
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

MODELING CONTROL IN MANUFACTURING SIMULATION

Durk-Jouke van der Zee

Production Systems Design Group
Faculty of Management and Organization

University of Groningen
P.O. Box 800

9700 AV, Groningen, THE NETHERLANDS

ABSTRACT

A significant shortcoming of traditional simulation lan-
guages is the lack of attention paid to the modeling of con-
trol structures, i.e., the humans or systems responsible for
manufacturing planning and control, their activities and the
mutual tuning of their activities. Mostly they are hard
coded and dispersed throughout the model. Consequently,
not only realism but also modeling flexibility and modular-
ity is harmed. In recognition of this fact we consider a
framework for simulation modeling that explicitly repre-
sents control structures. The framework is meant to serve
as a conceptual basis for extending capabilities of simula-
tion models, tools and libraries in analyzing manufacturing
systems. It does so by capturing key-abstractions of the
manufacturing field in terms of classes and their relation-
ships. To study the practical relevance of the framework its
concepts were implemented in an object-oriented simula-
tion language and applied to a case example.

1 INTRODUCTION

A fundamental challenge in simulation modeling of manu-
facturing systems is to produce models that can be under-
stood by the problem owner. A clear notion of the model not
only increases his confidence in problem solutions, it also
helps in model verification and validation. Moreover, better
or other solutions may be suggested as a joint effort of ana-
lyst and problem owner (Bell and O’Keefe, 1987). In this
respect the introduction of visual interactive simulation by
Hurrion (1976, 1989) meant a significant support for the
analyst, as the problem owner may now be involved easier
in problem solution (Bell et al. 1999). However, while the
availability of a graphical language may help to realize a
“communicative” model (Balci 1986, Robinson 1994), still
languages “spoken” by the analyst and problem owner may
be quite different from eachother. Often a pictorial display
boils down to a mapping of programming constructs to their
graphical counterparts - it does not offer a common lan-

guage. Stated in an other way: the availability of a common
means does not guarantee a common understanding. This is
not only true for the analyst versus the problem owner, also
different (competent, even expert) analysts may come up
with quite different simulation models for a single scenario
using the same language. A solution for this problem would
be the introduction of simulation languages, which are closer
to natural languages. The renewed interest in object-oriented
simulation languages in the 1990s, which may be traced
back to the simulation language Simula (Dahl 1966), con-
tributes in this direction. Apart from the modeling efficien-
cies in terms of re-use, readability, and maintainability ob-
ject orientation facilitates a natural one-to-one mapping of
real world concepts to modeling constructs (see e.g. Adiga
and Glassey 1991, Kreutzer 1993, Roberts and Dessouky
1998). Not surprisingly, this also means that real world con-
cepts, which had to be modeled rather implicitly in tradi-
tional simulation languages, are now explicitly included.
Decision-making is an important example of such a concept.
Decision makers, control rules and their interactions are of-
ten “hidden” in these traditional languages. Mostly they are
hard coded and dispersed throughout the model (Pratt et al.
1994). Consequently, not only realism but also modeling
flexibility and modularity is harmed (Karacal and Mize
1996). Moreover, alternative and possibly better solutions to
control problems may be overlooked.
 In this article we review object-oriented simulation
methodologies that recognize the need for the explicit repre-
sentation of decision-making. After highlighting shortcom-
ings in current approaches we consider a new modeling
framework for manufacturing simulation (van der Zee 1997,
van der Zee and van der Vorst 2002). The framework is
meant to serve as a conceptual basis for extending capabili-
ties of simulation models, tools and libraries in analyzing
manufacturing systems. Control problems are specifically
addressed by the framework through the explicit notion of
control structures, i.e., the managers or systems responsible
for control, their activities and their mutual tuning of these
activities. Key concepts in the framework for modeling con-

van der Zee

trol structures are agents, jobs and flows. Agents model the
relevant entities in a manufacturing system, e.g. work sta-
tions, storages, planners and information systems. Each
agent is assigned decision-making intelligence. Jobs model
activities of agents. Next to physical and data transforma-
tions control activities are explicitly recognized as jobs. Fi-
nally, flows constitute the movable objects being subject to
jobs, e.g. goods, tools, personel, and data.
 The remainder of the paper is organized as follows.
First we review object-oriented simulation methodologies
that explicitly allow for modeling control (Section 2). Sub-
sequently, in Section 3, we define the modeling framework.
In Section 4 we consider its implementation in an object-
oriented simulation language by means of a small case ex-
ample. Finally, in Section 5 we summarize our main conclu-
sions and highlight directions for future research.

