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ABSTRACT 

Often in discrete-event simulation, factors being consid-
ered are qualitative such as machine type, production 
method, job release policy, and factory layout type. It is 
also often of interest to create a Response Surface (RS) 
metamodel for visualization of input-output relationships.  
Several methods have been proposed in the literature for 
RS metamodeling with qualitative factors but the resulting 
metamodels may be expected to predict poorly because of 
sensitivity to misspecification or bias. This paper proposes 
the use of the Expected Integrated Mean Squared Error 
(EIMSE) criterion to construct alternative optimal experi-
mental designs.  This approach explicitly takes bias into 
account. We use a discrete-event simulation example from 
the literature, coded in ARENATM, to illustrate the pro-
posed method and to compare metamodeling accuracy of 
alternative approaches computationally.  

1 INTRODUCTION 

Many real world systems of interest to practitioners are too 
complicated to be modeled analytically. Also gathering 
real data from the systems can be too expensive to support 
thorough optimization. Discrete-event simulation is widely 
considered as useful for studying behavior of those com-
plex systems. Simulations enable practitioners to better un-
derstanding of the expected performance of actual systems.  
For example, in this paper we will focus on a simulation 
model of a manufacturing system, derived from Seila, 
Ceric, and Tadikamalla (2001, p. 347), involving optimiza-
tion of three quantitative inputs and one qualitative input. 

Simulation models of those real world systems may 
themselves be complex and expensive to construct. There-
fore, simple mathematical models that approximate the 
outputs from simulation models are often constructed to 
clarify the system input-output relationships.  These meta-

 

models or surrogate models, which can be polynomial 
forms fitted using least squares regression, can help engi-
neers to make system design decisions (see, e.g., Kleijnen, 
1987, for a general reference).  Figure 1 shows the rela-
tionship between the real system, the computer simulation 
model, and the mathematical metamodel.  The metamodel, 
simulation model, and real physical system all have the 
same quantitative inputs or “factors”, x1,…,xk and qualita-
tive inputs or “factors”, z1,…,zr. The outputs associated 
with each may be different, y1,…, yn, for the metamodel 
y1,S,…, yn,S, for the simulation model, and y1,R,…, yn,R, for 
the real system. The metamodel is expected to give the 
worst prediction accuracy in terms of an ability to predict 
the real system input-output relationships.  Yet, because 
metamodels are the cheapest in terms of deriving outputs 
for a given set of inputs, they are widely used.  For exam-
ple, one can quickly obtain the approximately 100 outputs 
needed to create a contour plot using a metamodel.  
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The present paper offers a new “design of experi-
ments” (DOE) approach for selecting which input combi-
nations of the simulation models to test.  The goal is to 
minimize the prediction errors of the final metamodel gen-
erated by a providing a specific experimentation and curve 
fitting process.  In our case, we minimize only the errors of 
the metamodel related to outputs from the simulated sys-
tem, i.e., the yi,S and not necessarily errors associated with 
predicting real system outputs (the yi,R).  

Barton (1994) divides issues related to constructing 
metamodels into those that relate to the choice of functional 
form (e.g., the terms in the fitted model), design of experi-
ments, and assessment of adequacy of metamodels. This pa-
per emphasizes the issues pertaining the choice of functional 
form and design of experiments. So-called “bias errors” re-
sult from a difference between the fitted metamodel forms 
and the true, usually unknown model form.  The main moti-
vation of the new methods is to improve metamodel predic-
tion errors in the context of common situations in which bias 
errors are a concern because the true model form is un-
known.  Further, in the context of a real problem from the 
literature, we will show that the proposed approaches derive 
more accurate metamodels than approaches in Draper and 
John (1988) and Wu and Ding (1998). 

Section 2 reviews selected response surface meta-
model forms from the literature for situations involving 
both quantitative and qualitative factors. Section 3 reviews 
the Expected Integrated Mean Squared Errors (EIMSE) 
criterion and discusses its extension to situations involving 
qualitative factors. Section 4 describes examples of avail-
able experimental designs from the existing literature. A 
new class of EIMSE-optimal response surface designs for 
simulation metamodeling of systems involving qualitative 
factors to minimize prediction errors is then proposed in 
Sections 5. Section 6 describes a hypothetical manufactur-
ing system being modeled using ARENATM simulation 
package and implements the proposed design for meta-
modeling of the ARENATM simulation model. Section 7 
provides comparison results of expected prediction errors 
from the proposed methods and alternative methods from 
the literature. Section 8 summarizes the contributions.  

