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ABSTRACT 

Hierarchical design scenarios arise when the performance 
of large-scale, complex systems can be affected through 
the optimal design of several smaller functional units or 
subsystems.  Monte Carlo simulation provides a useful 
technique to evaluate probabilistic uncertainty in customer-
specified requirements, design variables, and environ-
mental conditions while concurrently seeking to resolve 
conflicts among competing subsystems.  This paper pre-
sents a framework for multidisciplinary simulation-based 
design optimization, and the framework is applied to the 
design of a Formula 1 racecar.  The results indicate that the 
proposed hierarchical approach successfully identifies de-
signs that are robust to the observed uncertainty. 

1 INTRODUCTION 

Through multidisciplinary design optimization (MDO), 
complex engineering systems are decomposed by breaking 
the system into smaller, less complex subsystems.  Mathe-
matically, decomposition partitions relationships by disci-
pline.  Characteristic of most multidisciplinary design opti-
mization problems is a coupling of disciplines or subsystems 
through design, function, and performance.  Coupling vari-
ables, also called linking variables or shared variables, are 
those variables that are common to more than one subsystem 
or are shared by the system level with at least one subsys-
tem.  Equality constraints for coupling variables are added to 
the partitioned problem to ensure compatibility of the sub-
system solutions.  These shared variables must attain the 
same value in the final solution, while the equality con-
straints enforce system-level feasibility.  Surveys of several 
approaches proposed to analyze MDO problems are pro-
vided in (Balling and Sobieszczanski-Sobieski 1996, Sobi-
eszczanski-Sobieski and Haftka 1997). 

Recent advances in MDO recognize the presence of un-
certainty throughout the design process (Antonsson and Otto 
1995, Bandte, et al. 1999, Chen and Yuan 1999, De-
Laurentis and Mavris 2000, Du and Chen 2002, Gu and 
Renaud 2001, Lewis and Mistree 1998, Liu 2001, 
McAllister and Simpson 2001).  Figure 1 illustrates the 
stages of design, where uncertainty is indicated by the sym-
bol ∆ to denote variation.  During conceptual design 
(Medeiros, et al. 2000, Ruiz-Torres and Zapata 2000), the 
greatest source of uncertainty is within the requirements im-
posed on the design (e.g., How big does it need to be; how 
fast should it travel; how much does it cost?).  As the design 
process evolves and matures to the preliminary and detailed 
design stages, the requirements become more refined and 
uncertainty in design variables (e.g., length, thickness, and 
diameter) and conditions of the environment (e.g., tempera-
ture, humidity, and air pressure) are the dominant sources of 
uncertainty.  The evolution of the design is obviously af-
fected by the decisions made in each stage of the design 
process, and these decisions have a considerable impact on 
the overall system cost.  For instance, accurate decisions 
about the signal processing capability of an underwater ve-
hicle may provide significant savings in performance analy-
ses and design modifications.  Explicitly modeling uncer-
tainty within the design process is therefore critical to the 
identification of candidate designs that are robust to ambigu-
ity and imprecision (Sanchez, 2000). 
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Figure 1: Uncertainty Encountered During Design Stages 

 
The remainder of this paper is organized as follows.  

Section 2 develops the proposed hierarchical simulation-
based design framework for robust design, which is ap-
plied in Section 3 to the design of a Formula 1 racecar.  
Results are provided in Section 4, and concluding remarks 
are offered in Section 5. 
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2 BACKGROUND 

The simulation-based design (SBD) framework developed 
in this paper utilizes Collaborative Optimization (Braun, et 
al. 1996, Braun and Kroo 1997), Figure 2, a popular MDO 
approach that provides design flexibility by using a sys-
tem-level optimizer to act on an overall design objective 
subject to the subsystem compatibility constraints (Braun, 
et al. 1997, Gu and Renaud 2001, Sobieski and Kroo 1996, 
Tappeta and Renaud 1997). 
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Figure 2: Collaborative Optimization 

 
Applications of Collaborative Optimization include 

launch vehicle design (Braun, et al. 1997), aircraft wing 
design (Sobieski and Kroo 1996), lunar ascent trajectory 
(Braun and Kroo 1997), and the design of a racecar 
(McAllister, et al. 2002).  Extensions to Collaborative Op-
timization include the multiobjective approach of Tappeta 
and Renaud (1997), which uses weighted sums for the sys-
tem-level optimizer.  The goal programming formulation 
of CO introduced in (McAllister, et al. 2000) extends the 
capabilities of the MDO framework to include multiple ob-
jectives at the system and subsystem levels. 