2 LITERATURE REVIEW

In a recent overview Narayanan et al. (1998) identify six
large-scale, persistent object-oriented simulation method-
ologies. Among the methodologies identified they mention
three methodologies that allow for explicit representations of
the decision-making process itself. They are addressed as
Laval, OSU-CIM and OOSIM. Below we will shortly char-
acterize the approaches. Please note that a more elaborate
description of the methodologies, including several refer-
ences, can be found in the article of Narayanan et al. (1998).

• Laval: The Laval approach is associated with a re-
search group at Laval University, Canada, see e.g.
Lefrancois and Montreuil (1994). The Laval ap-
proach distinguishes between intelligent agents
and non-intelligent objects. Where the non-
intelligent objects model e.g. workstations and
work orders, agents are used to implement all de-
cision support functions. As such agents may rep-
resent decision makers, analysts, evaluators etc.
Intelligence of agents is associated with decision
functions. Decision functions concern the alloca-
tion and release of jobs to resources, job sequenc-
ing and the monitoring of the status of resource it
controls. To realize decision functions an agent
has a memory, facilities for communication with
other agents and reasoning capabilities.

• OSU-CIM: The OSU-CIM approach is associated
with a research group at the Oklahoma State Uni-
versity, USA, see e.g. Pratt et al. (1994). They ad-
vocate the separation of physical, information and
control elements in simulation models. Entities in
manufacturing systems like machines and AGVs
are modeled by a set of primitives including a
controller primitive that represents decision-
making aspects. Higher-level controllers are fore-
seen for coordinating activities of several entities.
Controllers communicate by sending messages.
• OOSIM: The OSU-CIM approach is associated
with a research group at the Georgia Institute of
Technology, USA, see e.g. Narayanan et al. (2000).
Their object-based modeling architecture builds on
four fundamental software abstractions: material,
locations, controllers, and process plans. Locations
can either process material or store material. Proc-
ess plans specify the required operations for pro-
ducing specific parts. Controllers perform decision-
making and control within the simulation. Control-
lers are event-driven entities that respond to state
changes within their domain. Also they may com-
municate with other controllers.

 All approaches mentioned recognize the need for sepa-
rating activities associated with decision making from
other activities related to physical transformations or data
processing. Differences are found in the choice of primi-
tive classes for modeling manufacturing entities and their
relationships. Also the level of detail with which classes
and class hierarchies are defined differs. Here we will only
consider the modeling of control structures, i.e., the man-
agers or systems responsible for control, their activities and
their mutual tuning of these activities. All three approaches
allow for specifying decision logic in terms of control rules
for steering activities within a certain domain. Also the
need for modeling control concepts like hierarchy and co-
ordination is recognized. What is striking, however, is the
lack of attention for decision logistics, i.e., the timing of
control activities. Clearly, the timing of decisions may
have a large impact on manufacturing performance. Dy-
namics in simulation models is mainly related to physical
transformations and not to decision-making activities.
 In this article we present an alternative modeling frame-
work where activities associated with decision-making are
modeled as decision jobs. Just like jobs associated with
physical transformations decision jobs allow for a time re-
lated behavior. As will be shown in the next section the
symmetry in addressing both types of activities allows for a
common definition of manufacturing entities and a natural
denominator for manufacturing dynamics – the job.

