
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

FROM SIMULATION TO VERIFICATION (AND BACK)

Harald Rueß
Leonardo de Moura

Computer Science Laboratory
SRI International

Menlo Park, CA 94303, U.S.A.

t-
-

in
g
d
u
e

ld
ca
m

n
in
n
st
r
r-

o
re

ty
re
o

of
g
of
s

ce
d

a
r
y

al
t-
es

lic
be
-
lic
ts.
e
r

ul
em

be
m
s
l

le

ry
in
t.

al
nd
a-

ic.
on-
c

-
as
ABSTRACT

Symbolic evaluation is the execution of software and sof
ware designs on inputs given as symbolic or explicit con
stants along with constraints on these inputs. Efficient sym
bolic evaluation is now feasible due to recent advances
efficient decision procedures and symbolic model checkin
Symbolic evaluation can be applied to partially implemente
descriptions and provides wider coverage and greater ass
ance than testing and traditional simulation alone. Unlik
full formal verification, symbolic evaluation can be used in
a partial manner that is more likely to succeed and yie
some degree of assurance. Its main advantage is that it
be used within a smooth spectrum of analyses ranging fro
refutation based on explicit-state simulation to full-blown
verification.

1 INTRODUCTION

Symbolic evaluation is the execution of a program (or eve
a specification) where some or all of the inputs are given
symbolic form. Symbolic evaluation is a basic technique i
theorem proving and verification. For example, a greate
common divisor (GCD) algorithm returns a common diviso
can be verified by symbolically evaluating the GCD ope
ation and showing that any common divisor forx andy is
also a common divisor fory andx − y, for x > y > 0.

Symbolic evaluation has been especially successful f
hardware designs (for example, Hardin et al. 1998, Moo
1998), but it is also effective for the verification of the
correctness of compilation steps, in ensuring the safe
of bytecode, and for checking that certain invariants a
preserved. There are many other examples of the use
symbolic evaluation. For example, an interval analysis
a program can be carried out by symbolically computin
the fixed points of the intervals that capture the range
the numeric variables. A simpler form of such analysis ha
been applied to the Ariane-5 launch control software sin
the initial debacle. A sorting program can be examine
-

.

r-

n

-

r

f

over a bounded size array to see if the output is indeed
sorted permutation of the input. This is obviously weake
than verifying the sorting program over arrays of arbitrar
size, but perhaps more efficient at uncovering bugs.

Symbolic evaluation includestestingbut has some added
advantages. Most importantly, testing provides only parti
coverage and yields very limited confidence in the correc
ness of the design, whereas symbolic simulation provid
increasedcoveragesince a symbolic evaluation covers a
substantial range of concrete inputs. In addition, symbo
simulation does not require a full implementation and can
driven off a partial implementation or a high-level specifica
tion. It also provides increased coverage since a symbo
evaluation covers a substantial range of concrete inpu
Also, symbolic evaluation can be applied not only in th
forward direction but also in the backward direction fo
computing preconditions from postconditions.

Symbolic evaluation is a key component of any usef
verification system, and has been a standard part of theor
proving since the work ofBoyer and Moore (1979). Its
main advantage is that it is largely automatic and can
used within a smooth spectrum of analyses ranging fro
testing to verification. In contrast, formal verification tend
to be an all-or-nothing enterprise that yields few partia
results, and is therefore not yet an economically viab
technique for routine use.

Symbolic evaluation is very effective for essentially
finite-state programs. For example, symbolic trajecto
evaluation carries out symbolic simulation of hardware
a ternary domain of truth values with an unknown elemen
Model checking is a well-established technique for form
verification of reactive systems such as hardware circuits a
communication protocols. Systems are modeled as state m
chines and the specification is expressed in temporal log
The reachable state space of a simple protocol, resource c
trol algorithm, or hardware can be fully explored in symboli
terms, using a symbolic model checker (Burch et al. 1992,
McMillan 1993b). Model checking techniques for reacha
bility can also be used for some infinite state systems such

Rueß and de Moura

-

a

n

,

fy
r

o

li
e
s

t

s
m

r-

n
i

in

a
r

d

h-

m
i-
r
,
n
x-

is
-
al
z-
lts
es

s-

r-

-

i-

a
a

d

e
d

ts

a
al
le
those with timers (Alur et al. 1993), hybrid combinations
of discrete and continuous behavior (Alur et al. 1995), and
data structures such as queues (Godefroid and Long 1996)
and stacks (Abdulla et al. 1999). Abstraction can be used
to reduce the symbolic evaluation of infinite-state sys
tems to finite-state systems through the use of abstra
interpretation (Clarke et al. 1994, Loiseaux et al. 1995,
Saïdi and Graf 1997, Saïdi and Shankar 1999).