The Collaborative Optimization framework is imple-
mented using the compromise Decision Support Problem 
(DSP) to assess the impact of uncertainty encountered dur-
ing simulation-based design of hierarchical systems.  The 
compromise DSP is a multiobjective mathematical pro-
gramming formulation used to determine the values of the 
design variables that satisfy a set of constraints and achieve 
a set of potentially conflicting goals as closely as possible 
(Mistree, et al. 1993).  As depicted in Figure 3, system 
goals are modeled using two deviation variables (di

-, di
+), 

representing under-achievement or over-achievement of 
each goal with respect to individual target values (Gi).  To 
handle tradeoffs, the objective is to minimize the deviation 
function, Z, which is a function of the relevant deviation 
variables.  The deviation function can be formed by either 
weighted sums or a preemptive ordering of deviation vari-
ables.  When a preemptive formulation is implemented, the 
lexicographic minimum (Ignizio 1985) concept is used to 
evaluate alternative designs.  A comprehensive discussion 
of deviation variables, deviation functions, system con-
straints, goals, bounds, and the solution algorithm can be 
found in (Mistree, et al. 1993). 

 
Given: 
 Assumptions used to model the domain of interest. 
System parameters: 
 n number of system variables 
 p number of system equality constraints 
 q number of system inequality constraints 
 m number of system goals 
 gi3(x) system constraint functions 
 fk(di2) function of deviation variables to be 
        minimized at priority level k for the  
    preemptive case. 
Find:  xi1 i1 = 1, …, n;   di2

- , di2
+   i2 = 1, …, m 

Satisfy: 
System constraints (linear, non-linear): 
 gi3(x) = 0      i3  =  1, ..., p 
 gi4(x) ≥ 0      i4  =  1, ..., q 
System goals (linear, non-linear): 
 Ai2(x) + di2

- - di2
+  = Gi2     i2  =  1, …, m 

Bounds 
xi1

min ≤ xi1 ≤ xi1
max    i1 = 1, …, n 

 di2
- , di2

+ ≥ 0     i2 = 1, …, m 
 di2

- • di2
+  = 0     i2 = 1, …, m  

Minimize: deviation function: 
 Z = [ f1(di2

-, di2
+ ), ..., fk(di2

-, di2
+ ) ] 

Figure 3: Mathematical Form of Compromise DSP 
(Mistree, et al. 1993) 
 

Our approach to robust design follows the work of 
Chen and her coauthors (1996a, 1996b, 1999) who ob-
served that the compromise Decision Support Problem 
(Mistree, et al. 1993) can be used to individually study the 
two competing objectives in robust design: (1) maximize 
the intensity of the signal on target and (2) minimize the 
variance of the response.  Following their implementation 
of robust design in the compromise DSP, a probabilistic 
Collaborative Optimization (CO) formulation has been re-
alized for robust design optimization of hierarchical sys-
tems.  In general, the model is: 
 
 y = f (x, u), (1) 
 
where y is the response, x are the design variables, and u 
represents sources of uncertainty.  The mean and variance 
of the response are determined by first-order Taylor expan-
sion using the First Order Second Moment (FOSM) ap-
proach (Hasselman and Hart 1972, Kareem 1987, Solari  
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1997), assuming that variations are small and that the 
sources of uncertainty are independent. 
 