3 DEFINITION OF THE MODELING
FRAMEWORK

In this section we define the constituent parts of the proposed
modeling framework (MF). First the basic classes for build-
ing simulation models of manufacturing systems are identi-
fied, i.e., agent, flow item and job (Subsection 3.1). Next, in
Subsection 3.2, their internal structure and coupling are dis-
cussed. Finally, in Subsection 3.3, we describe model dynam-
ics. In section 4 we will show how class definitions may be
formalized by implementing them in an object-oriented simu-
lation language. Please note that a more elaborate description
of our modeling framework can be found in van der Zee
(1997) and van der Zee and van der Vorst (2002).

van der Zee

3.1 Class Hierarchies – A Job

Oriented World View

To represent entities in the manufacturing domain we define
three main classes in our modeling framework: agents, flow
items and jobs. They are presented in Figure 1a,b,c. Classes
are defined using the notation supplied by Booch (1994).
 Agents represent the infrastructural elements of a
manufacturing system such as workstations, information
systems and managers. They are assumed to be intelligent
to a certain extent. Their decision-making capabilities re-
late to transformations of goods or data. A boundary is
recognized between the system under study and its related
environment. This is reflected by distinguishing between
internal and external agents. The latter types of entities are
modeled as primary producers (“sources”) and consumers
(“sinks”). For internal agents such as machines, ware-
houses, AGV systems, planners etc. it is distinguished be-
tween processors and storages. This is a natural separation
represented in many diagramming techniques, like e.g. ac-
tivity cycle diagrams and Petri nets, cf. Pooley (1991). It
isolates “servers” from “queues”. To reflect the level of de-
tail required in the simulation study internal agents may be
used to model relevant entities within a company at differ-
ent aggregation levels.
 Flow items constitute the movable objects within
manufacturing systems. We include four types of flow
items in the modeling framework: goods, resources (like
e.g. manpower, tools vehicles), data and job definitions.
Goods, resources or data seldom flow spontaneously from

 (a) Manufacturing entities: agents
Agent

Internal
Agent

External
Agent

Storage Processor Consumer Primary
Producer

 (b) Flows: flow items c) Activities: jobs

Job Flow
Item

Figure 1: Main Classes in the Modeling Framework
one location to another - mostly some form of control is
exercised. Typically, the activities of agents are directed by
messages. We address this type of messages as job defini-
tions. Job definitions specify a job in terms of e.g. its input,
processing conditions and the agents to whom the resulting
output should be sent.
 It is common practice to think of agents in terms of the
type of flow items that are the subject of their jobs. In line
with practice it is possible to define more specific classes
of internal agents, where the type of flow item serves as a
parameter. For example, a workstation may be considered
an internal agent of a processor type handling goods. In a
similar way control systems and decision-makers may be
defined as internal agents producing job definitions.
 In a manufacturing system agents and flows are linked
by jobs, i.e., business activities. In our job oriented world-
view we assume that each manufacturing activity corre-
sponds to a job that is specified by its controller, i.e., an
other agent responsible for issuing or planning activities.
 From a business point of view it is very natural to give
jobs a central place in a model, because a companies de-
pend on the execution of these value-adding activities for
their existence, cf. Porter (1985).

As far as the choice of classes is concerned similarities
may be found between classes defined above and abstra-
tions defined as a result of earlier research efforts, see Sec-
tion 2. As a historic precursor one may consider the the no-
tation proposed by Forrester (1961). He also assumes an
explicit notion of activities related to decision making in

van der Zee

terms of decision functions. Also a distinction is made in
several types of flows. Next to those flow types mentioned
above he considers also money and capital equipment. We
consider money as a specialization of the class data, while
capital equipment is modeled in terms of agents.

3.2 Internal Structure of Agents

In this subsection we consider the internal structure for
agents, building on the class definitions supplied in the
previous subsection. Let us start by considering the struc-
ture for internal agents (Figure 2). The definition of a
structure for an internal agent was inspired by the atomic
model as defined by Zeigler (1990). Starting from a gen-
eral view on simulation modeling an atomic model cap-
tures basic elements and functions of an entity in a formal
way. In Figure 2 the input and output ‘ports’ for an internal
agent are denoted by the lines crossing the oval. Typically,
ports (interfaces) are related to a type of flow item. In the
figure only two input ports are shown: one through which
job definitions are received and one through which other
types of flow items may be received. However, more ports
may be distinguished, e.g. in order to make a distinction
between resources, information and goods. The same ap-
plies to output ports.

