
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

MODELS FOR CONTINOUS AND HYBRID SYSTEM SIMULATION

Mariana C. D’Abreu

Computer Science Department
Universidad de Buenos Aires

Planta Baja, Pabellón I, Ciudad Universitaria
(1428) Buenos Aires, ARGENTINA

 Gabriel A. Wainer

Dept. of Systems and Computer Engineering
Carleton University

1125 Colonel By Drive. 4456 Mackenzie Bldg.
Ottawa, ON, K1S 5B6, CANADA

ABSTRACT

The DEVS formalism was defined as a method for model-
ing and discrete event systems. DEVS theory evolved and
it was recently upgraded in order to permit modeling of
continuous and hybrid systems. Here, we present a first
experience on the use of two of the existing methods for
defining continuous variable DEVS models (namely, the
QDEVS and the GDEVS formalisms), to develop continu-
ous and hybrid systems simulations. We show how to
model these dynamic systems under the discrete event ab-
straction. Examples of model simulations with their execu-
tion results are included. An experimental analysis on
quantization methods within models is also presented.

1 INTRODUCTION

Complex systems analysis has usually been tackled using
different mathematical formalisms, Partial Differential
Equations (PDE) being one of the preferred tools of choice
(Taylor, 1996). In most complex systems, solutions to
these equations are very difficult or impossible to find. A
variety of numerical methods find approximate solutions to
these equations, being successful in studying many differ-
ent phenomena. The appearance of digital computers al-
lowed enhancing previously existing numerical methods.
Simulation-based approaches succeeded in providing a
means of analyzing particular problems (instead of the
general solutions obtained by solving PDEs).

Simulation of continuous systems on digital computers
requires discretization. Classical methods as Euler, Runge-
Kutta, Adams, etc., are based on discretization of time re-
sulting in a discrete time simulation model (Press et al.
1986). Instead, methods like DEVS (Discrete EVent Speci-
fication) formalism (Zeigler et al. 2000) were built in order
to allow the specification of discrete event models. The
DEVS formalism was defined as a method for modeling
and discrete event systems. DEVS provides means to han-
dle explicit time, and to define complex models in a hierar-
chical modular fashion.

DEVS theory evolved and it was recently upgraded in

order to permit modeling of continuous and hybrid sys-
tems. GDEVS (Generalized Discrete EVent Specification)
(Giambiasi et al. 2000) is a generalization of constant in-
put-output trajectories beyond DEVS abstraction; under
this formalism, trajectories are organized through piece-
wise polynomial segments. This presents some advantages,
including greater accuracy in modeling continuous systems
and the ability to develop a uniform approach to model hy-
brid systems, i.e. composed of both continuous and dis-
crete components. Another approach to solve these prob-
lems under the DEVS formalism is based on state variable
quantization (Zeigler et al. 1998). The idea beyond this
method is to provide quantization of the state variables ob-
taining a discrete event approximation of the continuous
system. This formalism is known as Q-DEVS and quanti-
zation is done using a piecewise constant function.

In the long term, we want to attack the development of
hybrid systems based on the DEVS formalism and its ex-
tensions, building libraries to make easy to use components
developed on top of DEVS modeling tools. In this article
we show our first results in this sense. We present the im-
plementation of a library of Bond Graphs (Cellier 1991)
based on GDEVS. Likewise, we present other components
often used in continuous systems using QDEVS. One of
the benefits is that for a given accuracy, the number of
transitions can be reduced, decreasing the execution time
of simulations. Discrete time models can be simulated un-
der discrete event paradigm, thus allowing the develop-
ment of a simulation environment for complex systems,
modeled as hybrid systems, where all paradigms merge to-
gether (continuous time, discrete time, discrete event).