 µy = f (x, µu) (2) 
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Equations (2 and 3) are used to establish system-level ob-
jectives in the Collaborative Optimization framework to 
achieve robust designs.  In a deterministic formulation, the 
objective is to either minimize, maximize, or meet a de-
sired target, represented by Equation (2).  Robust formula-
tions also incorporate the variance of the response using 
Equation (3).  The variance can effectively be included in a 
multiobjective formulation either combined with the mean 
in a weighted-sum approach or as a separate objective with 
preemptive priority lexicographically greater than or less 
than the mean (Du and Chen 2001).  These objectives are 
readily implemented at the system level in the CO-DSP 
formulation as shown in Figure 4 and Figure 5 for the sys-
tem and subsystem levels, respectively. 

 
System Analysis 
Given: xu vector of nu uncoupled design variables 
 xc vector of ns coupled design variables 
 x = [xu  xc] vector of n design variables 
 u vector of v uncertainty sources  
      uncertainty in x and u 
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Find: xc

0, targets for coupled (shared) variables 
Satisfy: 
 xc

s – xc
0 = 0 

 A1(x, z) + d1
- - d1

+ = G1 
 A2(x, z) + d2

- - d2
+ = G2 

 xi
min ≤ xi ≤ xi

max 
Min: f [d2

-, d1
-] 

Figure 4: Robust CO at the System Level 
 
At the subsystem level, Figure 5, robust constraints are 

implemented assuming that the variations may simultane-
ously occur.  The differences, ∆x and ∆u, correspond to the 
range of possible values that may be obtained about the 
current point due to uncertainty. 

3 RACECAR DESIGN 

As discussed by Kasprzak (2001), racecar design provides 
a rich environment in which to apply multidisciplinary 
 

Subsystem Analysis 
Given: xc

0, targets for shared variables 
    uncertainty in x, u 
Find: xc
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Figure 5: Robust CO at the Subsystem Level 

 
design optimization techniques.  Racecar configuration and 
analysis involves knowledge of aerodynamics, structural 
mechanics, tire performance, and vehicle dynamics.  This 
information is attained from disciplinary experts who have 
different opinions and control over the performance of the 
vehicle.  The range of adjustment on the design variables 
may be limited during the racing season (e.g., center of grav-
ity location), and sanctioning bodies limit the amount of on-
track testing that can be conducted.  As a result, vehicle 
simulations must be used to optimize a racecar before it is 
constructed.  Advantages gained through simulation increase 
the vehicle’s potential, and when combined with a talented 
driver, translate into an increase in on-track performance. 

During a lap on a particular racetrack, a driver is faced 
with a number of different types of corners and straights.  
Designing a racecar to perform well across turns of all radii 
on a single track involves a set of conflicting tradeoffs.  
Each segment of the racetrack has its own optimal vehicle 
characteristics.  The optimal racecar for tight cornering is 
vastly different than one for sweeping, large-radii curves.  
Kasprzak, et al. (2000) and Hacker, et al. (2000) use mul-
tiobjective optimization to maximize racecar performance 
across multiple tracks of different radii.  

The racecar model is based on the classic bicycle 
model of Milliken and Milliken (Milliken and Milliken 
1995), which has been expanded to include four individual 
wheels.  Equations of motion are written for lateral accel-
eration, longitudinal acceleration, and yaw acceleration.  
The tires, which may be different for front and rear, are 
modeled using tabular tire data including representations of 
nonlinearities such as load sensitivity and slip angle satura-
tion.  Wheel loads are calculated based on static load, 
aerodynamic downforce, and lateral load transfer.  Figure 6 
illustrates a simplified sketch of the racecar model.  There 
are three primary design variables: roll stiffness distribu-
tion (K’), weight distribution (A’), and aerodynamic down-
force distribution (C’).  All three design variables are nor-
malized quantities between 0 and 1. 
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Figure 6: Sketch of the Racecar Model 

3.1 Design Relationships 

This section outlines the equations that govern racecar de-
sign.  The analysis begins with the calculation of parame-
ters and concludes with an iterative analysis to solve for 
lateral forces given the center of gravity and roll stiffness. 

Table 1 presents the design variables under considera-
tion for the racecar optimization.  All design variables have 
lower and upper bounds of 0.3 and 0.6, respectively. 
 