2 RESPONSE SURFACE METAMODELING 

In this section, we review selected response surface models 
from the literature.  In later sections, we will refer to these 
models in the context of the proposed methods and alterna-
tives.  So-called “response surfaces” are based on either 
second-order or third-order polynomials fitted using least 
squares regression. A second-order model is as shown in 
equation (1). A third-order model contains additional third-
order terms. 
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 The β’s are parameters, xi’s are inputs, and y is output 
or “response” of interest.  The above model form of equa-
tion (1) only includes quantitative inputs. When there are 
some input variables zi’s that are qualitative, more general 
model forms are relevant.  

Draper and John (1988) proposed the model forms 
shown in equation (2) and (3) that include both quantitative 
and qualitative input variables. The function, f, is a poly-
nomial of second-order and with z as the subscript that re-
fers to a combination of the qualitative factors, z1,…,zr. 
Therefore, z = 1,…,m where m is the number of qualitative 
factor combinations.  Then, Wz for z = 1, …, m represent 
the selected levels of m dummy variables, chosen so that  
all possible combinations of qualitative variables are po-
tentially distinguished, see, e.g., Draper and John (1988).   
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Wu and Ding (1998) proposed a more concise and restric-
tive model form shown in equation (4).   
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Where m is, again, the number of combinations of possible 
qualitative factor settings. Also, Wj is 1, when y is taken at 
level j of the variable z and 0 otherwise. The coefficients, 
β0z, is the constant term and β1z is the slope of xi, both de-
pending on the choice of z. Note that, unlike the model 
form proposed in Draper and John (1988), the model form 
proposed in Wu and Ding (1998) does not allow tailored 
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1 , 1

m k

z ij i j
z i j

W x xβ
= =

 
 
 

∑ ∑  for all combinations 

of qualitative factors. Wu and Ding (1998) also showed 
many examples of models of the type in equation (4) ar-
gued to be relevant when the run size is small. 
 The above notation is useful for displaying concisely 
assumptions.  In the practice of fitting models to data, 
however, it is common to use the notation scheme in 
Myers and Montgomery (1995) which separates out the 
different effect of qualitative factors. In this approach, for 
the l levels of each qualitative factor, one uses l – 1 indica-
tor variables or “contrasts”.  The ith factor has its jth con-
trast value equal to zero if the corresponding run is at the jth 
level of the qualitative factor.  Otherwise, the contrast 
value is zero. For the example in Table 1 below, there are 
two qualitative factors, z1 and z2.  Each has two levels.  
Therefore, both have 2 – 1 = 1 indicator variables associ-
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ated.  These are represented by 1 when the run is at level 1 
and 0 otherwise. The total of four level combinations are 
then represented by the coding scheme shown in Table 1. 
 

Table 1: Example Combinations (z) and Contrasts 
Levels of Qualitative  

Factors 
z Contrast 

#1 (z1) 
Contrast 
#2 (z2) 

1st level of z1, 1st level of z2 1 1 1 
1st level of z1, 2nd level of z2 2 1 0 
2nd level of z1, 1st level of z2 3 0 1 
2nd level of z1, 2nd level of z2 4 0 0 

  
 In the new notation,  
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is equivalent to (2) and (3). 

In this paper, we focus on a problem involving 3 quan-
titative and 1 qualitative factor.  Therefore, there is only 1 
contrast z for the factor z1.  Then, equation (4) in the nota-
tion of Myers and Montgomery (1995) can be written:  
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 To accommodate error due to potential model inade-
quacy, we assume equation (5) describes the true model 
form of the system of interest.  We use these assumed true 
models and the fitted  models to generate new classes of 
designs based on the “expected integrated mean squared 
error” (EIMSE) criterion as defined in the next section. 

