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ABSTRACT over a bounded size array to see if the output is indeed a
sorted permutation of the input. This is obviously weaker
than verifying the sorting program over arrays of arbitrary

size, but perhaps more efficient at uncovering bugs.

Symbolic evaluation is the execution of software and soft-
ware designs on inputs given as symbolic or explicit con-

stants along with constraints on these inputs. Efficient sym-
bolic evaluation is now feasible due to recent advances in
efficient decision procedures and symbolic model checking.

Symbolic evaluation includesstingbut has some added
advantages. Most importantly, testing provides only partial
coverage and yields very limited confidence in the correct-

Symbolic evaluation can be applied to partially implemented ness of the design, whereas symbolic simulation provides
descriptions and provides wider coverage and greater assur-increasedcoveragesince a symbolic evaluation covers a
ance than testing and traditional simulation alone. Unlike substantial range of concrete inputs. In addition, symbolic
full formal verification, symbolic evaluation can be used in  simulation does not require a full implementation and can be
a partial manner that is more likely to succeed and yield driven off a partial implementation or a high-level specifica-
some degree of assurance. Its main advantage is that it cantion. It also provides increased coverage since a symbolic
be used within a smooth spectrum of analyses ranging from evaluation covers a substantial range of concrete inputs.
refutation based on explicit-state simulation to full-blown Also, symbolic evaluation can be applied not only in the
verification. forward direction but also in the backward direction for
computing preconditions from postconditions.

Symbolic evaluation is a key component of any useful
verification system, and has been a standard part of theorem
proving since the work oBoyer and Moore (1979) Its
main advantage is that it is largely automatic and can be
used within a smooth spectrum of analyses ranging from
testing to verification. In contrast, formal verification tends
to be an all-or-nothing enterprise that yields few partial
results, and is therefore not yet an economically viable
technique for routine use.

Symbolic evaluation is very effective for essentially
finite-state programs. For example, symbolic trajectory
hardware designs (for example, Hardin et al. 1998, Moore evaluation carries out symbolic simulation of hardware in
1998), but it is also effective for the verification of the a ternary domain of truth values with an unknown element.
correctness of compilation steps, in ensuring the safety Model checking is a well-established technique for formal
of bytecode, and for checking that certain invariants are verification of reactive systems such as hardware circuits and
preserved. There are many other examples of the use of communication protocols. Systems are modeled as state ma-
symbolic evaluation. For example, an interval analysis of chines and the specification is expressed in temporal logic.
a program can be carried out by symbolically computing The reachable state space of a simple protocol, resource con-
the fixed points of the intervals that capture the range of trolalgorithm, or hardware can be fully explored in symbolic
the numeric variables. A simpler form of such analysis has terms, using a symbolic model check8u¢ch et al. 1992
been applied to the Ariane-5 launch control software since McMillan 19930. Model checking techniques for reacha-
the initial debacle. A sorting program can be examined bility can also be used for some infinite state systems such as

1 INTRODUCTION

Symbolic evaluation is the execution of a program (or even
a specification) where some or all of the inputs are given in
symbolic form. Symbolic evaluation is a basic technique in
theorem proving and verification. For example, a greatest-
common divisor (GCD) algorithm returns a common divisor
can be verified by symbolically evaluating the GCD oper-
ation and showing that any common divisor foandy is
also a common divisor fop andx — y, for x > y > 0.
Symbolic evaluation has been especially successful for
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those with timersAlur et al. 1993, hybrid combinations 2 SYMBOLIC ANALYSIS LABORATORY

of discrete and continuous behaviadyr et al. 1999, and

data structures such as queuésdefroid and Long 1996 We have already seen a catalog of symbolic analysis tech-
and stacksAbdulla et al. 1999 Abstraction can be used niques. The idea afymbolic analysiss to allow these tech-

to reduce the symbolic evaluation of infinite-state sys- niques to coexist so that the analysis of a transition system
tems to finite-state systems through the use of abstract can be carried out by successive applications of a combi-
interpretation Clarke et al. 1994 Loiseaux et al. 1995 nation of these techniques. SAL is such a framework for