Table 1: Racecar Design Variables 
Var. Description Init. Value 
A’ Weight distribution 0.4 
C’ Aero downforce distribution 0.4 
K’ Roll stiffness distribution 0.3 

 
Table 2 indicates the fixed racecar and track parame-

ters used in this study.  For instance, we considered a race-
car with a wheelbase of 9.67 feet and mass of 41.7 slugs 
traveling on a 400-foot radius curve. 

 
Table 2: Racecar and Track Parameters 

Parameter Value Description 
l 9.67 ft Vehicle Wheelbase 
mass 41.7 slug Vehicle Mass 
h 1.167 ft Height of CG 
tF 5.5 ft Front Track 
tR 5.25 ft Rear Track 
RefArea 10 ft2 Frontal Area 
Radius 400 ft Skidpad Radius 
CD 2.9 Drag Coefficient 
 
Figure 7 illustrates the relationships between lateral 

forces and slip angles.  As indicated, the center of gravity 
defines the origin of the coordinate system, and clockwise 
moments are positive. 
 
Figure 7: Racecar Dynamics 

 
Equations (4 and 5) are used to compute the front and rear 
lift coefficients, CLF and CLR, respectively, based on the 
aerodynamic down-force distribution, C’. 

 
 CLF = -0.5 × C’ (4) 
 
 CLR = -1 × (5 + (-5 × C’)) (5) 
 
Equation (6) calculates half the weight of the car, halfwt, 
where g is the acceleration due to gravity. 
 
 halfwt = mass × g/2 (6) 
 
Equations (7-9) determine the coefficients for front and 
rear downforce, FDwnfc and RDwnfc, and aerodynamic 
drag, Dragc, where Den is the atmospheric density. 
 
 FDwnfc = -(Den × CLF × RefArea)/2 (7) 
 
 RDwnfc = -(Den × CLR × RefArea)/2 (8) 
 
 Dragc = -(Den × CD × RefArea)/2 (9) 
 
Table 3 indicates the parameters that must be initialized 
before proceeding with the iterative analysis to solve for 
the lateral forces. 
 

Table 3: Initialization of Lateral Force Loop 
Parameter Description Init. Value 
FyRF Right front wheel load 0 
FyLR Left rear wheel load 0 
FyRR Right rear wheel load 0 
FyF Lateral force front axle 0 
FyR Lateral force rear axle 0 
Fy Lateral force 0 
uOld Velocity last iteration 0 
MaxAlphaF Max front slip angle 0 
MaxAlphaR Max rear slip angle 0 
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Equations (10-12) determine the aerodynamic forces, 
where positive quantities indicate downforce.  The aerody-
namic force acting on the front and rear wheels is repre-
sented by AeroFzF and AeroFzR, respectively.  AeroFx is 
an aerodynamic force that opposes forward motion. 
 
 AeroFzF = FDwnfc × uOld2 (10) 
 
 AeroFzR = RDwnfc × uOld2 (11) 
 
 AeroFx = Dragc × uOld2 (12) 
 
Equation (13) indicates the required tractive effort, FxReq, 
which is always positive. 
 
 FxReq = AeroFx + |FyF × sin(MaxAlphaF)| 
 + |FyR × sin(MaxAlphaR)| (13) 
 
Front and rear wheel loads, FLT and RLT, are given by 
Equations (14 and 15). 
 
 FLT = (Fy × h/tF) × K’ (14) 
 
 RLT = (Fy × h/tR) × (1-K’) (15) 
 
Equations (16-19) determine the downforce on each of the 
four wheels.  For instance, FzRF, is the downforce acting 
on the right front wheel. 
 
 FzLF = (1-A’) × halfwt + FLT + AeroFzF/2 (16) 
 
 FzRF = (1-A’) × halfwt - FLT + AeroFzF/2 (17) 
 
 FzLR = A’ × halfwt + RLT + AeroFzR/2 (18) 
 
 FzRR = A’ × halfwt - RLT + AeroFzR/2 (19) 
 
Based on the installed tires with tabulated lateral forces 
due to normal load and slip angle, quadratic approximation 
is used to determine maximum slip angles, MaxAlphaF and 
MaxAlphaR, and lateral forces, FyF and FyR, for the front 
and rear axles.  Equations (20 and 21) check the lateral 
forces on the rear wheels, FyLR and FyRR, and, if required, 
reduce these forces due to the friction ellipse effect. 
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Equation (22) calculates the total rear lateral force, FyR, as 
a sum of lateral forces acting on each of the two rear 
wheels. 