The experience was developed using the CD++ toolkit
(Wainer 2002), a modeling and simulation framework that
was developed in order to implement the theoretical con-
cepts specified by the DEVS formalism. A hierarchy of
models is introduced in order to allow a modular and sim-
ple specification of dynamic and hybrid systems. Some ex-
amples are included in order to show results of models
execution. An analysis of Q-DEVS models is also pre-

D’Abreu and Wainer

sented. A set of test cases are specified and executed based
on uniform quantization function equipped with hysteresis.
These methods may result in poor stability and conver-
gence. In addition, they can be inaccurate. Nevertheless,
the results obtained in this experience are promising. In
this first step of our research, we focus in software imple-
mentation issues. Several theoretical problems remain
open, and they will be addressed in future work.

2 BACKGROUND

DEVS (Discrete EVents Systems Specification) (Zeigler et
al. 2000) defines a way to specify systems whose states
change either upon the reception of an input event or due
to the expiration of a time delay. It allows hierarchical de-
composition of the model by defining a way to couple
DEVS models. A DEVS atomic model is described as:

M = < X, S, Y, δint, δext, λ, ta >

•
•
•
•

•
•
•

•
•
•
•
•

X is the set of external events
Y is the set of internal events
S is the set of sequential states
δext: Q x X → S is the external state transition
function
δint: S → S is the internal state transition function
λ: S → Y is the output function
ta: S → R0 + U ∞ is the time advance function

A DEVS coupled model is composed of several
atomic or coupled submodels. It is formally defined by:

CM = <X, Y, D, {Mi}, {Ii}, {Zij}, select >

D is a set of components; for each i in D,
Mi is a basic DEVS component; for each i in D,
Ιi is the set of influencees of i; for each j in Ιi,
Ζi, j is the i-to-j output-input translation function
select is the tiebreaker function.

Continuous time ODE systems with initial conditions
have traditionally been simulated by discretizing the time
domain, and solving the ODE over each discrete time in-
terval. Recently quantized DEVS models (Zeigler 1998)
permitted to solve this problem using a different approach,
depicted in Figure 1. A curve is represented by the crossing
of an equal spaced set of boundaries, separated by a quan-
tum size. A quantizer, checks for boundary crossing when-
ever a change in a model takes place. Only when a crossing
occurs, a new value is sent to the receiver. This operation
reduces substantially the frequency of message updates.

This approach requires a fundamental shift in thinking
about the system as a whole. Instead of determining what
value a dependant variable will have (it’s state) at a given
time, we must determine at what time a dependant variable
will enter a given state, namely the state above or below

Figure 1: Signal Quantization

it’s current state. This approach may yield results as accu-
rate as a discrete time approach.

Another approach recently applied to solve this prob-
lem is the GDEVS (Generalized Discrete EVent Specifica-
tion) formalism (Giambiasi et al. 2000). GDEVS uses of
polynomials of arbitrary degree to represent the piecewise
input-output trajectories of a discrete event model. GDEVS
adopted an approach based on a new definition of the con-
cept of event. The target real-world system is modeled
through piecewise polynomial segments translated into
piecewise constant trajectories. A coefficient event is con-
sidered as an instantaneous event.

For example, let us consider a piecewise linear trajec-
tory w<t0;tn> A as a trajectory on a continuous time
base, characterized as follows: there is a finite set of in-
stants {t0, t1, … ,tn} associated with constant pairs (ai; bi)
such that ∀t ∈ <ti; tj>, w(t) = ai t + bi, and w<t0; tn> =
w<t0;t1>*w<t1;t2>*…*w<tn-1;tn> (where * represents the
operator left concatenation of segments). This is exempli-
fied in Figure 2, which describes the use of piecewise lin-
ear approximations of the continuous segment in Figure 2a,
while Figure 2c represents a discrete event abstraction of
order 1 under GDEVS with coefficient events.