Saidi and Graf 1997Saidi and Shankar 1999 combining different tools for abstraction, program analysis,

Bounded model checking (BMC) can be viewed as a theorem proving, and model checking toward the calculation
restricted form of symbolic simulation in that the search of properties (symbolic analysis) of concurrent systems ex-
for falsifying traces is restricted to traces of some given pressed as transition systenBefsalem et al. 2000 SAL
length Clarke et al. 200L The BMC problem can effi- provides a blackboard architecture for symbolic analysis
ciently be reduced to a propositional satisfiability problem, where a collection of tools interact through a common in-
and off-the-shelf propositional satisfiability (SAT) check- termediate language for transition systems. The individual
ers are used to construct counterexamples from satisfy- analyzers (theorem provers, model checkers, static analyz-
ing assignments. In this way, BMC extends ideas for ers) are driven from this language, and the analysis results
using SAT checkers to generate plans (as witnesses of fed back to this intermediate level. This language also serves
eventually reaching some goaKdutz and Selman 1992 as thetargetfor translators that extract the transition system
Experience demonstrates that BMC can be effective for description for popular programming languages such as Es-
falsification in cases where there exist short falsifying terel, Java, and Stateflow (see Figliye An earlier overview
traces Clarke et al. 2001Copty et al. 2001 of SAL can be foundiBensalem et al. (2000the SAL lan-

In deductive verification, thénvariance rulefor es- guage is documented Dill et al. (2001) and the rationale
tablishing invariance properties requires a 1-step symbolic behind symbolic analysis is explained &hankar (2000)
simulation for establishing that a given safety property (one The SAL tools are available free of charge for noncommer-
true of all reachable states) is indeed preserved on all transi- cial use at<sal.csl.sri.com>
tions (Manna and Pnueli 1995 Application of the invari-
ance rule usually requires creativity in coming up with a 2.1 The SAL Language
sufficiently strong inductive invariant. It is also nontriv-
ial to detect bugs from failed induction proofs. Recent A key part of the SAL framework is a language for describ-
generalizations based dnstep symbolic simulation try to ing transition systems. A variety of languages like UNITY
overcome these limitationgl¢ Moura et al. 2002 (Chandy and Misra 19§38 SMV (McMillan 19933, and

This concludes our brief, and necessarily incomplete, Reactive ModuleqAlur and Henzinger 1996 have been
overview of the landscape of formal verification techniques proposed in the literature, which are suitable for speci-
based on symbolic simulation. These methods range from fying transition systems. SAL has a lot in common with
refutation and simulation-based methods to full-blown ver- these languages, but it is also unique in that it includes a

ification. rich set of combinators for specifying large systems in a
In the rest of this paper we explore these validation modular way.
techniques and their relative merits in some more detail. A moduleis a self-contained specification of a transition

As our running example, we formally model a priority- system in SAL. Such a transition systemoduleconsists
ceiling real-time scheduler and formally establish that certain of a statetype, aninitialization conditionon this state type,
deadlines are always met. For these experiments, we useand a binarytransition relationof a specific form on the
SRI's SAL verification toolbox, which includes a powerful  state type, and invariant definitions. The state type is defined
modeling language for specifying computational systems by four pairwise disjoint sets dhput, output global, and

in a modular way. The SAL framework also integrates a local variables. The input and global variables are the
number of validation and verification tools such as a slicer, observedvariables of a module and the output, global, and
an explicit-state simulator, a BDD-based, symbolic model local variables are theontrolled variables of the module.
checker, a bounded model checker for infinite-state systems Usually, several modules are collected in a context. Contexts
based on a combination of propositional SAT solving and also include type and constant declarations.

constraint solving, and an induction engine that combines The scheduler module below, for example, receives a

refutation based on BMC with verification based bn command as input and, depending on the values of the local

induction. variables, it decides on the next value of the output variable
turn .
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Figure 1: SAL Toolbus

scheduler: MODULE = [ 1] System

BEGIN
LOCAL clock : ClockRange — _—
LOCAL dispatch : ARRAY Jobldx OF ClockRange
LOCAL job_state : JobState ——
OUTPUT turn : Turn =
LOCAL rsrc : RSRC ——— PCP
INPUT cmd : Command 2z
INITIALIZATION —

5 RSRC

TRANSITION _ command

END

The definition of datatypes such &lockRange and
Command the initial settings of variables, and transitions
in terms of guarded commands are omitted here (for a more
detailed description, see Section 3.