Bounded model checking (BMC) can be viewed as
restricted form of symbolic simulation in that the search
for falsifying traces is restricted to traces of some give
length (Clarke et al. 2001). The BMC problem can effi-
ciently be reduced to a propositional satisfiability problem
and off-the-shelf propositional satisfiability (SAT) check-
ers are used to construct counterexamples from satis
ing assignments. In this way, BMC extends ideas fo
using SAT checkers to generate plans (as witnesses
eventually reaching some goal) (Kautz and Selman 1992).
Experience demonstrates that BMC can be effective f
falsification in cases where there exist short falsifying
traces (Clarke et al. 2001, Copty et al. 2001).

In deductive verification, theinvariance rule for es-
tablishing invariance properties requires a 1-step symbo
simulation for establishing that a given safety property (on
true of all reachable states) is indeed preserved on all tran
tions (Manna and Pnueli 1995). Application of the invari-
ance rule usually requires creativity in coming up with a
sufficiently strong inductive invariant. It is also nontriv-
ial to detect bugs from failed induction proofs. Recen
generalizations based onk-step symbolic simulation try to
overcome these limitations (de Moura et al. 2002).

This concludes our brief, and necessarily incomplete
overview of the landscape of formal verification technique
based on symbolic simulation. These methods range fro
refutation and simulation-based methods to full-blown ve
ification.

In the rest of this paper we explore these validatio
techniques and their relative merits in some more deta
As our running example, we formally model a priority-
ceiling real-time scheduler and formally establish that certa
deadlines are always met. For these experiments, we u
SRI’s SAL verification toolbox, which includes a powerful
modeling language for specifying computational system
in a modular way. The SAL framework also integrates
number of validation and verification tools such as a slice
an explicit-state simulator, a BDD-based, symbolic mode
checker, a bounded model checker for infinite-state system
based on a combination of propositional SAT solving an
constraint solving, and an induction engine that combine
refutation based on BMC with verification based onk-
induction.
ct

-

of

r

c

i-

,

l.

se

s

,
l
s

s

2 SYMBOLIC ANALYSIS LABORATORY

We have already seen a catalog of symbolic analysis tec
niques. The idea ofsymbolic analysisis to allow these tech-
niques to coexist so that the analysis of a transition syste
can be carried out by successive applications of a comb
nation of these techniques. SAL is such a framework fo
combining different tools for abstraction, program analysis
theorem proving, and model checking toward the calculatio
of properties (symbolic analysis) of concurrent systems e
pressed as transition systems (Bensalem et al. 2000). SAL
provides a blackboard architecture for symbolic analys
where a collection of tools interact through a common in
termediate language for transition systems. The individu
analyzers (theorem provers, model checkers, static analy
ers) are driven from this language, and the analysis resu
fed back to this intermediate level. This language also serv
as thetargetfor translators that extract the transition system
description for popular programming languages such as E
terel, Java, and Stateflow (see Figure1). An earlier overview
of SAL can be found inBensalem et al. (2000), the SAL lan-
guage is documented inDill et al. (2001), and the rationale
behind symbolic analysis is explained inShankar (2000).
The SAL tools are available free of charge for noncomme
cial use at<sal.csl.sri.com> .

2.1 The SAL Language

A key part of the SAL framework is a language for describ
ing transition systems. A variety of languages like UNITY
(Chandy and Misra 1988), SMV (McMillan 1993a), and
Reactive Modules(Alur and Henzinger 1996) have been
proposed in the literature, which are suitable for spec
fying transition systems. SAL has a lot in common with
these languages, but it is also unique in that it includes
rich set of combinators for specifying large systems in
modular way.