Figure 2: GDEVS Approximation

D’Abreu and Wainer

In order to build our library, we started by creating
models of continuous systems to be integrated with existing
DEVS models. To present a proof of concept, we focused in
building a library for Bond-Graphs (Cellier 1991) technique.
One of the reasons for choosing Bond-Graphs was the direct
relation existing between the basic electrical elements inte-
grating a circuit and the primitive Bond-Graph components.
In Bond-Graphs, physical processes are represented as verti-
ces in a directed graph and the edges represent the ideal ex-
change of energy between the vertices (Cellier 1991, Saman-
taray 2003). The energy (or its time derivative, the power), is
the fundamental quantity exchanged between elements of
the system. Power is the product of flow and effort (in trans-
lation mechanics, power is the product of force and velocity;
in electrical systems, it is the product of voltage and current;
in any system, a generalized flow and effort variable could
be defined). In Bond-Graphs, flow of energy is represented
by bonds, and elements exchange effort and flow through
them. The exchange of power is assumed to occur through
abstract entities called energy port; this way, the concepts of
One-port and Two-Port elements are defined. One-port ele-
ment, is a component that has associated one energy port
represented with a bond. Two-Port elements are those that
have two energy ports, represented with two bonds. Interac-
tions between components are also restricted. Connectors
implement constrained exchanges between elements. The 1-
junction represents interactions between components con-
nected serially.

As we represent the exchange of power between ele-
ments, a concept to understand how information flows be-
tween components is causality. No component can deter-
mine both the power variables, effort and flow. Given a pair
of elements connected through a bond, causality determines
which of the components causes the flow information and
which causes the effort. For example, in a current source
connected to a resistor, the source dictates the flow while the
resistor dictates the effort. This is graphically represented as:

 R SF

CD++ (Wainer 2002) is a modeling and simulation
tool based on implementing DEVS theory. The tool pro-
vides a specification language that allows describing model
coupling; additionally, atomic models can be developed
using C++. CD++ was built as a hierarchy of classes in
C++, each corresponding to a simulation entity using the
basic concepts defined in (Zeigler et al. 2000). The Atomic
class implements the behavior of an atomic component,
whereas the Coupled class implements the mechanisms of
a coupled model. We used CD++ to build a Bond-Graph
library as a set of independent models in which the compo-
nents are developed using GDEVS. All the components we
modeled were defined using functions of order one, but
higher accuracy could be achieved increasing polynomial
degree. We also built a set of components using Q-DEVS.
We will describe these models in the following sections.
3 A BOND-GRAPH LIBRARY IN CD++

We developed a library of Bond-Graphs on top of the
DEVS formalism, and this package permits to model and
simulate continuous systems within different contexts. We
used the CD++ toolkit to build a library for electrical pack-
age. This library was defined using the conceptual specifi-
cations of GDEVS. Having a library of models provide a
modular approach to build and simulate electrical circuits
thus allowing code reusability. The use of GDEVS allows
us to easily integrate continuous models with discrete event
models using DEVS. All Bond-Graph primitive elements
were built as atomic GDEVS models with polynomial
functions of degree one. Extensions to the CD++ toolkit
were introduced in order to support this new approach.

Every primitive Bond-Graph element (port compo-
nent) defines one or more equations that involve the flow
and/or effort variable values received by the bonds con-
nected to it. Bonds are two-signal connections (effort and
flow) that have opposite directions. Passive elements like
those that Capacitors, Resistances and Inductors have a
power direction pointing inwards, on the other hand, active
components like Source have the power pointing outwards.
This signal direction determines the bond causality, having
some component equations putting demands on it.

•

•

•

The elements of the library were developed according
a hierarchy of classes derived from DEVS atomic models,
the components of this hierarchy are described bellow:

BG: an abstract model, base for all the primitive
Bond-Graph elements. It introduces functionality
to add bonds to the components.
Resistance: it calculates the effort value according
the resistance equation: effort = R . flow. Here, R
is the Resistance constant. The flow received by is
automatically processed to obtain the effort value,
which is informed to its adjacency. The time in-
stants of new input arrival, t1, t2, ..., tn, are associ-
ated to tuples (ai,bi), which values correspond to
the coefficients used to approximate the effort
curve by the polynomial function: effort(t) = ai t +
bi ∀ t <ti,tj>. The model internal transition, im-
plements the polynomial approximation of the
continuous curve (effort in this case). This behav-
ior is common to all the GDEVS models devel-
oped, where curve approximation is done using a
polynomial function of order one.
Capacitor: it models the static relation existing
between effort and displacement. Storage ele-
ments as Capacitors impose a preferred causality.
The equation defined by the Capacitor element
can be expressed in two forms:

