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ABSTRACT 

A significant shortcoming of traditional simulation lan-
guages is the lack of attention paid to the modeling of con-
trol structures, i.e., the humans or systems responsible for 
manufacturing planning and control, their activities and the 
mutual tuning of their activities. Mostly they are hard 
coded and dispersed throughout the model. Consequently, 
not only realism but also modeling flexibility and modular-
ity is harmed. In recognition of this fact we consider a 
framework for simulation modeling that explicitly repre-
sents control structures. The framework is meant to serve 
as a conceptual basis for extending capabilities of simula-
tion models, tools and libraries in analyzing manufacturing 
systems. It does so by capturing key-abstractions of the 
manufacturing field in terms of classes and their relation-
ships. To study the practical relevance of the framework its 
concepts were implemented in an object-oriented simula-
tion language and applied to a case example. 

1 INTRODUCTION 

A fundamental challenge in simulation modeling of manu-
facturing systems is to produce models that can be under-
stood by the problem owner. A clear notion of the model not 
only increases his confidence in problem solutions, it also 
helps in model verification and validation. Moreover, better 
or other solutions may be suggested as a joint effort of ana-
lyst and problem owner (Bell and O’Keefe, 1987). In this 
respect the introduction of visual interactive simulation by 
Hurrion (1976, 1989) meant a significant support for the 
analyst, as the problem owner may now be involved easier 
in problem solution (Bell et al. 1999). However, while the 
availability of a graphical language may help to realize a 
“communicative” model (Balci 1986, Robinson 1994), still 
languages “spoken” by the analyst and problem owner may 
be quite different from eachother. Often a pictorial display 
boils down to a mapping of programming constructs to their 
graphical counterparts - it does not offer a common lan-
 
guage. Stated in an other way: the availability of a common 
means does not guarantee a common understanding. This is 
not only true for the analyst versus the problem owner, also 
different (competent, even expert) analysts may come up 
with quite different simulation models for a single scenario 
using the same language. A solution for this problem would 
be the introduction of simulation languages, which are closer 
to natural languages. The renewed interest in object-oriented 
simulation languages in the 1990s, which may be traced 
back to the simulation language Simula (Dahl 1966), con-
tributes in this direction. Apart from the modeling efficien-
cies in terms of re-use, readability, and maintainability ob-
ject orientation facilitates a natural one-to-one mapping of 
real world concepts to modeling constructs (see e.g. Adiga 
and Glassey 1991, Kreutzer 1993, Roberts and Dessouky 
1998). Not surprisingly, this also means that real world con-
cepts, which had to be modeled rather implicitly in tradi-
tional simulation languages, are now explicitly included. 
Decision-making is an important example of such a concept. 
Decision makers, control rules and their interactions are of-
ten “hidden” in these traditional languages. Mostly they are 
hard coded and dispersed throughout the model (Pratt et al. 
1994). Consequently, not only realism but also modeling 
flexibility and modularity is harmed (Karacal and Mize 
1996). Moreover, alternative and possibly better solutions to 
control problems may be overlooked. 
 In this article we review object-oriented simulation 
methodologies that recognize the need for the explicit repre-
sentation of decision-making. After highlighting shortcom-
ings in current approaches we consider a new modeling 
framework for manufacturing simulation (van der Zee 1997, 
van der Zee and van der Vorst 2002). The framework is 
meant to serve as a conceptual basis for extending capabili-
ties of simulation models, tools and libraries in analyzing 
manufacturing systems. Control problems are specifically 
addressed by the framework through the explicit notion of 
control structures, i.e., the managers or systems responsible 
for control, their activities and their mutual tuning of these 
activities. Key concepts in the framework for modeling con-
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trol structures are agents, jobs and flows. Agents model the 
relevant entities in a manufacturing system, e.g. work sta-
tions, storages, planners and information systems. Each 
agent is assigned decision-making intelligence. Jobs model 
activities of agents. Next to physical and data transforma-
tions control activities are explicitly recognized as jobs. Fi-
nally, flows constitute the movable objects being subject to 
jobs, e.g. goods, tools, personel, and data. 
 The remainder of the paper is organized as follows. 
First we review object-oriented simulation methodologies 
that explicitly allow for modeling control (Section 2). Sub-
sequently, in Section 3, we define the modeling framework. 
In Section 4 we consider its implementation in an object-
oriented simulation language by means of a small case ex-
ample. Finally, in Section 5 we summarize our main conclu-
sions and highlight directions for future research. 