3 EXPECTED INTEGRATED  
MEAN SQUARED ERRORS  
(EIMSE) CRITERION 

In this section, we review the expected integrated mean 
square error (EIMSE) criterion proposed in Allen, Yu, and 
Schmitz (2003) and adapt it to the context of the system 
involving both qualitative and quantitative input variables. 
Let n be the number of runs of the experimental plan, D, 
being evaluated.  Assume that the responses from experi-
ments, y, derive from the following model: 
 
 y = X1β1 + X2β2 + ε,  (7) 

 
where β1 and β2 are k1 and k2 dimensional vectors of coef-
ficients, X1 and X2 are n×k1  and n×k2 design matrices re-
)

spectively, and ε is a n vector of experimental random er-
rors with standard deviation σ.  Define f1(x) and f2(x) as 
possible rows of the design matrix X1 and X2 correspond-
ing to the point x = {x 1 ,…,xq ,z1 ,  …, zm – q} Then, the 
model to be used to make predictions at the point x after 
the experiment is: 

 
    where  (X( ) ( )β̂ˆ 1 xfx =y =β̂ 1′X 1 )  –1X1′y .  (8)  
 
This assumes that, after the model fitting, the experimenter 
will use an unedited model to make predictions.  With 
these assumptions, the EIMSE criterion is: 
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where 

 
∆ = Α ′µ1 1Α − µ1 2 ′Α  − Α ′µ1 2  + µ2 2   and 

 Α = (X1′X 1)  –1X1′X2 (10) 
 
and where K2 is the assumed prior covariance matrix, 
E[β2′β2].  In the example problem that follows, we use the 
DuMouchel and Jones (1994) assumptions scheme with the 
parameter γ adjusted so that the two terms in (9) are 
roughly equal for the recommended design.  The motiva-
tion for this approach is described in Allen, Yu, and 
Schmitz (2003).  Also, the so-called moment matrices are 
defined using: 

 
 µ i j  =  ∫R  f i (x)f j(x)′ρ(x)dx    
 for i , j  = 1,2  and  i  ≤   j  (11) 
 
where R is the region of interest and ρ is a weighting func-
tion describing the distribution of points where predictions 
will be expected after experimentation and model fitting.  
A standard assumption is that ρ(x) = 1/V  with V being the 
volume of the region of interest.   
 Note that the EIMSE value does not depend upon the 
distribution of the true values, β1, of any fitted parameter.  
The EIMSE defined by equations (9), (10), and (11) is an 
extension of the Box and Draper (1959) integrated mean 
squared error criterion because there is an additional inte-
gration over the distribution of true model coefficients.  Al-
len, Bernshteyn, and Kabiri (in press) show that EIMSE 
optimal designs produce relatively low prediction errors in 
the context of computer experiment case studies from the 
literature.  Also, the EIMSE has already been used to 
achieve useful engineering results as described in Allen, 
Yu, and Schmitz (2003), Allen, Yu, and Bernshteyn 
(2000), and Koc, Allen, Jirathearanat, and Altan (2000).  
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 To address the computational challenge associated 
with the set of qualitative input variables, the concept of 
optimization over a candidate set will be used. The candi-
date set is expressible by the matrix, C, of feasible points 
such that the experimental design optimization problem 
becomes the selection of n choices from this set.  Let Cj 
refer to the jth row of C.  In the context of the EIMSE for-
mulation, this approach results in the integer program: 
 

    

Subject to:           (12) 

  

 
 The candidate set suggested by Draper and John 
(1988) and Wu and Ding (1998) included only factorial 
points, center points, and star points of the region defined 
by the cuboidal region of quantitative factors and discrete 
region of qualitative factors. Motivated by the capabilities 
of modern computers, we propose to use a relatively ex-
haustive set of points.  One easy-to-implement way to do 
this is to generate N uniformly distributed random samples 
in the region of interest, where N is typically substantially 
larger than the number of points used by Draper and John 
(1988) and Wu and Ding (1998).  By implementing our 
proposed method, we can also create the designs in spheri-
cal region. To generate these samples in spherical region 
and store them in C, we use the algorithm described in 
Fishman (1996).   