A moduleis a self-contained specification of a transition
system in SAL. Such a transition systemmoduleconsists
of a statetype, aninitialization conditionon this state type,
and a binarytransition relationof a specific form on the
state type, and invariant definitions. The state type is define
by four pairwise disjoint sets ofinput, output, global, and
local variables. The input and global variables are th
observedvariables of a module and the output, global, an
local variables are thecontrolled variables of the module.
Usually, several modules are collected in a context. Contex
also include type and constant declarations.

The scheduler module below, for example, receives
command as input and, depending on the values of the loc
variables, it decides on the next value of the output variab
turn .

<sal.csl.sri.com>
http://sal.csl.sri.com

Rueß and de Moura
E
st

er
el

St
at

ef
lo

w

ESMC BMC IND ESC

ICS

B
oo

le
an

 T
ra

ns
iti

on
 S

ys
te

m

T
ra

ns
iti

on
 s

ys
te

m

SA
L

SA
L

SA
L

SMC

Predicate
Abstraction

pa
rt

ia
l

V
er

ilo
g

Figure 1: SAL Toolbus
s
re

-
n

he
in
-
b
e

sly
ks
ns

or
ly

y

e
th

rs,
me
d

ed
1scheduler: MODULE =
BEGIN

LOCAL clock : ClockRange
LOCAL dispatch : ARRAY JobIdx OF ClockRange
LOCAL job_state : JobState
OUTPUT turn : Turn
LOCAL rsrc : RSRC
INPUT cmd : Command
INITIALIZATION

…
TRANSITION

…
END

The definition of datatypes such asClockRange and
Command, the initial settings of variables, and transition
in terms of guarded commands are omitted here (for a mo
detailed description, see Section 3.

Parametric modules allow the use of logical (state
independent) and type parameterization in the definitio
of modules. Most importantly, modules in SAL can be
combined both synchronously and asynchronously. In t
synchronous form of composition, modules react to inputs
zero time, as with combinational circuitry in hardware. Ab
sence of causal loops in synchronous systems is ensured
generating proof obligations, rather than by more restrictiv
syntactic methods as in other languages. Asynchronou
composed modules that are driven by independent cloc
are modeled by means of interleaving the atomic transitio
of the individual modules. SAL allows for mixtures of
synchronous and asynchronous module composition. F
example, it is natural to model a scheduler synchronous
y

PCP

J1

J2

J3

Idle

turn

System

command

RSRC

Job State

Figure 2: PCP Architecture

(||) composed with a set of jobs running asynchronousl
[] as depicted in Figure 2.

2.2 The SAL Validation Toolbus

The core of the SAL validation tools is a scriptable state spac
exploration toolkit for traversing state spaces associated wi
SAL specifications. Using the API of this toolkit, model
checkers, simulators, static debuggers, symbolic simulato
and other state explorations can be encoded as Sche
scripts. For efficiency, these extensions are then compile
and linked with the SAL kernel.

SAL validation tools are not necessarily required to
support the complete SAL language, as there is a stag

Rueß and de Moura

o
a-
f
of
r

ir-
s
or
a
n
ed

e
is

or
a

o
e
g.
e

on

ly.

ck
ble
am
e
nd

-
ed
l

s.
.
s

D
u-
il

g
d

n

s.
r

n
e,

e

,
d
n
d

s,

-
n

es

n
of

e

e
is

y
on
e
re
ch

e-
translation of SAL into simpler fragments by source t
source transformations (see Figure 1). These transform
tions include expression simplification, Skolemization o
universally quantified expressions, and the expansion
module combinators. Finite-state SAL specifications, fo
example, are compiled into a Boolean transition system (c
cuit, net list) by converting state variables into bitvector
and abstractly interpreting operators in terms of bitvect
expressions. The selection of verification tools below is
snapshot of the currently available ones, but new verificatio
tools can be added to the SAL toolbus due to its open-end
nature.

SAL-ESMC. Given a SAL module and alinear
temporal logic(LTL) formula, the SAL explicit-state model
checker translates the LTL formula into a SAL modul
for representing the associated Büchi automaton, which
then used as asynchronous oberserverfor the system under
consideration. Now, the given state space is explored f
violations of the specified temporal logic formula, and
counterexamplein the form of an execution path leading
to such a violation, is constructed. In this way, ESMC
can be seen as a standard simulator, but for the richness
the SAL language, which includes primed variables in th
guard of transitions, simulation requires online schedulin
SAL-ESMC uses many of the optimizations for explicit-stat
simulators such as supertrace reduction (Holzmann 1998).
Other popular techniques for dealing with the state explosi
problem are partial order and symmetry reduction.