2 LITERATURE REVIEW 

In a recent overview Narayanan et al. (1998) identify six 
large-scale, persistent object-oriented simulation method-
ologies. Among the methodologies identified they mention 
three methodologies that allow for explicit representations of 
the decision-making process itself. They are addressed as 
Laval, OSU-CIM and OOSIM. Below we will shortly char-
acterize the approaches. Please note that a more elaborate 
description of the methodologies, including several refer-
ences, can be found in the article of Narayanan et al. (1998). 

• Laval: The Laval approach is associated with a re-
search group at Laval University, Canada, see e.g. 
Lefrancois and Montreuil (1994). The Laval ap-
proach distinguishes between intelligent agents 
and non-intelligent objects. Where the non-
intelligent objects model e.g. workstations and 
work orders, agents are used to implement all de-
cision support functions. As such agents may rep-
resent decision makers, analysts, evaluators etc. 
Intelligence of agents is associated with decision 
functions. Decision functions concern the alloca-
tion and release of jobs to resources, job sequenc-
ing and the monitoring of the status of resource it 
controls. To realize decision functions an agent 
has a memory, facilities for communication with 
other agents and reasoning capabilities. 

• OSU-CIM: The OSU-CIM approach is associated 
with a research group at the Oklahoma State Uni-
versity, USA, see e.g. Pratt et al. (1994). They ad-
vocate the separation of physical, information and 
control elements in simulation models. Entities in 
manufacturing systems like machines and AGVs 
are modeled by a set of primitives including a 
controller primitive that represents decision-
making aspects. Higher-level controllers are fore-
seen for coordinating activities of several entities. 
Controllers communicate by sending messages. 
• OOSIM: The OSU-CIM approach is associated 
with a research group at the Georgia Institute of 
Technology, USA, see e.g. Narayanan et al. (2000). 
Their object-based modeling architecture builds on 
four fundamental software abstractions: material, 
locations, controllers, and process plans. Locations 
can either process material or store material. Proc-
ess plans specify the required operations for pro-
ducing specific parts. Controllers perform decision-
making and control within the simulation. Control-
lers are event-driven entities that respond to state 
changes within their domain. Also they may com-
municate with other controllers. 

 All approaches mentioned recognize the need for sepa-
rating activities associated with decision making from 
other activities related to physical transformations or data 
processing. Differences are found in the choice of primi-
tive classes for modeling manufacturing entities and their 
relationships. Also the level of detail with which classes 
and class hierarchies are defined differs. Here we will only 
consider the modeling of control structures, i.e., the man-
agers or systems responsible for control, their activities and 
their mutual tuning of these activities. All three approaches 
allow for specifying decision logic in terms of control rules 
for steering activities within a certain domain. Also the 
need for modeling control concepts like hierarchy and co-
ordination is recognized. What is striking, however, is the 
lack of attention for decision logistics, i.e., the timing of 
control activities. Clearly, the timing of decisions may 
have a large impact on manufacturing performance. Dy-
namics in simulation models is mainly related to physical 
transformations and not to decision-making activities. 
 In this article we present an alternative modeling frame-
work where activities associated with decision-making are 
modeled as decision jobs. Just like jobs associated with 
physical transformations decision jobs allow for a time re-
lated behavior. As will be shown in the next section the 
symmetry in addressing both types of activities allows for a 
common definition of manufacturing entities and a natural 
denominator for manufacturing dynamics – the job.  