Figure 2: Structure for an Internal Agent

 The state of an agent relates to its attributes. Attributes
concern buffers and transformers. Buffers model the tem-
porary storage of those flow items which are the subject of
a future job or which facilitate a job (resources, informa-
tion). The first category of flow items is addressed in Fig-
ure 2 as primary flow items. Except for the buffer that han-
dles the job definitions for an agent, i.e., the control queue,
buffers for facilitative flow items are optional. The trans-
former contains the jobs in execution and those flow items
that are subject to a job in execution.
 The handling of incoming flow items is dealt with by
one or more input operations. An input operation places

data
goods resources

primary flow items

job definitions

jobs

Local
Intelligence

Input Output

Input

Control
Queue

TransformerBuffers
•
•

flow items in the right buffers. The figure shows two such
input operations: one that puts job definitions in the control
queue and one that updates buffers.
 The initiation of a job is enabled by rules comprised in
the local intelligence. As a first rule in initiating a job, the
job with the highest priority in the control queue is investi-
gated for execution. Before a job may be started, two re-
quirements (preconditions) have to be fulfilled:

The availability of a job definition
The availability of the required input for a job

In accordance with our job-oriented approach each job has
to be pre-specified. This is reflected in the requirement that a
job definition should be present in the control queue. The
job definition encompasses the required input to be with-
drawn from the buffers, capacity needed, processing condi-
tions and the identifiers of agents to which the job’s output
has to be sent. In accordance with our emphasis on an ex-
plicit notion of control structures, the set of rules comprised
in the local intelligence should typically be small for those
agents who are not realizing control functions. Otherwise
they might interfere too much with the decision freedom of
the controller. On the other hand decision logic for control-
lers may be comprehensive, involving data handling and the
calling of decision jobs, i.e., control strategies, which map
information on system status to job definitions.
 After completion of the job the output operations take
care of sending the resulting items to the respective output
addresses (agents) by calling the respective input operations.
 Let us now consider external agents, i.e., the clients
and suppliers that make up the environment for a business
system (Figure 3). In Figure 3 a distinction is made be-
tween three types (classes) of elements. Besides the ele-
ment local intelligence, which is also found for internal
agents, generators and annihilators are distinguished.
Generators represent ‘sources’ of flow items, while annihi-
lators model ‘sinks’ in which flow items disappear. Local
intelligence may be used to link activities of generator and
annihilator. For example, local intelligence may comprise a
rule that states that a new order may only be issued if the
goods corresponding to the last order have been received.

Annihilator
Local Intelli-

gence Generator

External
Agent

Figure 3: Elements of External Agents

 Above we discussed the structure for the different
types of agents. In the next subsection we will consider
their coupling (class relationships).

van der Zee

•

•

3.3 Relationships between Agents

In this subsection we will consider two categories of rela-
tionships between agents:

The relationship between an internal agent and its
controller
Relationships between external and internal agents

These relationships may be considered as specializations of
the basic type of relationship between agents. This basic
type of relationship foresees in a restricted set of flow
items being exchanged between two agents.
 Figure 4 depicts the control relationship between the
class controller and the class internal agent. Control is as-
sumed to be effectuated by the sending of job definitions
from a controller object to an internal agent, denoted as Int.
Each agent (subordinate) refers to exactly one controller
(manager) from which it receives its job definitions, de-
noted as F(C). Reversely, a subordinate can send informa-
tion (F(I|D)) about its status to its controller. Such a status
report acts as a request for control, as it is one of the activi-
ties of the controller to interpret this type of message. Note
how mechanisms like hierarchical control and coordinated
control are embedded in this class structure. Both mecha-
nisms may be considered as important building blocks in
manufacturing control systems.

Figure 4: Relationship between an Inter-
nal Agent and its Controller

 The effectuation of control relationships steers the be-
havior of the manufacturing system within its boundaries.
Let us now consider relationships of the manufacturing
system with the outside world, i.e., external agents. For ex-
ternal agents we distinguish between consumers and pri-
mary producers. Figure 5 shows how a consumer (Con) is-
sues an order by sending a demand signal (F(I|D)) to an
internal agent of the type controller. The controller in its
turn specifies a job definition (F(C)) for an internal agent
(Int) who is responsible for the deliverance of the re-
quested items (F(M)), where M refers to the modality. In
the case of a primary producer roles have changed: the
controller sends an order to a primary producer (PP), who
has to take care of delivery of the requested items.