Parametric modules allow the use of logical (state-
independent) and type parameterization in the definition
of modules. Most importantly, modules in SAL can be
combined both synchronously and asynchronously. In the
synchronous form of composition, modules react to inputs in
zero time, as with combinational circuitry in hardware. Ab-
sence of causal loops in synchronous systems is ensured b
generating proof obligations, rather than by more restrictive
syntactic methods as in other languages. Asynchronously
composed modules that are driven by independent clocks
are modeled by means of interleaving the atomic transitions
of the individual modules. SAL allows for mixtures of
synchronous and asynchronous module composition. For
example, it is natural to model a scheduler synchronously
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Figure 2: PCP Architecture

(I ) composed with a set of jobs running asynchronously
[ as depicted in Figure 2.

2.2 The SAL Validation Toolbus

The core ofthe SAL validation tools is a scriptable state space
exploration toolkit for traversing state spaces associated with
YsaL specifications. Using the API of this toolkit, model
checkers, simulators, static debuggers, symbolic simulators,
and other state explorations can be encoded as Scheme
scripts. For efficiency, these extensions are then compiled
and linked with the SAL kernel.

SAL validation tools are not necessarily required to
support the complete SAL language, as there is a staged
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translation of SAL into simpler fragments by source to
source transformations (see Figure 1). These transforma-
tions include expression simplification, Skolemization of
universally quantified expressions, and the expansion of
module combinators. Finite-state SAL specifications, for
example, are compiled into a Boolean transition system (cir-
cuit, net list) by converting state variables into bitvectors
and abstractly interpreting operators in terms of bitvector
expressions. The selection of verification tools below is a
shapshot of the currently available ones, but new verification
tools can be added to the SAL toolbus due to its open-ended
nature.

SAL-ESMC. Given a SAL module and dnear
temporal logic(LTL) formula, the SAL explicit-state model
checker translates the LTL formula into a SAL module
for representing the associated Blchi automaton, which is
then used as synchronous oberservéor the system under
consideration. Now, the given state space is explored for
violations of the specified temporal logic formula, and a
counterexamplen the form of an execution path leading
to such a violation, is constructed. In this way, ESMC
can be seen as a standard simulator, but for the richness of
the SAL language, which includes primed variables in the
guard of transitions, simulation requires online scheduling.
SAL-ESMC uses many of the optimizations for explicit-state
simulators such as supertrace reductiblolgmann 1998
Other popular techniques for dealing with the state explosion
problem are partial order and symmetry reduction.

SAL-ESMC is in particularly useful in the initial steps
of developing a model, since it detects many errors quickly.
SAL-ESMC is rarely used for full verification, however,
since even on finite-state systems, an enumerative check
is unlikely to succeed because the size of the searchable
state space can be exponential in the size of the program
state. Still, enumerative model checking is an effective
debugging or refutation technique that can often detect and
display simple counterexamples when a property fails.

SAL-SMC. Given a SAL module of finite state space
and an LTL formula, the SAL symbolic model checker de-
cides whether the corresponding transition system indeed
satisfies the formula. In the tradition of the SMV model
checker, the finite transition relation is encoded usiimgry
decision diagram¢BDDs), and symbolic simulation is real-
ized by fixpoint computations on the BDD representations.
SAL-SMC supports both forward and backward simulation.