3 DEFINITION OF THE MODELING 
FRAMEWORK 

In this section we define the constituent parts of the proposed 
modeling framework (MF). First the basic classes for build-
ing simulation models of manufacturing systems are identi-
fied, i.e., agent, flow item and job (Subsection 3.1). Next, in 
Subsection 3.2, their internal structure and coupling are dis-
cussed. Finally, in Subsection 3.3, we describe model dynam-
ics. In section 4 we will show how class definitions may be 
formalized by implementing them in an object-oriented simu-
lation language. Please note that a more elaborate description 
of our modeling framework can be found in van der Zee 
(1997) and van der Zee and van der Vorst (2002). 
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3.1 Class Hierarchies – A Job  

Oriented World View 

To represent entities in the manufacturing domain we define 
three main classes in our modeling framework: agents, flow 
items and jobs. They are presented in Figure 1a,b,c. Classes 
are defined using the notation supplied by Booch (1994). 
 Agents represent the infrastructural elements of a 
manufacturing system such as workstations, information 
systems and managers. They are assumed to be intelligent 
to a certain extent. Their decision-making capabilities re-
late to transformations of goods or data. A boundary is 
recognized between the system under study and its related 
environment. This is reflected by distinguishing between 
internal and external agents. The latter types of entities are 
modeled as primary producers (“sources”) and consumers 
(“sinks”). For internal agents such as machines, ware-
houses, AGV systems, planners etc. it is distinguished be-
tween processors and storages. This is a natural separation 
represented in many diagramming techniques, like e.g. ac-
tivity cycle diagrams and Petri nets, cf. Pooley (1991). It 
isolates “servers” from “queues”. To reflect the level of de-
tail required in the simulation study internal agents may be 
used to model relevant entities within a company at differ-
ent aggregation levels. 
 Flow items constitute the movable objects within 
manufacturing systems. We include four types of flow 
items in the modeling framework: goods, resources (like 
e.g. manpower, tools vehicles), data and job definitions. 
Goods, resources or data seldom flow spontaneously from 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 

    (a) Manufacturing entities: agents 
Agent 

Internal 
Agent 

External 
Agent
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 (b) Flows: flow items     c) Activities: jobs 

 
 

Job Flow 
Item 

Figure 1: Main Classes in the Modeling Framework 
one location to another - mostly some form of control is 
exercised. Typically, the activities of agents are directed by 
messages. We address this type of messages as job defini-
tions. Job definitions specify a job in terms of e.g. its input, 
processing conditions and the agents to whom the resulting 
output should be sent. 
 It is common practice to think of agents in terms of the 
type of flow items that are the subject of their jobs. In line 
with practice it is possible to define more specific classes 
of internal agents, where the type of flow item serves as a 
parameter. For example, a workstation may be considered 
an internal agent of a processor type handling goods. In a 
similar way control systems and decision-makers may be 
defined as internal agents producing job definitions. 
 In a manufacturing system agents and flows are linked 
by jobs, i.e., business activities. In our job oriented world-
view we assume that each manufacturing activity corre-
sponds to a job that is specified by its controller, i.e., an 
other agent responsible for issuing or planning activities. 
 From a business point of view it is very natural to give 
jobs a central place in a model, because a companies de-
pend on the execution of these value-adding activities for 
their existence, cf. Porter (1985).  

As far as the choice of classes is concerned similarities 
may be found between classes defined above and abstra-
tions defined as a result of earlier research efforts, see Sec-
tion 2. As a historic precursor one may consider the the no-
tation proposed by Forrester (1961). He also assumes an 
explicit notion of activities related to decision making in 
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terms of decision functions. Also a distinction is made in 
several types of flows. Next to those flow types mentioned 
above he considers also money and capital equipment. We 
consider money as a specialization of the class data, while 
capital equipment is modeled in terms of agents.  

3.2 Internal Structure of Agents 

In this subsection we consider the internal structure for 
agents, building on the class definitions supplied in the 
previous subsection. Let us start by considering the struc-
ture for internal agents (Figure 2). The definition of a 
structure for an internal agent was inspired by the atomic 
model as defined by Zeigler (1990). Starting from a gen-
eral view on simulation modeling an atomic model cap-
tures basic elements and functions of an entity in a formal 
way. In Figure 2 the input and output ‘ports’ for an internal 
agent are denoted by the lines crossing the oval. Typically, 
ports (interfaces) are related to a type of flow item. In the 
figure only two input ports are shown: one through which 
job definitions are received and one through which other 
types of flow items may be received. However, more ports 
may be distinguished, e.g. in order to make a distinction 
between resources, information and goods. The same ap-
plies to output ports. 