Int

Controller

F(C)
 [Manager]

 [Subordinate]

Figure 5: Relationships between Internal
Agents and External Agents (Consumers)

3.4 Dynamics Structure

In line with our job-oriented view we assume the execution
of jobs by agents as the driving force of business dynamics
(see also Subsection 3.2). Job execution is related to a pro-
cedural three-phase description, cf. Pidd (1998). In the A
Phase it is determined which job is completed next (Figure
6). Once this job has been found, time is advanced to the
corresponding moment in time. Subsequently, the job is
‘completed’ (in the B-Phase), i.e., the resulting output is
sent from the agent that carries out the job to other agents.
In the C-Phase it is tested if the flow items that are re-
ceived by these agents enable the initiation of new jobs
(conditional activities). The three phases are repeatedly run
through until the (simulation) time is up.

System
boundary

F(M)

F(I|D)

F(C)

Controller

Con

Int

Time up?

START

Job Scan

Job Completion

Job Initiation

STOP

B-Phase

C-Phase

A-Phase

Yes

No

Figure 6: Simulator Definition

4 IMPLEMENTATION AND APPLICATION
OF THE MODELING FRAMEWORK

To illustrate the implementation and use of our modeling
framework we discuss a simulation model of a small ficti-

van der Zee

tious repair shop. As a modeling tool we used the simula-
tion language EM-PlantTM (Technomatix). EM-PlantTM is
one of the few true object-oriented simulation packages
that is commercially available, cf. Law and Kelton (2000).
It proved to be a flexible tool in implementing the concepts
included in our modeling framework. Note that an alterna-
tive choice of a tool is very well possible due to the general
nature of the framework.
 For modeling the repair shop a class library is built
which comprises the class definitions for the three main
classes in the modeling framework, i.e., flow items, logis-
tic agents and jobs (Figure 7). These classes are the essen-
tial building blocks for the aggegrate class RepairShop.
Please note that in more complex shops it may be worth-
while to introduce more aggregate classes representing hi-
erarchical levels in modeling. Such classes help to improve
model overview. All classes are built starting from the ba-
sic class library of EM-PlantTM that covers the class defini-
tions contained in the folders MaterialFlow, Information-
Flow, UserInterface and MUs.
 In this subsection we will address the implementation of
the three main classes FlowItems, Agents, and Jobs by giv-
ing a number of examples. Subsequently, we will relate the
classes and model dynamics by considering the internal
structure and workings of an agent. We will use the class
RepairShop as a starting point for our discussion (Figure 7).
 Flow items are represented in EM-Plant by “movable
units”. We distinguish between four classes of flow items

Figure 7: Class Library and Class Repairshop
•
•

in this model: Engine, StatusUpdate, JobDefinition and
Scheduler. Engines model the physical flows between the
logistic agents. StatusUpdate and JobDefinition are used to
model feedback and control among agents. The Scheduler
is used to represent the availability of a person capable of
scheduling jobs for the RepairStation (see below). Each
flow item has multiple attributes. Next to “header data”
needed for identification or routing, they represent the
logical or physical contents of the associated object.

The model (see Figure 7) distinguishes between exter-
nal agents and internal agents. External agents considered
are the customers asking for repair of their engines (Cus-
tomersIn, CustomersOut). Internal agents model the parties
involved in the shop. They are associated with the physical
handling of goods (InspectionStation, RepairStation), i.e.,
engines; data processing (InspectionStation) and control in
terms of the scheduling and release of jobs (Planning). The
agents communicate by flow items as introduced in the
previous section.