D’Abreu and Wainer

where C is the Capacitor constant. We implemented
the first equation, which is introduced in Figure 3.
The implementation of the remaining components
here described was defined following a similar ap-
proach than the one showed in following.

class Capacitor : public BG {
 public:
 Capacitor(const string &name =
 CAPACITOR_CLASS_NAME);
 ~Capacitor();
. . .
 private:
 FlowInBond &bond; // Flow input
 RealValue a0, a1; //input level and slope
 VList *yout; // output value (effort)
 RealValue c; // capacitor load
 RealValue C; // capacitor constant
 RealValue time; // time accounting
 RealValue dt; // delta
};

External transition {
// Calculates load as integral of the inputflow
 if (state() == active) {
 // load calculated for the duration of state
 a0 = a0 - a1 * dt;
 c = c-(a1/2 * pow(dt, 2) + a0 * dt);
 }
 // time since last transition
 elapsedTime=msg.time().asMsecs()-time;
 // calculates load value

c = c+a1/2*pow(elapsedTime,2)+a0*elapsedTime;
 VList *list = (VList *)msg.getValue();
 // considers input event coefficients
 a0 = list->elementAt(1)->toReal();
 a1 = list->elementAt(2)->toReal();
 a0 /= C; a1 /= C; // Capacitor constant
 // sets coefficient of next output event
 yout->updElementAtPos(1, c);
 yout->updElementAtPos(2, a1/2 * dt + a0);
 time = msg.time().asMsecs();
 holdIn(active, Time::Zero);
}

Internal transition {
// approximates load using order 1 polynomial.
 if (a1 != 0) {
 // next state calculated using coefficients
 c = c + a1/2 * pow(dt, 2) + a0 * dt;
 a0 = a1 * dt + a0;
 // coefficient values to send when dt elapsed
 yout->updElementAtPos(1, c);
 yout->updElementAtPos(2, a1/2 * dt + a0
);
 holdIn(active, Time(dt)); }
 else {
 passivate(); // slope is null
 }
}

Output function {
 sendOutput(msg.time(),*bond.outputPort(),
*yout);
}

Figure 3: Implementation of Capacitor Element in CD++

As we can see, when flow arrives at the component, an
external transition function is activated, and the flow is in-
tegrated in order to calculate the effort value, which is send
to the rest of the system through the effort port. The exter-
nal transition function calculates the effort value as the in-
tegral of the input flow data, generating the Capacitor’s
load. We can see the implementation of the continuous
curve approximation using a polynomial function of order
one. If the flow input arrives during an active state, the
value is computed according to the elapsed time since the
last internal transition function. An internal transition is
immediately scheduled, which will be in charge of comput-
ing the next state using a polynomial of order 1. Before
executing the internal transition function, the output func-
tion transmits the previously computed value yout.

EffortSource and FlowSource: these components
generate signal values according to an emission
frequency. EffortSource sends the effort though
the output port, while the FlowSource sends the
flow value. Several signals were implemented in
order to provide a set of functions to use in differ-
ent contexts: Constant, Step, Ramp, Sine, Expsine,
Exponential, Pulse.

•

• Inductor: it defines the static relation existing
between flow and momentum. We used the fol-

lowing preferred equation: ∫
∞−

=
t

dteffort
L

flow 1 .

The L value corresponds to Inertial constant. The
model transition functions are similar to those
listed for Capacitor model, but in this case, the
Inductor load (flow) is calculated as the integral
of effort value.
Transformer: this model conserves power and
transmits the factors with the proper scaling de-
fined by the transformer modulus. The modulus
equation defines the following relations: fj = r fi,
and ej = (1/r) ei, where r is the transformer
modulus, (ei,fi) and (ej,fj) are the (effort,flow) val-
ues transported by bondi and bondj attached to the
component, respectively. New input effort data
arriving at the component is processed in the ex-
ternal function and used to compute the outgoing
effort according the modulus relation. As this
element has two bonds connected to it, both out-
put effort and flow values must be calculated by
the model. This way, internal function approxi-
mates both values with polynomial functions.