4 ALTERNATIVE DESIGN METHODS 

Standard response surface designs such as Box Behnken 
and central composite designs (see, e.g., Box and Draper, 
1987 and Khuri and Cornell, 1996) are generally consid-
ered noncompetitive in the context of experimentation with 
both qualitative and quantitative factors.  Reasons for this 
include the fact that these designs have the same number of 
levels for all factors which is often not desired when quali-
tative factors are involved.  For example, the Box Behnken 
design has 3 levels for all factors, but the experimenter 
might be interested in exploring a qualitative factor with 
two or four levels.  Further, designs such as Box Behnken 
would lead to infinite prediction errors if models of the 
form in equation (4) were fitted with one or more of the 
factors being qualitative.  This follows because the associ-
ated information matrices are singular.  Repeating the en-
tire design for all combinations of qualitative factors gen-
erally leads to prohibitive experimental cost.   
 Draper and John (1988) were apparently the first to 
investigate experimental design with quantitative and 
qualitative factors. They began by focusing on two specific 
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problems and building on the ordinary central composite 
design structure.  They examined central composite de-
signs in a given number of quantitative factors and focused 
on assignments of the runs to given combinations of quali-
tative factor levels that preserved the following property.  
First order models in all quantitative factors could be fitted 
(are “estimable”) using only data from any given combina-
tion of qualitative factors.  An example involving one 
qualitative factor at two levels is shown in Table 2 and 
Figure 1 (from Draper and John, 1988, Figure 8b).  The 
model fitted by those authors is given by equation (6).  
Note that the last columns in  Table 2, Table 3, and Table 4 
give response values achieved which are the average of re-
sults for 40 replications using the ARENATM software for 
the case study described in Section 6. 
 
Table 2: Response Surface Design Proposed in Draper and  
John (1988) for r = 1 Qualitative Input Variable and k = 3 
Quantitative Input Variables 

Run x1 x2 x3 z Cost (y) 
1 -1 -1 -1 0 7854.4 
2 1 -1 -1 0 14170.0 
3 -1 1 -1 0 9528.7 
4 -1 -1 1 0 8953.0 
5 1 1 -1 1 14863.3 
6 1 -1 1 1 14846.9 
7 -1 1 1 1 9409.9 
8 1 1 1 1 14088.2 
9 -1.682 0 0 0 6995.0 

10 1.682 0 0 0 14706.6 
11 0 -1.682 0 0 207086.2 
12 0 1.682 0 1 11898.8 
13 0 0 -1.682 1 50818.9 
14 0 0 1.682 1 12832.4 
15 0 0 0 0 11418.0 
16 0 0 0 1 11486.3 

 

x2

x3

x1

 
Figure 1: Response Surface Design Pro-
posed in Draper and John (1988) for r = 
1 Qualitative Input Variable and k = 3 
Quantitative Input Variables with ○  for z 
= 0 and ●  for z = 1 

 
 Wu and Ding (1998) proposed an alternative set of de-
signs derived from optimization of the so-called D-
optimality objective.  More specifically, their proposed de-
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signs were constructed to address four prioritized objec-
tives regarding types of models to be fitted and estimability 
of model terms.  
 Their most important objective is that the overall de-
sign must be efficient for a model that is second order in 
quantitative factors and has main effects of qualitative fac-
tors and interactions between quantitative and qualitative 
factors. The second most important objective is that at each 
combination or each level of qualitative factor, the design 
is  an  efficient  first-order  design  in  quantitative  factors. 
This objective ensures that the first-order effects of quanti-
tative factors that may vary with the levels of qualitative 
variables can be estimated.  
 To meet these first two objectives the design points  are 
partitioned into several groups.  Each group is associates with 
a level combination of qualitative factors. Since there can be 
several partitioning choices, an “optimal” design is the one 
that best satisfies the objectives mentioned previously.  
 To be standard in relation to common practice, they 
built their designs in the quantitative factors on central 
composite designs. In general, their proposed design con-
sists of 2k-p + 2 + 2k runs. The first 2k-p runs were con-
structed from a high resolution 2-level fractional factorial. 
Then two center points were added. Finally, 2k star points, 
whose distance from the origin is α, were added. The value 
of α was chosen so that the design is rotatable. 
 To address the abovementioned criteria, Wu and Ding 
(1998) proposed careful assignment of the runs in the cen-
tral composite design to the combinations of qualitative 
factor levels. This step required a formal optimization 
search over possible set of different combinations of levels 
so that the design objectives are met. Table 3 and Figure 2 
shows an example of the design proposed by Wu and Ding  
  
Table 3: Response Surface Design Proposed in Wu and  
Ding (1998) for r = 1 Qualitative Input Variable and k = 3 
Quantitative Input Variables 

Run x1 x2 x3 z Cost (y) 
1 1 1 1 1 14088.24 
2 1 1 -1 1 14863.26 
3 1 -1 1 0 12851.63 
4 1 -1 -1 1 13720.71 
5 -1 1 1 1 9409.86 
6 -1 1 -1 0 9528.66 
7 -1 -1 1 0 8952.99 
8 -1 -1 -1 0 7854.41 
9 0 0 0 1 11486.26 

10 0 0 0 0 11417.99 
11 1.682 0 0 0 14959.76 
12 -1.682 0 0 1 8415.81 
13 0 1.682 0 0 10508.72 
14 0 -1.682 0 1 219424.01 
15 0 0 1.682 0 10831.18 
16 0 0 -1.682 0 52866.17 

 

 

x2

x3

x1

Figure 2: Response Surface Design Pro-
posed in Wu and  Ding (1998) for r = 1 
Qualitative Input Variable and k = 3 
Quantitative Input Variables with ○  For z 
= 0 and ●  For z = 1 

 
(1998) as shown as design no. 1 in their paper, for the case 
where r = 1 qualitative input variable and k = 3 quantitative 
input variables.  