In order to make the shop work jobs have been allo-
cated to agents. To reflect the different nature of jobs we
distinguished between several classes of jobs. For example
the agent Planning is associated with two classes of jobs:

Release – release repair jobs
Schedule – set up a new schedule of repair jobs

All job classes are implemented in EM-PlantTM Methods,
i.e., code (see Figure 8).

van der Zee

Figure 8: Job Class Definition - UpdateShopData

 To show how classes may be linked we will now look
at the internal structure and working of the agent RepairSta-
tion (Figure 9). Basically, the class definition covers the
functionalities introduced in Figure 2, where we give a gen-
eral class definition for an internal agent. Buffers considered
are: InputBufferGoods and JobQueue. Transformers are
TransformerGoods and TransformerSignals. Both are linked
by local intelligence (JobExecutionProc). The local intelli-
gence takes care of calling on the right jobs for realizing the
required transformations. The local intelligence is activated
by the arrival of job definitions and/or goods, i.e., engines.

Figure 9: Internal Structure of the Agent RepairStation

Above we discussed the modeling of the default shop

configuration in rough detail. The modeling framework of-
fers a flexible response for modeling alternative control
structures, for example:

• Alternative control rules can be modeled by
adapting the definition of job classes associated
with the planning department.
•

•

The choice of another planning period is realized
by considering the time related behavior of the
planning job.
The quality of information on the required repair
time for engines as supplied by the inspection sta-
tion can be adapted by the jobs associated with
this station.

Alternative scenarios may e.g. concern the distribution of
job classes over the agents or the number of agents in-
volved. For example, where the default shop model as-
sumes one agent to be responsible for both release and
scheduling of the repair station, in an alternative setting
there may be two specialized agents each being responsible
for one task. Note how this separation of tasks resembles
different levels of shop control.
 We found that adapting our model to deal with scenar-
ios like those mentioned above is relatively easy. For a ma-
jor part this is due to the object-orientedness of the ap-
proach. For another important part, however, the ease of
adaptation comes forth from the natural mapping of con-
cepts – knowing where to look and to make the change.

5 CONCLUSIONS AND DIRECTIONS
FOR FUTURE RESEARCH

In this article a modeling framework for manufacturing
simulation has been proposed. The approach stresses an
object-oriented choice of concepts that is transparent
from a logistic point of view. The framework is meant to
serve as a conceptual basis for extending capabilities of
simulation models, tools and libraries in analyzing manu-
facturing systems.
 The framework specifically pays attention to decision
logistics in terms of decision makers, their activities and
the mutual tuning of their activities. They are naturally
embedded in our approach by considering decision makers
as agents who carry out control jobs, just like machines
carry out physical jobs. Where physical jobs result in
goods, control jobs result in job definitions for logistic
agents in the controllers’ domain of control. A clear inter-
nal structure for agents has been defined that specifies how
jobs are being processed. Model dynamics is linked to job
dynamics as activities only start if both a job definition and
its required input are present.
 The authors see the natural way in which control is
embedded in our modeling framework as a means for more
efficient and effective simulation. Especially, in case simu-
lation modeling is used for testing systems for manufactur-
ing planning en control systems, benefits of the new ap-
proach are expected in model building, verification and the
generation of alternative solutions. Some indications of the
expected benefits are illustrated by a case example.
Clearly, many more case examples should be studied to
improve insight in these advantages.

van der Zee

 Some interesting directions for future research include
specialization of the modeling framework towards specific
industries, and its use for creating manufacturing games.

REFERENCES

Adiga, S., and C.R. Glassey. 1991. Object-oriented simula-
tion to support research in manufacturing systems. In-
ternational Journal of Production Research, 29(12):
2529-2542.

Balci, O. 1986, Credibility assessment of simulation re-
sults. In: Proceedings of the 1986 Winter Simulation
Conference. 38-43, Piscataway, New Jersey: IEEE.

Bell, P.C., and R.M. O’Keefe. 1987. Visual Interactive
Simulation - History, recent developments, and major
issues. Simulation, 49(3): 109-116.

Bell, P.C., Anderson, C.K., Staples, D.S., and M. Elder.
1999. Decision-makers’perceptions of the value and
impact of visual interactive modeling. Omega – The
International Journal of Management Science, 27:
155-165.

Booch, G. 1994. Object-oriented Analysis and Design with
applications. Redwood City: Benjamin Cummings.