SAL-ESMC is in particularly useful in the initial steps
of developing a model, since it detects many errors quick
SAL-ESMC is rarely used for full verification, however,
since even on finite-state systems, an enumerative che
is unlikely to succeed because the size of the searcha
state space can be exponential in the size of the progr
state. Still, enumerative model checking is an effectiv
debugging or refutation technique that can often detect a
display simple counterexamples when a property fails.

SAL-SMC. Given a SAL module of finite state space
and an LTL formula, the SAL symbolic model checker de
cides whether the corresponding transition system inde
satisfies the formula. In the tradition of the SMV mode
checker, the finite transition relation is encoded usingbinary
decision diagrams(BDDs), and symbolic simulation is real-
ized by fixpoint computations on the BDD representation
SAL-SMC supports both forward and backward simulation

Symbolic model checkers using BDD representation
can sometimes process state spaces with more than 101000

states. The problem, however, is that the size of the BD
representations may also explode during fixpoint comp
tation. In some cases, symbolic model checking may fa
to verify a small problem (say, with 107 states) because
there is no compact BDD representation for the underlyin
transition relation. Therefore, SAL-SMC is usually use
for verifying simplified and heavily abstracted models.
f

SAL-BMC. The use of Boolean satisfiability (SAT)
solvers for verifying temporal logic properties has bee
explored through a technique known asbounded model
checking(BMC) (Clarke et al. 2001). As with symbolic
model checking, the state is encoded in terms of boolean
The program is unrolled a bounded number of steps fo
some boundk, and an LTL property is checked for coun-
terexamples over computations of lengthk. Thus, a BMC
problem corresponds to encoding all bounded simulatio
problems as a Boolean satisfiability problem. For exampl
to check whether a program with initial stateI and next-
state relationT violates the invariantϕ in the firstk steps,
one checks, using a propositional SAT solver:

I (s0)∧
T (s0, s1)∧ T (s1, s2)∧ . . . ∧ T (sk−1, sk)∧
(¬ϕ(s0)∨ . . . ∨¬ϕ(sk)) .

This formula is satisfiable if and only if there exists a path
of length at mostk from the initial states0, which vi-
olates the invariantϕ. This BMC methodology has been
extended to BMC for infinite-state systems by translating th
problem to a propositional constraint satisfication problem
(de Moura et al. 2002, de Moura and Rueß 2002). The
constraints involved might be linear arithmetic constraints
equalities over uninterpreted function symbols, array an
bitvector constraints, or any combination thereof. Give
a SAL specification with data types such as integers an
arrays, an LTL formula with constraints on these datatype
and an upper boundk, SAL-BMC decides whether there is
a counterexample of length up tok to the hypotheses that
a (possibly infinite) transition system satisfies its tempo
ral specification. The corresponding constraint satisfactio
problems are solved using the ICS decision procedur
(Filliâtre et al. 2001). In this way, SAL-BMC is applica-
ble for infinite-state verification problems, and it has bee
applied for continuous-time systems and special cases
hybrid systems (Sorea 2002).

It has been demonstrated that BMC can be more effectiv
in falsifying hypotheses than traditional model checking
(Clarke et al. 2001, Copty et al. 2001). Bounded model
checking is therefore often used for refutation, where on
systematically searches for counterexamples whose length
bounded by some integerk. The boundk is increased until a
bug is found, or some pre-computedcompleteness threshold
ordiameter(namely, the longest of all the shortest path to an
reachable state) is reached. Unfortunately, the computati
of completeness thresholds is usually prohibitively expensiv
and these thresholds may be too large to effectively explo
the associated bounded search space. In addition, su
completeness thresholds do not even exist for many infinit
state systems.