5 A NEW CLASS OF  
EIMSE-OPTIMAL DESIGNS 

In this section, we propose response surface designs which 
come directly from the optimization formulation in equation 
(12) involving both qualitative and quantitative factor.  We 
define the N×m matrix using C~  = (C|C2) where the matrix 
C is the candidate set for the quantitative factors and C2 is a 
set of uniform points from the region of interest of the r 
qualitative factors.  The default assumption that we used to 
generate the EIMSE-optimal design in Table 4 is that the re-
gion of interest is a sphere with radius 1.628 to facilitate 
comparison with Wu and Ding (1998).  Therefore, the gen-
erated designs minimize the expected squared errors of pre-
diction through combining of candidate points that are them-
selves uniform samples from the region of interest.   
 In general, any combination of assumed true and fitted 
models could be used together with the assumptions about 
the coefficient distributions. In this paper, the assumed true 
model is of the general form in equations (2) and (3) and 
the assumed fitted model is of limited second-order form in 
equations (4) and (5).  
 To generate all designs, we used the algorithm de-
scribed in Hadj-Alouane and Bean (1997).  Prior to each 
design generation, we generated N = 10,000 candidate 
points. The proposed EIMSE-optimal design for the case 
where r = 1 qualitative input variable and k = 3 quantitative 
input variables is shown in Table 4 and Figure 3. 

The EIMSE-optimal design in Table 4 minimizes the 
expected prediction error for the fitted model form assum-
ing the true model form given that only 16 simulation runs 
are to be conducted for metamodeling. The EIMSE value 
of the design is 2.35, which practically implies that the 
predictions for the mean response values, η(x), can be ex-
pected to have standard errors of approximately sqrt(2.35) 
times the standard deviation of the noise. The EIMSE val- 
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Table 4: EIMSE-Optimal Response Surface Design 
Run x1 x2 x3 z Cost (y) 

1 -1.41 0.455 -0.022 0 8023.9 
2 -0.949 -1.281 -0.012 0 9855.3 
3 -0.176 1.355 -0.558 0 10072.3 
4 1.089 0.379 -0.631 1 13608.0 
5 0.592 0.293 1.424 1 14108.3 
6 -0.141 -0.271 -0.927 0 10765.2 
7 -0.129 0.324 0.644 0 11181.0 
8 0.644 -1.265 0.713 0 13815.7 
9 0.224 1.32 0.987 1 13064.6 

10 1.363 0.748 0.168 0 15713.9 
11 0.795 -1.235 -0.275 1 13102.4 
12 -0.882 0.371 0.974 1 8537.7 
13 -0.168 -0.041 -1.601 1 20631.6 
14 -0.473 0.524 -0.739 1 9462.6 
15 -0.084 -1.127 1.014 1 10699.7 
16 -0.884 -1.156 -0.697 1 10696.5 
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Figure 3: EIMSE-Optimal Design 
 
ues of other alternative designs including the designs pro-
posed in Draper and John (1988) and Wu and Ding (1998) 
are presented in Section 7. 

The proposed method offers relatively great flexibility 
in number of runs depending on the required prediction ac-
curacy. Obviously, more runs result in improved expected 
prediction accuracy as well as higher costs of the meta-
modeling process. Using the proposed design method, the 
experimenter can thoroughly investigate and trade off the 
prediction accuracy goal and cost budget of experimenta-
tion in advance before actual metamodeling experimenta-
tions begin.  

Also the user of our proposed experimental design pro-
cedure has relatively higher flexibility in the number of lev-
els for each factor involved in metamodeling. Since the can-
didate set is used for construction of the EIMSE-optimal 
design, each factor can include any number of distinct levels 
in the set of candidate points from which the optimization 
procedure selects the recommended design points.  
6 CASE STUDY: COMPUTER SIMULATION  
OF MANUFACTURING SYSTEM  

Figure 4 shows a manufacturing system, which is based on 
a problem presented in Seila, et al. (2001, page 347). An 
ARENATM simulation model was constructed and used to 
generate the response data for each of the relevant meta-
modeling approaches.  
 