•

• Gyrator: this model establishes the relationship
between flow to effort and effort to flow, keeping
the power unchanged. The relations are defined
by: ej = µ fi, ei = µ fj where µ is the gyrator
modulus, (ei,fi) and (ej,fj) are the (effort,flow) val-
ues transported by bondi and bondj attached to the
component, respectively. In a 0-junction compo-
nent, all the flows sum up zero; in 1-junctions, the

D’Abreu and Wainer

values of all efforts must sum zero. Figure 4 pre-
sents a graphical representation of junctions.

Figure 4: Graphical Representation of Junctions

As it can be seen in the figure, junctions are

connected to several bonds respecting causality
restrictions. The sign of the flows and efforts
within the component are defined by the power
direction, which is one of the bond’s attributes.
The 0-junction (1-junction) model implemented in
the library, processes the arrival of new effort
(flow) data in the model’s external function, send-
ing for all the output effort (flow) ports the re-
ceived value. On the other hand, the arrival of
new flow (effort) by one of the bonds, generates
the recalculation of the equation. Once value is
recalculated, flow (effort) is sent by output port.
Bond: this is not a Bond-Graph primitive element,
but it was included in the library in order to im-
plement the functionality beyond component con-
nections. Every bond is associated with an input
port and an output port, which must transport the
effort and flow variables between components.
Attributes specify the power direction and causal-
ity restrictions. Bonds connect the different com-
ponents allowing the exchange of power between
them. New input effort or flow data arriving at a
component, serves for the calculation of new out-
put data using the input-output mathematical rela-
tionships defined by every component through the
equations. Depending on the element type (One-
port, Two-Port or Junction), it could have associ-
ated one or more bonds. The exchange of data
within every bond is done through the ciPort and
coPort ports defined in the class Bond.

•

The complete hierarchy of Bond-Graph models inte-
grating the library is shown in in the Appendix.

4 MODEL EXECUTION EXAMPLES

Besides the Bond-Graph library presented in the previous
section, we included a number of components based on the
QDEVS formalism. As with GDEVS, this technique pre-
sents some advantages over classical continuous methods
based on discretization of time. Here we present two quan-
tizers and one integrator. Both quantizers were imple-
mented in order to provide a function that converts con-
tinuous trajectories to piecewise constant segments. Obn
the other hand, the Integrator model implements the func-
tionality needed to integrate its input.
The Quantizer model provides the representation of
output trajectories as piecewise constant functions through
the quantization function. Two types of quantizers were im-
plemented: uniform and non-uniform (intervals) quantizer.
Uniform quantizers (depicted in Figure 5) specifies a quan-
tum size that defines the length of all the intervals. In con-
trast, Intervals (not uniform) quantizer, permits to set differ-
ent interval lengths according the following restriction:

∪

i

irdomainonQuantizati =_

where ri belongs to quantization intervals verifying ri-1 < ri

Figure 5: Uniform Quantization

A second model uses quantization with hysteresis

(Kofman and Junco 2001), as shown in Figure 6. The in-
clusion of hysteresis in the function allows the discrete-
event simulation of the continuous system. Let D = {d0,
d1,..., dn} be a set of numbers where di ∈ ℜ, di-1 < di with
1≤ i ≤ r and let x ∈ Ω be a continuous trajectory where x :
ℜ→ℜ. Let b : Ω→Ω be a mapping and q the trajectory de-
fined by q = b(x). A fundamental property that function b
must establish is given by the following inequality: d0 ≤
x(t) ≤ dr ⇒ q(t) – x(t)  =  b(x(t)) – x(t) ≤ max1≤ i ≤ r (di
– di-1, ε) where ε is the size of the hysteresis window.