Symbolic model checkers using BDD representations
can sometimes process state spaces with more th&f%10
states. The problem, however, is that the size of the BDD
representations may also explode during fixpoint compu-
tation. In some cases, symbolic model checking may fail
to verify a small problem (say, with I0states) because
there is no compact BDD representation for the underlying
transition relation. Therefore, SAL-SMC is usually used
for verifying simplified and heavily abstracted models.
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SAL-BMC. The use of Boolean satisfiability (SAT)
solvers for verifying temporal logic properties has been
explored through a technique known bsunded model
checking(BMC) (Clarke et al. 200l As with symbolic
model checking, the state is encoded in terms of booleans.
The program is unrolled a bounded number of steps for
some bound:, and an LTL property is checked for coun-
terexamples over computations of lengthThus, a BMC
problem corresponds to encoding all bounded simulation
problems as a Boolean satisfiability problem. For example,
to check whether a program with initial stateand next-
state relatiorT" violates the invariany in the firstk steps,
one checks, using a propositional SAT solver:

I(so) A
T(so,s1) AT (s1,52) A ... AT(Sg—1, k) A
(m@(s0) V ... V—(sk))

This formula is satisfiable if and only if there exists a path
of length at mostk from the initial statesg, which vi-
olates the invarianp. This BMC methodology has been
extended to BMC for infinite-state systems by translating the
problem to a propositional constraint satisfication problem
(de Moura et al. 2002 de Moura and Ruel3 202 The
constraints involved might be linear arithmetic constraints,
equalities over uninterpreted function symbols, array and
bitvector constraints, or any combination thereof. Given
a SAL specification with data types such as integers and
arrays, an LTL formula with constraints on these datatypes,
and an upper bounk, SAL-BMC decides whether there is
a counterexample of length up toto the hypotheses that
a (possibly infinite) transition system satisfies its tempo-
ral specification. The corresponding constraint satisfaction
problems are solved using the ICS decision procedures
(Filliatre et al. 200). In this way, SAL-BMC is applica-
ble for infinite-state verification problems, and it has been
applied for continuous-time systems and special cases of
hybrid systems%orea 200

Ithas been demonstrated that BMC can be more effective
in falsifying hypotheses than traditional model checking
(Clarke et al. 2001 Copty et al. 2001 Bounded model
checking is therefore often used for refutation, where one
systematically searches for counterexamples whose length is
bounded by some integkr The bound is increased until a
bug is found, or some pre-computeampleteness threshold
ordiameter(namely, the longest of all the shortest path to any
reachable state) is reached. Unfortunately, the computation
of completeness thresholds is usually prohibitively expensive
and these thresholds may be too large to effectively explore
the associated bounded search space. In addition, such
completeness thresholds do not even exist for many infinite-
state systems.
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SAL-IND. The SAL induction tool combines refu-
tation based on bounded model checking techniques with
verification based on a generalized induction rule, called
k-induction de Moura et al. 2003 This rule first requires
demonstrating the invariance of a safety property in the first
k states of any execution. Consequently, error traces of
lengthk are detected. This induction rule also generalizes
the usual invariance rule in that it requires showing that
if the property under consideration holds in every state of
every execution of length, then every successor state also
satisfiesp. As in BMC, the boundk is increased until
either a violation is detected in the firststates of an exe-
cution or the property at hand is shown to bénductive.

In the ideal case of attempting to prove correctness of an
inductive property (that is, a property preserved on all tran-
sitions), 1-induction suffices and iteration up to a, possibly
large, complete threshold, as in BMC, is avoided. Although
k-induction is complete for finite systems, in practice, it

usually works only for small values df < 20.