 
Figure 4: Manufacturing System Example 

 
 In the simulated system, there are two machines. 
When a part arrives in the system, it is kept in a queue until 
the corresponding machine is available. Two manual carts 
carry the parts to an inspection station after they are proc-
essed at the machine station. After being inspected, some 
parts that do not pass the inspection go back into a queue 
and are reworked. The proportion of parts that are re-
worked is 20%.  
 If a part passes the inspection, it is put into a buffer to 
wait for accessing an accumulating straight-line conveyor 
(with accumulating length 0.8 inches) and then access a non-
accumulating loop conveyor at the loop onramp. At the loop 
offramp, there is another buffer, which can contain four 
parts.  If the buffer is full, the part continues to be conveyed 
on the loop conveyor until some time the buffer is not full 
when it come back to the loop offramp again. After going 
through the assembly station, the part will leave the manu-
facturing system. The assembly station is maintained using 
preventive maintenance scheduled at between 2 to 6 hours to 
try to prevent it from failing. However, if the assembly sta-
tion failed, it will be repaired and time for preventive main-
tenance schedule is restarted at time 0. 
 The cell sizes of both conveyors are 1 foot by 1 foot. 
In the original system, the velocity of the straight conveyor 
can be set between 4 to 12 ft/min, and the velocity of the 
loop conveyor can be set between 3 to 10 ft/min. The 
length of the straight conveyor is 15 ft. For the loop con-
veyor, the length from loop onramp to loop offramp is 20 ft 
and that from loop offramp to loop onramp is 35 ft. The 
distance from the machine station to the inspection station 
is 20 ft and the speed of the carts is 25ft/min. Parts enter 
the system in batches. Batch size contains 4, 5, or 6 parts 
with probability 0.4, 0.2, 0.4, respectively. The inter-arrival 
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times of the batches are i.i.d. exponentially distributed with 
mean 7.3 minutes. The processing time in the machine is 
Uniform(30, 72) minutes, the inspection time is Triangu-
lar(0.5, 1, 1) minutes, and there are two workers working at 
the assembly station with assembly time that is i.i.d. dis-
tributed with distribution Triangular(1.5,1.8,2.5) minutes.  
 Seila, et al. (2001, page 364) did not include mainte-
nance and queuing policies in their formulation. Therefore, 
in addition to cost information from their specifications, 
we assumed that each maintenance will cost $20 (exclud-
ing the idle cost of the machine).  Also, each failure will 
cost $100.  The system will run 24 hours per day.  For eve-
ryday, we assume the cost of straight conveyor per day is 
$(rate * 10) and that of loop conveyor is $(rate * 12).  The 
main output response is the cost of running the system. 
There are four input variables that are thought to have ef-
fects on those responses of interest. The input variables as 
well as their ranges are shown in Table 5. 
 

Table 5: Input Variables or Factors for Simulation 
Model of a Manufacturing System Example 

Factors Name Range 
x1 Straight-line 

conveyor speed 
(ft/min) 

4 -12 

x2 Loop conveyor 
speed (ft/min) 

3 - 10 

x3 Maintenance 
schedule (hours) 

2 - 6 

z Queuing  
Policy 

0: Both machines  
    share the same     
    queue; 

 
1: Different machines 

have independent      
    queues, parts will    
    select the shortest  
    queue 

7 COMPARISONS OF  
ALTERNATIVE DESIGNS 

In this section, we compare the proposed designs with alter-
native designs from the literature including the designs from 
Draper and John (1988) and Wu and Ding (1998).  We de-
scribe the application of each of these alternatives and the 
proposed method to create metamodels for the manufactur-
ing problem in Section 6.  We compare both the expected 
prediction errors before experimentation using the EIMSE 
from Section 3 and a measure of the actual prediction errors 
from the case study.  We assume that all methods involve 16 
runs and involve fitting the model in equations (4) and (5) in 
keeping with examples in those papers.   
 There were two alternative designs with similar origins 
usable in our case study which Draper and John (1988) pro-
vided in their Figure 8b and 8c.  Also, Wu and Ding (1998) 
provided three relevant alternative designs in their Table 4.  
Some of those designs were shown in Section 4 of this pa-
per. Table 6 shows the EIMSE values or expected prediction 
errors for alternative response surface designs. 