Figure 6: Quantization with Hysteresis

Finally, we built an integrator as a DEVS model. The

model outputs the integrated value of its input. It imple-
ments the Euler integration algorithm, a first order method

D’Abreu and Wainer

that provides numerical solution to integral calculus. The
algorithm is defined by the following iteration step:

where x* is the approximation of function x and x’ is given
by the following equation

5 MODEL EXECUTION EXAMPLES

We show how we used the libraries to execute some exam-
ples of application. We first will introduce an electrical cir-
cuit (presented in Figure 7), which is composed of compo-
nents connected in serial and parallel. The intention is to
measure the current value of the circuit according the evo-
lution of time (Banerjee 2003).

Figure 7: Circuit Diagram and Bond-Graph

In order to simulate the circuit within the CD++ toolkit,

the components in the diagram had to be replaced by the
corresponding atomic models developed in the Bond-Graph
library, explained in the previous section. All the compo-
nents were connected using input/output (effort/flow) ports,
according the causality defined by every element, generating
a GDEVS coupled model. The structure of the coupled
model associated to the circuit is shown in Figure 8.

As it can be seen in Figure 8, every Bond-Graph ele-
ment was replaced with its functionally equivalent library
component, a DEVS atomic model. The components have
been associated to the following parameters for simulation:

•
•
•
•
•
•

period: 1 ms.
Resistance (R1)=1
Inductors: L1 = 48; L2 = 48.
Capacitance: C = 65.
Conductance: R2 = 0.001
EffortSource: emits a pulse with a period of 2500
ms and duration of 2 ms. Pulse amplitude= 220 V.

Figure 9 shows the simulation results for this example.

Figure 8: DEVS Coupled Model Associated to the Circuit

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0 500 1000 1500 2000 2500 3000 3500

Figure 9: Circuit Current

Another example was based on building a mechanical
system representing a mass-spring-damper system (San-
tamaray 2003), presented in Figure 10. The objective of
this simulation is to observe the movements of the mass M
when we subject the system to the application of regular
forces. The translation from the mechanical system to
CD++ components was done as in the previous example.
Every Bond-Graph element was replaced by its related
atomic model, which, in turn, was connected to its adja-
cency trough the ports, generating a coupled model.

Figure 10: Mechanical Circuit and Bond-Graph

D’Abreu and Wainer

Two cases where tested, modifying the frequency of

models, in order to measure the time consumed by the
simulation toolkit in every case.

•
•

•
•

M: mass of the element (L = 40).
K: stiffness of damper spring (capacitance con-
stant C=2)
R: resistance coefficient (resistance constant R=1.5)
EffortSource: emits a pulse with a period of
200msec and duration of 2 ms. Pulse amplitude
was set to 1 and model frequency to 1/10 ms.

Finally, different tests were done to compare the re-
sults of applying uniform quantization method with and
without hysteresis technique. To do so, models Quantizer
and HQ (quantizer with hysteresis) were tested. The fol-
lowing table presents the cases executed and analyzed:

Table 1: Test Cases

Function Interval Q Hyst.
f(x) = sine(x) [0,2π] 0.1 0.1
f(x) = 0.9–105.(x mod 2) [1,10001] 0.001 0.001
f(x) = x [0,1] 0.1 0.1
f(x) = 10-2 x2 + 10-2 x + 1 [-100,100] 0.1 0.1
f(x) = (1/ x2) . cosine(x) [0.0001,1] 0.001 0.001
f(x) = - log x [0.1,1.1] 0.01 0.01
f(x) = 1/x [0,1000] 0.0001 0.0001
f(x) = (-1)x . 1/(ln(x))4 [2,100] 0.0001 0.0001

The CD++ simulator evolves by message passing be-

tween the models. In order to analyze the execution times,
both models were tested against the same input function in
every case. Execution results are shown in Figure 11.

The values obtained represent the percentage of output
messages sent by the models in relation to the input mes-
sages received. Message reduction in case (1) is less sig-
nificant than in the rest of cases because of the characteris-
tic of the function considered. The quantity of points
evaluated over the interval, which determines the distance
between them, makes no substantial difference in using
one model over the other. A similar situation is presented
in case (3). Here the function is strictly growing, making
no sense the use of hysteresis technique.