Wheneverk-induction fails to prove a property, there is
a counterexample of lengih+ 1 such that the first states
satisfy ¢ and the last state does not satigfy If the first
state of this trace is reachable, thens refuted. Other-
wise, the counterexample is labelggurious By assuming
the first state of this trace to be unreachable, a spurious
counterexample is used automatically to obtain a strength-
ened invariant. Many infinite-state systems can only be
proven withk-induction enriched with invariant strengthen-
ing, whereas for finite systems and many continuous-time
systems the use of strengthening is an optimization in that
it decreases the minimal for which ak-induction proof
succeedsde Moura et al. 2003
3 MODELING THE PRIORITY-CEILING
PROTOCOL

We report on our work and experience in modeling and val-
idating Dutertre’s versionCQutertre 200) of the priority-
ceiling protocol (PCP) using SAL. The PCP protocol is
particularly interesting, since scheduling is a critical com-
ponent of real-time system that are being used in safety-
critical applications such as Integrated Modular Avionics
(IMA), and many real-world schedulers such as Honey-
well's DEOS are based on simpler, but supposedly better

understood, versions of PCP such as the highest locker pro-

task consumes itbudgetof processing time on a shared
processor in each of its periods. Access to other shared
resources such as common /O channels is controlled by
semaphoredor ensuring mutual exclusive access to each
of these resources. When synchronization primitives, such
as semaphores, are used, there is a problem gatledty
inversionwhich causes low priority jobs to prevent higher
priority jobs from running. For instance, a jobcan be
blocked when trying to lock a semaphoseif a job k of
lower priority has lockedS before j was dispatched. As a
result, a jobj of top priority can be unable to execute and
a job k of lower priority thanj can become active. This
phenomenon may block for long periods of time, since
other jobs, with priority greater thak, may prevent to
execute and consequently to unlagkSo, the high-priority

job j can then be delayed by the low-priority jdbthat
locks S but also by any job of intermediate priority that
might preemptk. Since high-priority jobs are usually the
most urgent and may have tight deadlines, such unrestricted
priority inversion can be disastrous. In tReiority Ceiling
Protocol the following approach is used: each semaphore
S is assigned a fixedeiling which is equal to the highest
priority among the jobs that need accessStand a jobj
executinglock(S) is granted access t®if the priority of j

is strictly higher that the ceiling of any semaphore locked
by a job other thary. Otherwise,j becomes blocked and

S is not allocated toj.

The scheduler and each of the jobs are represented as
SAL modules. Each active job nondeterministically chooses
to either lock or unlock a semaphore or to perform some
local step computation (Figure 2). Thus, the actions of a
job can be modeled using the abstract data §pexmand
below.

Command: TYPE = DATATYPE [ 2]
cmd_lock(arg: Semaphore),

cmd_unlock(arg: Semaphore),

cmd_unlock_all,

cmd_step

END

Given the identifier of the currently active process, the
current configuratiorRSRCof the semaphores, and the
clock value, the PCP scheduler picks an executable job of
highest precedence which is not blocked, and controls job
selection through théurn variable. The skeleton of the

tocol. In such a context, one must obtain strong guarantees ga| module for specifying this scheduler can be found in

of correctness, and rigorous development and verification
methods are required.

Real-time scheduling involves the allocation of re-
sources and time intervals to tasks in such a way that
certain timeliness performance requirements are met. A
scheduling problem is given in terms of a set of periodic
tasks with giverperiod length, priority, andbudget and a

Figure 3. This module has local variables for a discrete clock
(with a sufficiently large upper bound depending on the job
configuration), the current dispatch times, and the current
job states. At each clock tick, it receives a command from
the currently active job and updates the resoumses
depending on this command. Furthermore, the clock is
incremented, and the state of each job is updated. Now, an

corresponding real-time scheduler needs to ensure that evelyeligible jobj is selected to be active, depending on the old
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scheduler: MODULE = [ 3] 4 VALIDATING TIME PARTITIONING

BEGIN
LOCAL clock : ClockRange Time-partitioning is a crucial property for hard real-time
LOCAL dispatch : ARRAY Jobldx OF ClockRange schedulers, particularly those in which application of dif-
LOCAL job_state : JobState ferent criticalities run on the same processor. In a time-

OUTPUT turn : Turn
LOCAL rsrc : RSRC
INPUT cmd : Command

partitioned operating system, the scheduler is responsible
for ensuring that the actions of one job can not affect other
jobs guaranteed access to CPU execution time. We say

IN;ESKLLZG.TION that a deadline has been missed for jobif the clock
dispatch - [l : Jobldx] O is at a period boundary for jop but the jobj has not
job_state = [[j : Jobldx] Oi: been put into sleeping mode. The corresponding theorem
rsrc_: rsrcCtxlinitial_rsrc; deadline_missed , eXpreSSGd in LTL, formalizes that
turn = idle_turn this condition is never been violated.