 
 FyR = FyLR + FyRR (22) 
 
Equations (23 and 24) determine the total yaw force, 
YawBal. 
 
 IDYaw = (FyRF-FyLF) × tF × sin(MaxAlphaF) 
 + (FyRR-FyLR) × tR × sin(MaxAlphaR) (23) 
 
 YawBal = [A’ × FyF × cos(MaxAlphaF)] -  
 [B’ × FyR × cos(MaxAlphaR)] + IDYaw (24) 
 
Equations (25 and 26) are used to enforce yaw balance, 
YawBal = 0.  If YawBal < 0, Equation (25) provides the 
necessary adjustment, while Equation (26) is used to cor-
rect for YawBal > 0. 
 

 
( )( )1- × ×cos( ) -

=
×cos( )

A' FyR MaxAlphaR IDYaw
FyF

A' MaxAlphaF
 (25) 

 

 
( )× ×cos( ) +

=
×cos( )

A' FyF MaxAlphaF IDYaw
FyR

B' MaxAlphaR
 (26) 

 
Equation (27) calculates total lateral force, Fy, as a sum of 
front and rear lateral forces.  Then, Equations (28 and 29) 
are used to determine the corresponding speed, u, and lap 
time, et, respectively. 

 
 Fy = FyF + FyR (27) 
 

 
mass

RadiusFyu ×=  (28) 

 

 
u
Radiuset ×= π2

 (29) 

 
The analysis has converged if the difference in lap time be-
tween successive iterations does not exceed a small num-
ber, | etOld-et | ≤ 0.005.  Otherwise, time and velocity es-
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timates are updated, uOld = u and etOld = et, and the 
analysis loop returns to Equation (10). 

3.2 Robust Hierarchical Formulation 

System Optimizer

Given: racecar design
Find:   design variable targets:

A’0, C’0 & K’0

linking variable targets:
AeroFxF0, AeroFxR0 & FxReq0

Satisfy: (C’a-C’0) = 0
(A’f-A’0) = 0
(K’f-K’0) = 0
(AeroFxFa-AeroFxF0) = 0          
(AeroFxRa-AeroFxR0) = 0
(FxReqa-FxReq0) = 0

Minimize: lap time (et)
variance lap time (σ2

et)

Force Optimizer

Given: targets A’0 & K’0

linking variables
AeroFxF0,
AeroFxR0,
FxReq0

Find: local d.v. A’f & K’f

Min: (A’f-A’0)2 + (K’f-K’0)2

Robust Eqs. (13-27)

Aero. Optimizer

Given: target C’0

Find: local d.v. C’a

Min: (C’a-C’0)2

Robust Eqs. (4-12)

System Optimizer

Given: racecar design
Find:   design variable targets:

A’0, C’0 & K’0

linking variable targets:
AeroFxF0, AeroFxR0 & FxReq0

Satisfy: (C’a-C’0) = 0
(A’f-A’0) = 0
(K’f-K’0) = 0
(AeroFxFa-AeroFxF0) = 0          
(AeroFxRa-AeroFxR0) = 0
(FxReqa-FxReq0) = 0

Minimize: lap time (et)
variance lap time (σ2

et)

Force Optimizer

Given: targets A’0 & K’0

linking variables
AeroFxF0,
AeroFxR0,
FxReq0

Find: local d.v. A’f & K’f

Min: (A’f-A’0)2 + (K’f-K’0)2

Robust Eqs. (13-27)

Aero. Optimizer

Given: target C’0

Find: local d.v. C’a

Min: (C’a-C’0)2

Robust Eqs. (4-12)

Equations (4-29) establish the traditional optimization for-
mulation for the racecar design problem.  Formulating this 
as a robust multidisciplinary CO simulation-based design 
problem, Figure 8, two disciplinary subspaces are defined: 
(1) aerodynamics and (2) force analysis.  Incorporated in 
the aerodynamic analysis are Equations (4-12) while the 
force analysis contains Equations (13-27).  The system-
level coordinator minimizes lap time, Equation 29, and es-
tablishes corresponding targets for design variables A’, C’, 
and K’ and linking variables AeroFzF, AeroFzR, and 
FxReq.  The goal of each subsystem is to minimize devia-
tion from these established targets to ensure the compati-
bility dictated by a multi-level formulation. 