 
Table 6: EIMSE Values for Alternative 16-Run Re-
sponse Surface Designs 

Designs EIMSE values 
8b. 128.37 (IV = 76.08) Draper and John  

(1988) 8c. 4.75 (IV = 3.14) 
4.1.1 3.48 (IV = 1.05) 
4.1.2 3.22 (IV = 1.10) 

Wu and Ding 
(1998) 

4.1.3 6.89 (IV = 2.01) 
EIMSE-optimal 2.35 (IV = 1.18) 

 
 The results in Table 6 confirms that putatively 
EIMSE-optimal designs can be expected to generate sub-
stantially more accurate fitted models than the relevant de-
sign alternatives. For example, the standard errors of the 
response predictions for this problem are expected to be 
sqrt(128.37/2.35) times greater for Draper and John (1988) 
8b design than for our proposed design.  The Integrated 
Squared Error (ISE) calculations were conducted as em-
pirical validation of the claim.   
 Table 7 shows the results from Integrated Squared Er-
ror (ISE) calculations. First, six metamodels in the form of 
equation (6) were fitted using actual ARENATM simulation 
response data from each design in Table 6. Then, fifty ran-
dom experimental points were generated uniformly in the 
spherical region of interest. ARENATM model was run 
again to gather actual simulation results for those points. 
Next, all random design points were fitted to each meta-
model to gather predictions. The errors were calculated us-
ing the different between predictions and actual ARENATM 
simulation results.  
 

Table 7: Sqrt(ISE) Values for Alternative 16-Run 
Response Surface Designs 

Designs Sqrt(ISE) values 
8b. 367,406.9 Draper and John  

(1988) 8c. 43,737.5 
4.1.1 62,294.5 
4.1.2 64,956.8 

Wu and Ding 
(1998) 

4.1.3 56,736.3 
EIMSE-optimal 2,811.5 

 
 Formally, the Integrated Squared Error (ISE) formula 
can be written: 
 

 ISE = { }2
2

ˆ( ) ( ) ( ) ( )
o

N w x E y x x d xη
σ

−
  ∫
 
   (13) 
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where η(x) includes the random experimental errors, in our 
case from using only 40 replicates.  Since this error in-
cludes both contributions from bias, random errors during 
experimentation, and random errors during testing of the 
model, it can be expected to be higher in practice than the 
EIMSE which includes only the former two influences as 
described in Section 3. 
 A major finding is that the EIMSE-optimal design is 
expected to achieve far lower prediction errors before the 
experiment as calculated using the EIMSE.  Also, in our 
case study, we verified subsequent to experimentation and 
model fitting that these relatively low prediction errors 
were achieved.   
 It is perhaps interesting to note that the estimated stan-
dard error from the regression involving the EIMSE design 
was sqrt(MSE) = 1,136.  Therefore, scaling the EIMSE, we 
would typically expect prediction errors approximately 
equal to sqrt(2.35)×(1,136) ~ 2,000 which is roughly what 
was observed.  This provides some measure of confirma-
tion that the EIMSE is a relevant measure of prediction ac-
curacy of potential interest before experimentation begins. 
 A final consideration relates to model editing after 
data has been collected, i.e., decisions about dropping spe-
cific terms from the full second order model.  In editing, 
which may be regarded as optional, orthogonality of col-
umns in the design matrix, X1, aids in the analysis because 
estimates of one coefficient do not depend on which other 
coefficients are included in the model.  In this context, de-
signs such as those proposed by Draper and John (1988) 
and Wu and Ding (1998) have an advantage because more 
of their associated X1 matrix columns are orthogonal. 

8 CONCLUSIONS 

In this paper, we have presented new classes of response 
surface designs for situations involving both qualitative 
and quantitative factors, generated using the EIMSE crite-
rion.  We also described computational issues related to 
adapting that criterion to this context.  We demonstrated 
that designs of various sizes that were generated to mini-
mize the EIMSE were able to achieve substantially lower 
prediction errors than alternatives in the context of an ex-
amples and a fitted model from the literature.   
 We suggest that EIMSE-optimal response surface de-
sign methodology constitute a potentially important tool 
for designing response surface experiments in situation in-
volving both qualitative and quantitative factors.  Com-
mercially available software for the planning and analysis 
based on the proposed methods is available through con-
tacting the authors.  
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