5505
FSP (0.02) 7240 2875 187881 3959
NG (0.25) 580859 4510 579492 4499
FSP (0.25) 5884 2427 156862 3209
NG (0.50) 413682 3450 414250 3445
FSP (0.50) 4413 1911 120698 2375
NG (0.75) 245638 2353 243845 2371
FSP (0.75) 2806 1444 74112 1651
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Table 6: Sample Average Total Number of Observations for the NG and FSP
when µ0 is Unknown and System 0 is the Best (Numbers in Parentheses
Represent the Amount of Induced Correlation,ρ)

the number of procedure MDM MDM SC SC
alternatives type increasing decreasingincreasing decreasing

k = 5 NG (0) 4615 1623 4618 1603
FSP (0) 599 360 2239 867

NG (0.02) 3439 1192 3483 1189
FSP (0.02) 595 347 2229 844
NG (0.25) 2650 919 2673 912
FSP (0.25) 461 270 1696 654
NG (0.50) 1809 631 1805 624
FSP (0.50) 311 184 1153 441
NG (0.75) 959 336 958 337
FSP (0.75) 162 104 633 244

k = 100 NG (0) 1279121 8800 1281718 8788
FSP (0) 6370 1903 346924 4081

NG (0.02) 753097 5176 749379 5177
FSP (0.02) 6346 1884 341809 4004
NG (0.25) 594238 4229 591112 4230
FSP (0.25) 5239 1682 267538 3272
NG (0.50) 418327 3204 420295 3205
FSP (0.50) 3931 1425 188194 2481
NG (0.75) 246252 2166 245564 2183
FSP (0.75) 2574 1191 104430 1786
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variances or SC with increasing variances, the benefit
FSP becomes larger.

It is interesting to notice that NG spent almost the
same number of observations for MDM and SC cases wit
increasing or decreasing variances while FSP clearly spe
fewer observations for MDM cases than for SC cases. Th
is because NG takes account for variances only when
determinesNi . FSP also takes account for variances onl
when it determinesNi , but the large difference in means
between alternatives makes it easy to detect inferior system
Therefore, the difference in means is considered in FS
indirectly and this makes the procedure efficient.

4.3.2 Effect of Correlation

Kim and Nelson (2001) suggest that positive correlatio
larger than 0.02 is sufficient for the FSP with CRN to out-
perform the FSP assuming independence for the procedu
developed to find the best alternatives. As shown in th
empirical results in Tables 5 and 6, the FSP under indepe
dence shows similar performance as the FSP under CR
when ρ = 0.02 in terms of the number of observations.
This implies that we can gain the benefit of CRN even
with a small amount of positive correlation (say, larger tha
0.02). A larger positive correlation makes the FSP eve
f

t

t
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s
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more efficient, and this holds across all of the configuratio
that were used in our experiments.

5 CONCLUSION

We proposed efficient procedures for comparison with
standard. Even though it is clear that the proposed pr
cedures can be much more efficient than NG in terms
number of required observations to find the best, they a
more computationally intensive and more complicated
perform due to switching between systems, stopping, a
restarting simulation of each system. However, with pa
allel computing environments, this problem is now les
restrictive.
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