Rueß and de Moura

it
d

s
o
s

at
of
o

a
n-
ly
h

it

u
th
e

-
e
a

l-

s
-

ty
s
-
e
ro
e

on

-
a
A

ic

e

ed
by
h
ch

ted

re

d

as
s
e

e

of
b

n
k
b
nt

is
an
d

SAL-IND. The SAL induction tool combines refu-
tation based on bounded model checking techniques w
verification based on a generalized induction rule, calle
k-induction (de Moura et al. 2003). This rule first requires
demonstrating the invariance of a safety property in the fir
k states of any execution. Consequently, error traces
lengthk are detected. This induction rule also generalize
the usual invariance rule in that it requires showing th
if the property under consideration holds in every state
every execution of lengthk, then every successor state als
satisfiesϕ. As in BMC, the boundk is increased until
either a violation is detected in the firstk states of an exe-
cution or the property at hand is shown to bek-inductive.
In the ideal case of attempting to prove correctness of
inductive property (that is, a property preserved on all tra
sitions), 1-induction suffices and iteration up to a, possib
large, complete threshold, as in BMC, is avoided. Althoug
k-induction is complete for finite systems, in practice,
usually works only for small values ofk < 20.

Wheneverk-induction fails to prove a property, there is
a counterexample of lengthk+1 such that the firstk states
satisfyϕ and the last state does not satisfyϕ. If the first
state of this trace is reachable, thenϕ is refuted. Other-
wise, the counterexample is labeledspurious. By assuming
the first state of this trace to be unreachable, a spurio
counterexample is used automatically to obtain a streng
ened invariant. Many infinite-state systems can only b
proven withk-induction enriched with invariant strengthen
ing, whereas for finite systems and many continuous-tim
systems the use of strengthening is an optimization in th
it decreases the minimalk for which a k-induction proof
succeeds (de Moura et al. 2003).

3 MODELING THE PRIORITY-CEILING
PROTOCOL

We report on our work and experience in modeling and va
idating Dutertre’s version (Dutertre 2000) of the priority-
ceiling protocol (PCP) using SAL. The PCP protocol i
particularly interesting, since scheduling is a critical com
ponent of real-time system that are being used in safe
critical applications such as Integrated Modular Avionic
(IMA), and many real-world schedulers such as Honey
well’s DEOS are based on simpler, but supposedly bett
understood, versions of PCP such as the highest locker p
tocol. In such a context, one must obtain strong guarante
of correctness, and rigorous development and verificati
methods are required.

Real-time scheduling involves the allocation of re
sources and time intervals to tasks in such a way th
certain timeliness performance requirements are met.
scheduling problem is given in terms of a set of period
tasks with givenperiod length,priority, andbudget, and a
corresponding real-time scheduler needs to ensure that ev
h

t
f

n

s
-

t

-

r
-
s

t

ry

task consumes itsbudgetof processing time on a shared
processor in each of its periods. Access to other shar
resources such as common I/O channels is controlled
semaphoresfor ensuring mutual exclusive access to eac
of these resources. When synchronization primitives, su
as semaphores, are used, there is a problem calledpriority
inversionwhich causes low priority jobs to prevent higher
priority jobs from running. For instance, a jobj can be
blocked when trying to lock a semaphoreS if a job k of
lower priority has lockedS beforej was dispatched. As a
result, a jobj of top priority can be unable to execute and
a job k of lower priority thanj can become active. This
phenomenon may blockj for long periods of time, since
other jobs, with priority greater thank, may preventk to
execute and consequently to unlockS. So, the high-priority
job j can then be delayed by the low-priority jobk that
locks S but also by any job of intermediate priority that
might preemptk. Since high-priority jobs are usually the
most urgent and may have tight deadlines, such unrestric
priority inversion can be disastrous. In thePriority Ceiling
Protocol, the following approach is used: each semapho
S is assigned a fixedceiling which is equal to the highest
priority among the jobs that need access toS, and a jobj
executinglock(S) is granted access toS if the priority of j
is strictly higher that the ceiling of any semaphore locke
by a job other thanj . Otherwise,j becomes blocked and
S is not allocated toj .

The scheduler and each of the jobs are represented
SAL modules. Each active job nondeterministically choose
to either lock or unlock a semaphore or to perform som
local step computation (Figure 2). Thus, the actions of a
job can be modeled using the abstract data typeCommand
below.