TRANSITION
clock’ = adjust(clock + 1); 4]
job_state’ = dl_missed?(

[[j_' Jobldx] dispatch : ARRAY Jobldx OF ClockRange,

job_state : JobState,

IF sleeping?(j, job_state) AND clock : ClockRange): BOOLEAN

dispatchlj] = clock =
THEN 1 (EXISTS (j : Jobldx) :

ELSIF turn?(turn, j) THEN dispatch(j] = clock AND
IF end_of_budget?(j, job_state) THEN 0 NOT sleeping?(j, job_state));

ELSE job_state]j ] + 1 ENDIF ) . .
ELSE job_statej] ENDIF J; ds;‘:gﬂf—lf“'ssed : THEOREM

dispatch’ = ... G(NOT(dl_missed?(dispatch, job_state, clock)));
rsrc’ = ...

Similarly important, at each clock tick, there should be at

[ ) least one job ready to execute.
([1G : Jobldx ):
eligible?(j, rsrc, job_state’) 5
> turn’ = job_turn(j)) deadlock?(job_state:JobState,t: Turn):BOOLEAN =

I idle_turn?(t) AND
ELSE --> turn’ = idle_turn (EXISTS (j: Jobldx) :
] ready_to_execute?(j, job_state));

END

- - deadlock_free : THEOREM
Figure 3: PCP Scheduler in SAL system |- G(NOT deadlock?(job_state, turn));

value of the resources and the new (!) state of the jobs. We prove these properties for the three scheduling config-

The[j: Jobldx]  construct in this specification denotes ~ Urations in Figure 4 using various SAL verification tools.
simultaneous array updates, aid denotes asynchronous ~ Configuration 1 has three jobs with the given
composition. priorities, periods, budgets, and semaphores as given in

The use of parametric transition systems in SAL allow Fi_gure 4. This configuration leads to a _scheduling_ problem
us to investigate different task sets by simply instantiating With 209, 737, 024 reachable states. This number is clearly
the scheduler model without changing specifications. In Peyond the capabilities of explicit-state model checking,
particular, the PCP model is parameterized with respect to Put the deadlock property is easily proved with symbolic
the number of tasks, the number of semaphores, and the mod_el che_ckmg (both forward and backward reachability)
specifics for each task. In this way, the PCP model can @nd induction of deptit = 1.

b_e reus_ed for_d|_fferent scheduling problems by means of SAL-SMC  (forward) 7621 secs

simple instantiation of parameters. (backward) 24 secs

Although time is progressing indefinitely, the resulting ;
. ; L2 d o SAL-IND (k=1) 6.4 secs

system, for a given configuration, is essentially finite-state. _ _ .
Indeed, for the assumed periodicity of processes it suffices For this property, a proof using SAL-BMC without
to consider time only up to the least common multiple of induction is much harder than with SAL-IND, since the
the task periods. Thus, we can restrict ourselves to the SAL diameter of the system to be explored is 194. For the
validation tools for finite-state systems. inductiveness of the property under consideration, however,
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Configuration 1. larger than the diameter. In contrast, SAL-ESMC proves
- — - 1 this property almost immediately.
Jolb pri%rcl;ty pegod bugget semlapshore‘ Configuration 3 generates a rather huge problem
5 5 { ’2} space with 329924 301, 744 reachable states and the
o0 1 4 {1.2} diameter of the system is 437. Again, all symbolic meth-
3 25 20 > 1.2 3 ods establish deadlock-freeness, but this time symbolic
' : forward traversal is less efficient than both the other methods.
Configuration 2.
job | priority | period | budget| semaphores SAL-SMC ((;,ng:lﬁgz d§0156? 4Sseeccfs
1 100 28 4 (1,3
AL-IND =1)84
5 0 16 Z 12 S (k ) 849 secs
3 25 16 4 (1,2 3 Time-partitioning fails for this configuration, and both
forward symbolic model checking aridinduction produce
Configuration 3. a counterexample of length 8.
job | priority | period | budget| semaphores SAL-SMC (forward) 1732 secs
1 100 10 3 {1 (backward) timeout
2 75 16 4 {2} SAL-IND  11.38 secs
3 50 8 / {1,3) Altogether, the best choice of verification technique usually
4 50 12 6 {1, 2} depends on the characteristics of the problem at hand, and
S 25 20 S {1,2, 3} each verification technique has its particular weaknesses