% Output messages

0

5

10

15

20

25

1 2 3 4 5 6 7 8

Case

Pe
rc

en
ta

ge

Quantizer
HQ

Figure 11: Percentage of Output Messages
Case (2) shows a situation where the use of hysteresis
for quantization gives good results. Here, the function os-
cillates between two values that are separated by a distance
less than hysteresis window size. The number of output
messages generated by Quantizer corresponds to 100%,
meaning that every message arrived to the model was emit-
ted. The percentage of output messages produced by HQ
model corresponds to 0.02%, producing a significant re-
duction on the number of messages involved in the simula-
tion. In case (4), a reduction of 25% on the quantity of out-
put messages was obtained by model HQ in reference to
the number generated by Quantizer. Here, the reduction is
consequence of applying quantization with hysteresis to
values belonging to the first half of the evaluation interval,
where function decreases. Case (5) presents a similar situa-
tion that case (4) but here, the function values that make
significant the reduction of output messages, are those be-
longing to the last part of the evaluation interval. This is
because function decreases faster as evaluation points get
bigger. A reduction of 50% of output messages was ob-
tained in case (6) and 30% in case (7) by model HQ. In
both cases, inputs correspond to functions that decrease
across the entire interval.

The size of quantum chosen and the quantity of points
evaluated help to give significant results, making distance
between values less than hysteresis window size in a con-
siderably number of points. That reduction shows that little
variations on the input values are not taken into account by
model HQ, decreasing significantly the number of mes-
sages emitted. Case (8) presents a function that oscillates
between a range of values that get closer by time passes.
Here, function period length is greater than in case (2),
making model HQ increment the number of messages
emitted compared to case (2). Distance between values
evaluated, greater to hysteresis window size for most of the
points belonging to the first part of evaluation interval, also
contributes on making results not so good as in case (2).

The error obtained depends on the quantum size and
the quantization function. This behavior can be defined ac-
cording the following equation:

where xq is the quantized value, x is the original value and
N is the number of points considered. Results are shown in
Figure 12. It can be seen, analyzing graphic results, that
most of the cases present similar results. The error intro-
duced by quantization process in each case differs in un-
substantial way between models.

D’Abreu and Wainer

Error

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8

Case

Er
ro

r Quantizer
HQ

Figure 12: Quantization Error

The exception is case (2), it is consequence of using
hysteresis to quantize functions with slight oscillations. In
this case, the output generated by HQ model is not altered
by variations on input signal if they are less than hysteresis
window size. The window can be considered as a variation
tolerance threshold. That is not the case of Quantizer,
which only considers quantization interval values, intro-
ducing significant error.

6 CONCLUSION

A hierarchy of models was developed within CD++ to give
support in the simulation of continuous and hybrid systems.
A GDEVS base and Bond-Graph elements were imple-
mented allowing the simulation of dynamic systems in a
context-independent way. The use of quantization methods
was also presented. Tests were executed and results were
analyzed in order to determine when these methods could
yield the appropriate approach. The use of hysteresis tech-
nique in quantization function decreases, in most of the
cases, the number of messages involved during simulation in
comparison with classical quantization. In some cases, this
reduction can be very significant. The error introduced by
hysteresis quantization is almost equal to that produced by
classical quantization, making the technique a good alterna-
tive to accelerate simulation without obtaining greater error.

Different open topics must be considered for future re-
search in this are. First, an exhaustive comparison between
the simulation models and the corresponding analytical so-
lutions must be faced. Model complexity must be consid-
ered when using polynomial approximations. Stability and
convergence properties must be analyzed. Using these ap-
proaches, we can benefit of better performance for a given
accuracy, which decreases the execution time of simula-
tions. Discrete time models can be simulated under a dis-
crete event paradigm, thus allowing the development of a
simulation environment for complex systems, modeled as
hybrid systems, where all paradigms merge together (con-
tinuous time, discrete time, discrete event).
ACKNOWLEDGMENTS

This work was partially funded by the Natural Sciences
and Engineering Research Council of Canada (NSERC)
and the Institute of Robotics and Intelligent Systems (IRIS,
Canada). I would like to thank to the anonymous referees
and their comments to this article.