Dahl, O., and K. Nygaard. 1966. SIMULA - an Algol-
based simulation language. Communications of the
ACM, 9(9): 671-678.

Forrester, J.W. 1961, Industrial Dynamics. New York:
Wiley.

Hurrion, R.D. 1976. The design, use and required facilities
of an interactive visual computer simulation language
to explore production planning problems. PhD thesis,
University of London, England.

Hurrion, R.D. 1989. Graphics and interaction. Computer
modeling for discrete simulation, ed. M.Pidd. Chiches-
ter: Wiley.

Karacal, S.C., and J.H. Mize. 1996. A formal structure for
discrete event simulation. Part I: Modeling multiple
level systems. IIE Transactions, 28(9): 753-760.

Kreutzer, W. 1993. The Role of Complexity Reduction in
the Development of Simulation Programming Tools,
An Advanced Tutorial. In: Proceedings of European
Simulation Conference. Delft: Society for Computer
Simulation.

Law, A.M., and W.D. Kelton. 2000. Simulation Modeling
and Analysis. (Singapore: McGraw-Hill.

Lefrancois, P., and B. Montreuil. 1994. An object-oriented
knowledge representation for intelligent control of
manufacturing workstations. IIE Transactions, 26(1):
11-26.

Narayanan, S., Bodner, D.A., Sreekanth, U., Govindaraj,
T., McGinnis, L.F., and C.S. Mitchell. 1998. Research
in object-oriented manufacturing simulations: an as-
sessment of the state of the art. IIE Transactions,
30(9): 975-810.
Narayanan, S., Evans, J., Bodner, D.A., Sreekanth, U., Go-
vindaraj, T., McGinnis, L.F., and C.S. Mitchell. 2000.
Modeling a Printed Circuit Board Assembly Line Us-
ing Objects. Simulation, 75(5-6): 287-300.

Pidd, M. 1998. Computer Simulation in Management Sci-
ence. Chichester: Wiley.

Pooley, R.J. 1991. Towards a Standard for Hierachical
Process Oriented Discrete Event Simulation Diagrams,
Part 1: A comparison of existing approaches. Transac-
tions of the Society for Computer Simulation Interna-
tional, 8(1): 1-20.

Porter, M.E. 1985. Competitive advantage: Creating and
sustaining superior performance. New York: The Free
Press.

Pratt, D.B., Farrington, P.A., Basnet, C.B., Bhuskute, H.C.,
Kanath, M., and J.H. Mize. 1994. The separation of
physical, information, and control elements for facili-
tating reusability in simulation modeling. Interna-
tional Journal of Computer Simulation, 4(3): 327-342.

Roberts, C.A., Y.M. Dessouky. 1998. An Overview of ob-
ject-oriented simulation. Simulation,70(6): 359-368.

Robinson, S. 1994. Successful Simulation – A practical
approach to simulation projects. London: McGraw-
Hill.

Zee, D.J. van der. 1997. Simulation as a tool for logistics
management. PhD thesis, University of Twente, The
Netherlands.

Zee, D.J. van der, J. van der Vorst. 2002. A modeling
framework for supply chain simulation, Technical Re-
port No. 02A54. Groningen : Research School SOM.

Zeigler, B.P.. 1990. Object-Oriented Simulation with Hier-
archical, Modular Models, Intelligent Agents and En-
domorphic Systems. London: Academic Press.

AUTHOR BIOGRAPHY

DURK-JOUKE VAN DER ZEE is Assistant Professor of
Production Systems Design at the Faculty of Management
and Organization, University of Groningen, The Nether-
lands. Dr. van der Zee received his M.Sc. and Ph.D. in In-
dustrial Engineering at the University of Twente, The
Netherlands. His research interests include simulation
methodology and applications, shop floor control systems
and decision making related to the introduction and use of
flexible manufacturing systems. He can be contacted by e-
mail at <d.j.van.der.zee@bdk.rug.nl>

mailto:stephen.chick@insead.edu
mailto:stephen.chick@insead.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 791
	02: 792
	03: 793
	04: 794
	05: 795
	06: 796
	07: 797
	08: 798