Figure 8: Robust SBD via Collaborative Optimization 
 
To explore the impact of uncertainty, variability is in-

cluded in the design variable (C’), normalized aerodynamic 
downforce, Table 4.  Uncertainty in (C’) is represented as a 
normal distribution to reflect variability in the configura-
tion of the racecar.  Total lateral force (Fy) is modeled as a 
uniform distribution to reflect uncertainty arising from 
changes in tire properties throughout a particular race. 

 
Table 4: Uncertainty in Racecar Design 

Name Type Distribution 
C’ Design variable N(C’, 0.01) 
Fy Parameter U(Fy - 50.0, Fy + 50.0) 

 
The design scenarios were formulated as robust SBD 

instances of Collaborative Optimization, Figure 8, and 
solved using the compromise DSP software called 
DSIDES (Decision Support in the Design of Engineering 
Systems; (Mistree, et al. 1993)).  The results are given and 
discussed in the next section. 

4 RESULTS 

Results for the simulation-based design optimization for-
mulations are presented in Table 5, where cDSP represents 
a traditional (nonhierarchical) formulation, CO indicates a 
hierarchical formulation using Collaborative Optimization, 
and R indicates a robust design approach with preemptive 
priority to mean value, followed by variability about the 
mean.  Solution times are given for a Sun Blade 150 with a 
650 MHz processor.  The CO columns show the expected 
agreement with the corresponding non-hierarchical col-
umns.  The increased computational expense of CO arises 
from the compatibility conditions that are difficult to meet 
as equality constraints.  This increase is offset by (i) the 
value of representing the problem in the disciplinary for-
mat normally encountered in large-scale design problems 
and (ii) the ability to apply parallel computation.  The ro-
bust design cases indicate a more conservative, slower 
racecar at 15.8 seconds vs. 14.92 seconds due to the ob-
served uncertainty. 
 

Table 5: Simulation-Based Design Optimization Results 
Name cDSP RcDSP CO RCO 

A’ 0.30 0.40 0.30 0.40 
C’ 0.57 0.38 0.57 0.38 
K’ 0.30 0.30 0.30 0.30 
et 14.92 s 15.80 s 14.92 s 15.80 s 
Solution 
Time 

2 min 3 min 90 min 100 min 

 
 Convergence plots for the robust formulations are pro-
vided as Figures 9 and 10.  The model assumes all four 
wheels remain in contact with the track.  Hence, negative 
wheel loads are penalized as evidenced by the vertical spikes.  
The cyclic behavior, with a period of approximately 70 itera-
tions, evident in Figure 9 is largely avoided by the hierarchi-
cal formulation.  In both cases, the Adaptive Linear Pro- 
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Figure 9: Robust Design Convergence (Nonhierarchical) 
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Figure 10: Robust Collaborative Optimization Conver-
gence (Hierarchical) 

 
gramming solution heuristic within the analysis software ap-
pears to converge toward a local optimum that is ultimately 
rejected in favor of a previously identified better point. 

5 CLOSING REMARKS 

The proposed approach for robust conceptual design opti-
mization uses Monte Carlo techniques within simulation-
based design to evaluate both the mean and variance of a 
response.  Both nonhierarchical and hierarchical formula-
tions attain identical optimum solutions. The effectiveness 
of Collaborative Optimization is offset by the increased 
computation time necessary to enforce the equality con-
strained system-level compatibility requirement.  However, 
the Collaborative Optimization formulation more accu-
rately represents the disciplinary organization encountered 
in conceptual design and facilitates parallel computation.  
Future investigations include the use of metamodels and 
data visualization to expedite the identification of design 
space tradeoffs for rapid exploration of alternative designs. 
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