 

Figure 2: Structure for an Internal Agent 
 
 The state of an agent relates to its attributes. Attributes 
concern buffers and transformers. Buffers model the tem-
porary storage of those flow items which are the subject of 
a future job or which facilitate a job (resources, informa-
tion). The first category of flow items is addressed in Fig-
ure 2 as primary flow items. Except for the buffer that han-
dles the job definitions for an agent, i.e., the control queue, 
buffers for facilitative flow items are optional. The trans-
former contains the jobs in execution and those flow items 
that are subject to a job in execution. 
 The handling of incoming flow items is dealt with by 
one or more input operations. An input operation places 

data 
goods resources 

primary flow items 

job definitions 

jobs 

Local 
Intelligence 

Input Output

Input 

Control 
Queue 

TransformerBuffers 
• 
• 

flow items in the right buffers. The figure shows two such 
input operations: one that puts job definitions in the control 
queue and one that updates buffers.  
 The initiation of a job is enabled by rules comprised in 
the local intelligence. As a first rule in initiating a job, the 
job with the highest priority in the control queue is investi-
gated for execution. Before a job may be started, two re-
quirements (preconditions) have to be fulfilled: 

The availability of a job definition 
The availability of the required input for a job 

In accordance with our job-oriented approach each job has 
to be pre-specified. This is reflected in the requirement that a 
job definition should be present in the control queue. The 
job definition encompasses the required input to be with-
drawn from the buffers, capacity needed, processing condi-
tions and the identifiers of agents to which the job’s output 
has to be sent. In accordance with our emphasis on an ex-
plicit notion of control structures, the set of rules comprised 
in the local intelligence should typically be small for those 
agents who are not realizing control functions. Otherwise 
they might interfere too much with the decision freedom of 
the controller. On the other hand decision logic for control-
lers may be comprehensive, involving data handling and the 
calling of decision jobs, i.e., control strategies, which map 
information on system status to job definitions. 
 After completion of the job the output operations take 
care of sending the resulting items to the respective output 
addresses (agents) by calling the respective input operations.  
 Let us now consider external agents, i.e., the clients 
and suppliers that make up the environment for a business 
system (Figure 3). In Figure 3 a distinction is made be-
tween three types (classes) of elements. Besides the ele-
ment local intelligence, which is also found for internal 
agents, generators and annihilators are distinguished. 
Generators represent ‘sources’ of flow items, while annihi-
lators model ‘sinks’ in which flow items disappear. Local 
intelligence may be used to link activities of generator and 
annihilator. For example, local intelligence may comprise a 
rule that states that a new order may only be issued if the 
goods corresponding to the last order have been received. 

 

Annihilator
Local Intelli-

gence Generator

External 
Agent 

Figure 3: Elements of External Agents 
 
 Above we discussed the structure for the different 
types of agents. In the next subsection we will consider 
their coupling (class relationships). 
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3.3 Relationships between Agents 

In this subsection we will consider two categories of rela-
tionships between agents:  

The relationship between an internal agent and its 
controller  
Relationships between external and internal agents 

These relationships may be considered as specializations of 
the basic type of relationship between agents. This basic 
type of relationship foresees in a restricted set of flow 
items being exchanged between two agents. 
 Figure 4 depicts the control relationship between the 
class controller and the class internal agent. Control is as-
sumed to be effectuated by the sending of job definitions 
from a controller object to an internal agent, denoted as Int. 
Each agent (subordinate) refers to exactly one controller 
(manager) from which it receives its job definitions, de-
noted as F(C). Reversely, a subordinate can send informa-
tion (F(I|D)) about its status to its controller. Such a status 
report acts as a request for control, as it is one of the activi-
ties of the controller to interpret this type of message. Note 
how mechanisms like hierarchical control and coordinated 
control are embedded in this class structure. Both mecha-
nisms may be considered as important building blocks in 
manufacturing control systems. 
 