REFERENCES

Banerjee, S. 2003. Dynamics of Physical Systems – The

Language of Bond Graphs. Available online via
http://www.ee.iitkgp.ernet.in/~soumi
tro/dops/chap4.pdf [Accessed April 6 2003].

Cellier, F. 1991. Continuous System Modeling. Springer-
Verlag, New York.

Giambiasi, N.; Escude, B.; Ghosh, S. 2000. GDEVS: A
Generalized Discrete Event Specification for Accurate
Modeling of Dynamic systems. Transactions of the
SCS, 17(3) pp. 120-134.

Kofman, E.; Junco, S. 2001. Quantized State Systems. A
DEVS Approach for Continuous Systems Simulation.
Transactions of the SCS, 18(3), pp. 123-132.

Press, W.H.; Flannery B.P.; Teukolsky, S.A.; Vetterling,
W.T. 1986. Numerical Recipes. Cambridge University
Press, Cambridge

Samantaray, A. 2003. About Bond Graph–The system
modeling world [online]. Available online via
http://www.bondgraphs.com/about.html
[Accessed April 6 2003].

Taylor, M. 1996. Partial Differential Equations: Basic
Theory. Springer Verlag, NY.

Wainer, G. 2002. CD++: a toolkit to define discrete-event
models. Software, Practice and Experience. Wiley.
Vol. 32, No. 3. pp. 1261-1306.

Zeigler, B. DEVS Theory of Quantization. 1998. DARPA
Contract N6133997K-007: ECE Dept., University of
Arizona, Tucson, AZ.

Zeigler, B.; Kim T.; Praehofer, H. 2000. Theory of Model-
ing and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems. Academic
Press.

Zeigler, B.P., Cho, H.; Lee, J.; Sarjoughian, H. 1998. The
DEVS/HLA Distributed Simulation Environment and
Its Support for Predictive Filtering. DARPA Contract
N6133997K-0007: ECE Dept., University of Arizona,
Tucson, AZ.

AUTHOR BIOGRAPHIES

MARIANA D’ABREU is a M. Sc. student in the Com-
puter Sciences Department of the Universidad de Buenos
Aires, Argentina. She has worked in the IT industry in Ar-
gentina for the past 7 years. Her e-mail address is
<mdabreu@dc.uba.ar>.

http://www.ee.iitkgp.ernet.in/~soumitro/dops/chap4.pdf
http://www.ee.iitkgp.ernet.in/~soumitro/dops/chap4.pdf
http://www.bondgraphs.com/about.html
mailto:mdabreu@dc.uba.ar
http://www.ee.iitkgp.ernet.in/~soumitro/dops/chap4.pdf
http://www.ee.iitkgp.ernet.in/~soumitro/dops/chap4.pdf
http://www.bondgraphs.com/about.html
mailto:mdabreu@dc.uba.ar

D’Abreu and Wainer

GABRIEL WAINER received the M.Sc. (1993) and
Ph.D. degrees (1998, with highest honors) of the Universi-
dad de Buenos Aires, Argentina, and Université d’Aix-
Marseille III, France. He is Assistant Professor in the Dept.
of Systems and Computer Engineering, Carleton Univer-
sity (Ottawa, ON, Canada). He was Assistant Professor at
the Computer Sciences Dept. of the Universidad de Buenos
Aires, and a visiting research scholar at the University of
Arizona and LSIS, CNRS, France. He is author of a book
on real-time systems and another on Discrete-Event simu-
lation and more than 70 research articles. He is Associate
Editor of the Transactions of the SCS. He is Associate Di-
rector of the Ottawa Center of The McLeod Institute of
Simulation Sciences and a coordinator of an international
group on DEVS standardization. His email and web ad-
dresses are <gwainer@sce.carleton.ca> and
<www.sce.carleton.ca/faculty/wainer/>.
APPENDIX:

Figure 13: Bond-Graph Library Models

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 641
	02: 642
	03: 643
	04: 644
	05: 645
	06: 646
	07: 647
	08: 648
	09: 649