Figure 4: Configurations and strengths. However, they are complementary in that

when one is weak the other is strong.
exploration of depth 1 suffices. The timeliness property
does not hold for configuration 1, and counterexamples 5 CONCLUSIONS
of length 16 are easily generated using forward symbolic

model checking and bounded model checking. Highly efficient symbolic evaluation technology can be used

to apply the whole spectrum of analysis of programs and

SAL-SMC (forward) 764 secs specifications from testing and debugging to verification. We
(backward) timeout believe that the relevant technology consisting of decision
SAL-IND 7.7 secs procedures and constraint propagation has progressed to a

point where it can be employed efficiently for symbolic
evaluation. A major advantage of symbolic simulation is
that it scales smoothly from explicit-state exploration to
inductive verification. Symbolic simulation ik-induction

Configuration 2 only generates, 092 reachable states
and the diameter is 112. Again, it is straightforward to
establish deadlock-freeness using either model checking or

induction. )
proofs, as developed in the SAL framework, for example,
SAL-SMC (forward) 946 secs combines refutation and verification-based methods in a
(backward) 84 secs natural and useful way.
SAL-IND (k =1) 4.15 secs We have described a graded sequence of integrated

formal analysis technologies in SAL, based on symbolic
simulation, and demonstrated their effectiveness. Inthe early
life cycle of a model, testing, debugging, and explicit-state
exploration seem to be particularly effective for validation,
whereas more heavy-weight verification tools are applied
at later life cycles.

Symbolic model checking using forward traversal proves
the timeliness property. Both backward simulation and
induction fail, but at least, bounded model checking
establishes the property up to the diameter.

SAL-SMC  (forward) 968 secs _ o ] ] ]
(backward) timeout Compared to testing, symbolic simulation provides in-
SAL-BMC  (uptok = 112) 2483 secs creasedcoverageand is applicable to partial models and

) o high-level designs. On the other hand, symbolic simula-
In general, however, the diameter of a system is difficult 10 jon s often restricted too rather shallow exploration of
compute, and therefore it is unclear when to stop increasing state spaces compared to, say, random simulation. Combi-
the boundk in BMC. k-induction fails for this problem,  nations of explicit with symbolic-state exploration should
since it has to be iterated up to the recurrence dlameter (the make it possible to not only drastically increase coverage
length of the longest acyclic path), which usually is much o explicit-state simulation but also to use localized sym-

bolic simulation to drive simulations to territory in the state
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space that would otherwise remain unexplored. Much more
intricate combinations seem to be possible. For example,
the state space is divided into explicitly and symbolically
represented set of sets, and simulation consists of a hybrid
of explicit search and constraint solving. Symbolic simula-
tion can also be used to generate “cheap” invariants, which
themselves are used to restrict the search space for explicit
exploration.

There is much more to a computational system than
merely correctness, since it should also provide cegaai-
ity of service In the priority-ceiling protocol, for example,
an upper bound on the maximum time a process is blocked
should be established. In some initial experiments, we de-
veloped SAL scripts based on explicit-state model checking
for computing such maximum blocking time, but many
more techniques from traditional simulation, in particular
probabilistic methods, need to be incorporated.
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