Figure 4: Relationship between an Inter-
nal Agent and its Controller 

 
 The effectuation of control relationships steers the be-
havior of the manufacturing system within its boundaries. 
Let us now consider relationships of the manufacturing 
system with the outside world, i.e., external agents. For ex-
ternal agents we distinguish between consumers and pri-
mary producers. Figure 5 shows how a consumer (Con) is-
sues an order by sending a demand signal (F(I|D)) to an 
internal agent of the type controller. The controller in its 
turn specifies a job definition (F(C)) for an internal agent 
(Int) who is responsible for the deliverance of the re-
quested items (F(M)), where M refers to the modality. In 
the case of a primary producer roles have changed: the 
controller sends an order to a primary producer (PP), who 
has to take care of delivery of the requested items. 

Int 

Controller 

F(C) 
      [Manager] 

       [Subordinate] 
 
 

Figure 5: Relationships between Internal 
Agents and External Agents (Consumers) 

3.4 Dynamics Structure 

In line with our job-oriented view we assume the execution 
of jobs by agents as the driving force of business dynamics 
(see also Subsection 3.2). Job execution is related to a pro-
cedural three-phase description, cf. Pidd (1998). In the A 
Phase it is determined which job is completed next (Figure 
6). Once this job has been found, time is advanced to the 
corresponding moment in time. Subsequently, the job is 
‘completed’ (in the B-Phase), i.e., the resulting output is 
sent from the agent that carries out the job to other agents. 
In the C-Phase it is tested if the flow items that are re-
ceived by these agents enable the initiation of new jobs 
(conditional activities). The three phases are repeatedly run 
through until the (simulation) time is up. 

 

System 
boundary 

F(M) 

F(I|D) 

F(C)

Controller

Con

Int

Time up?

START 

Job Scan

Job Completion

Job Initiation

STOP 

B-Phase 

C-Phase 

A-Phase 

Yes

No 

Figure 6: Simulator Definition 

4 IMPLEMENTATION AND APPLICATION  
OF THE MODELING FRAMEWORK 

To illustrate the implementation and use of our modeling 
framework we discuss a simulation model of a small ficti-
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tious repair shop. As a modeling tool we used the simula-
tion language EM-PlantTM (Technomatix). EM-PlantTM is 
one of the few true object-oriented simulation packages 
that is commercially available, cf. Law and Kelton (2000). 
It proved to be a flexible tool in implementing the concepts 
included in our modeling framework. Note that an alterna-
tive choice of a tool is very well possible due to the general 
nature of the framework. 
 For modeling the repair shop a class library is built 
which comprises the class definitions for the three main 
classes in the modeling framework, i.e., flow items, logis-
tic agents and jobs (Figure 7). These classes are the essen-
tial building blocks for the aggegrate class RepairShop. 
Please note that in more complex shops it may be worth-
while to introduce more aggregate classes representing hi-
erarchical levels in modeling. Such classes help to improve 
model overview. All classes are built starting from the ba-
sic class library of EM-PlantTM that covers the class defini-
tions contained in the folders MaterialFlow, Information-
Flow, UserInterface and MUs. 
 In this subsection we will address the implementation of 
the three main classes FlowItems, Agents, and Jobs by giv-
ing a number of examples. Subsequently, we will relate the 
classes and model dynamics by considering the internal 
structure and workings of an agent. We will use the class 
RepairShop as a starting point for our discussion (Figure 7). 
 Flow items are represented in EM-Plant by “movable 
units”. We distinguish between four classes of flow items 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

Figure 7: Class Library and Class Repairshop 
• 
• 

in this model: Engine, StatusUpdate, JobDefinition and 
Scheduler. Engines model the physical flows between the 
logistic agents. StatusUpdate and JobDefinition are used to 
model feedback and control among agents. The Scheduler 
is used to represent the availability of a person capable of 
scheduling jobs for the RepairStation (see below). Each 
flow item has multiple attributes. Next to “header data” 
needed for identification or routing, they represent the 
logical or physical contents of the associated object. 

The model (see Figure 7) distinguishes between exter-
nal agents and internal agents. External agents considered 
are the customers asking for repair of their engines (Cus-
tomersIn, CustomersOut). Internal agents model the parties 
involved in the shop. They are associated with the physical 
handling of goods (InspectionStation, RepairStation), i.e., 
engines; data processing (InspectionStation) and control in 
terms of the scheduling and release of jobs (Planning). The 
agents communicate by flow items as introduced in the 
previous section. 

In order to make the shop work jobs have been allo-
cated to agents. To reflect the different nature of jobs we 
distinguished between several classes of jobs. For example 
the agent Planning is associated with two classes of jobs:  

Release – release repair jobs 
Schedule – set up a new schedule of repair jobs 

All job classes are implemented in EM-PlantTM Methods, 
i.e., code (see Figure 8). 



van der Zee 

 

 
Figure 8: Job Class Definition - UpdateShopData 

 
 To show how classes may be linked we will now look 
at the internal structure and working of the agent RepairSta-
tion (Figure 9). Basically, the class definition covers the 
functionalities introduced in Figure 2, where we give a gen-
eral class definition for an internal agent. Buffers considered 
are: InputBufferGoods and JobQueue. Transformers are 
TransformerGoods and TransformerSignals. Both are linked 
by local intelligence (JobExecutionProc). The local intelli-
gence takes care of calling on the right jobs for realizing the 
required transformations. The local intelligence is activated 
by the arrival of job definitions and/or goods, i.e., engines. 

 

 
Figure 9: Internal Structure of the Agent RepairStation 

 
Above we discussed the modeling of the default shop 

configuration in rough detail. The modeling framework of-
fers a flexible response for modeling alternative control 
structures, for example: 

• Alternative control rules can be modeled by 
adapting the definition of job classes associated 
with the planning department. 
• 

• 

The choice of another planning period is realized 
by considering the time related behavior of the 
planning job. 
The quality of information on the required repair 
time for engines as supplied by the inspection sta-
tion can be adapted by the jobs associated with 
this station. 

Alternative scenarios may e.g. concern the distribution of 
job classes over the agents or the number of agents in-
volved. For example, where the default shop model as-
sumes one agent to be responsible for both release and 
scheduling of the repair station, in an alternative setting 
there may be two specialized agents each being responsible 
for one task. Note how this separation of tasks resembles 
different levels of shop control. 
 We found that adapting our model to deal with scenar-
ios like those mentioned above is relatively easy. For a ma-
jor part this is due to the object-orientedness of the ap-
proach. For another important part, however, the ease of 
adaptation comes forth from the natural mapping of con-
cepts – knowing where to look and to make the change. 

5 CONCLUSIONS AND DIRECTIONS  
FOR FUTURE RESEARCH 

In this article a modeling framework for manufacturing 
simulation has been proposed. The approach stresses an 
object-oriented choice of concepts that is transparent 
from a logistic point of view. The framework is meant to 
serve as a conceptual basis for extending capabilities of 
simulation models, tools and libraries in analyzing manu-
facturing systems.  
 The framework specifically pays attention to decision 
logistics in terms of decision makers, their activities and 
the mutual tuning of their activities. They are naturally 
embedded in our approach by considering decision makers 
as agents who carry out control jobs, just like machines 
carry out physical jobs. Where physical jobs result in 
goods, control jobs result in job definitions for logistic 
agents in the controllers’ domain of control. A clear inter-
nal structure for agents has been defined that specifies how 
jobs are being processed. Model dynamics is linked to job 
dynamics as activities only start if both a job definition and 
its required input are present.  
 The authors see the natural way in which control is 
embedded in our modeling framework as a means for more 
efficient and effective simulation. Especially, in case simu-
lation modeling is used for testing systems for manufactur-
ing planning en control systems, benefits of the new ap-
proach are expected in model building, verification and the 
generation of alternative solutions. Some indications of the 
expected benefits are illustrated by a case example. 
Clearly, many more case examples should be studied to 
improve insight in these advantages. 
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 Some interesting directions for future research include 
specialization of the modeling framework towards specific 
industries, and its use for creating manufacturing games.  
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