2Command: TYPE = DATATYPE
cmd_lock(arg: Semaphore),
cmd_unlock(arg: Semaphore),
cmd_unlock_all,
cmd_step

END

Given the identifier of the currently active process, th
current configurationRSRCof the semaphores, and the
clock value, the PCP scheduler picks an executable job
highest precedence which is not blocked, and controls jo
selection through theturn variable. The skeleton of the
SAL module for specifying this scheduler can be found i
Figure 3. This module has local variables for a discrete cloc
(with a sufficiently large upper bound depending on the jo
configuration), the current dispatch times, and the curre
job states. At each clock tick, it receives a command from
the currently active job and updates the resourcesrsrc
depending on this command. Furthermore, the clock
incremented, and the state of each job is updated. Now,
eligible job j is selected to be active, depending on the ol

Rueß and de Moura

s

g
n
to
h
n
f

.
s

f
L

-
e-
ble
er
ay

m

t

g-

in
m
ly
g,
ic
y)

e
er,
3scheduler: MODULE =
BEGIN

LOCAL clock : ClockRange
LOCAL dispatch : ARRAY JobIdx OF ClockRange
LOCAL job_state : JobState
OUTPUT turn : Turn
LOCAL rsrc : RSRC
INPUT cmd : Command
INITIALIZATION

clock = 0;
dispatch = [[j : JobIdx] 0];
job_state = [[j : JobIdx] 0];
rsrc = rsrcCtx!initial_rsrc;
turn = idle_turn

TRANSITION
clock’ = adjust(clock + 1);
job_state’ =

[[j : JobIdx]
IF sleeping?(j, job_state) AND

dispatch[j] = clock
THEN 1
ELSIF turn?(turn, j) THEN
IF end_of_budget?(j, job_state) THEN 0
ELSE job_state[j] + 1 ENDIF

ELSE job_state[j] ENDIF];
dispatch’ = …
rsrc’ = …

[
([](j : JobIdx):

eligible?(j, rsrc, job_state’)
--> turn’ = job_turn(j))

[]
ELSE --> turn’ = idle_turn

]
END

Figure 3: PCP Scheduler in SAL

value of the resources and the new (!) state of the job
The [j: JobIdx] construct in this specification denotes
simultaneous array updates, and[] denotes asynchronous
composition.

The use of parametric transition systems in SAL allow
us to investigate different task sets by simply instantiatin
the scheduler model without changing specifications. I
particular, the PCP model is parameterized with respect
the number of tasks, the number of semaphores, and t
specifics for each task. In this way, the PCP model ca
be reused for different scheduling problems by means o
simple instantiation of parameters.

Although time is progressing indefinitely, the resulting
system, for a given configuration, is essentially finite-state
Indeed, for the assumed periodicity of processes it suffice
to consider time only up to the least common multiple o
the task periods. Thus, we can restrict ourselves to the SA
validation tools for finite-state systems.
.

e

4 VALIDATING TIME PARTITIONING

Time-partitioning is a crucial property for hard real-time
schedulers, particularly those in which application of dif
ferent criticalities run on the same processor. In a tim
partitioned operating system, the scheduler is responsi
for ensuring that the actions of one job can not affect oth
jobs guaranteed access to CPU execution time. We s
that a deadline has been missed for jobj if the clock
is at a period boundary for jobj but the job j has not
been put into sleeping mode. The corresponding theore
deadline_missed , expressed in LTL, formalizes that
this condition is never been violated.

4

dl_missed?(
dispatch : ARRAY JobIdx OF ClockRange,
job_state : JobState,
clock : ClockRange): BOOLEAN

=
(EXISTS (j : JobIdx) :

dispatch[j] = clock AND
NOT sleeping?(j, job_state));

deadline_missed : THEOREM
system |-
G(NOT(dl_missed?(dispatch, job_state, clock)));

Similarly important, at each clock tick, there should be a
least one job ready to execute.

5

deadlock?(job_state:JobState,t:Turn):BOOLEAN =
idle_turn?(t) AND
(EXISTS (j: JobIdx) :

ready_to_execute?(j, job_state));

deadlock_free : THEOREM
system |- G(NOT deadlock?(job_state, turn));

We prove these properties for the three scheduling confi
urations in Figure 4 using various SAL verification tools.

Configuration 1 has three jobs with the given
priorities, periods, budgets, and semaphores as given
Figure 4. This configuration leads to a scheduling proble
with 209,737,024 reachable states. This number is clear
beyond the capabilities of explicit-state model checkin
but the deadlock property is easily proved with symbol
model checking (both forward and backward reachabilit
and induction of depthk = 1.

SAL-SMC (forward) 76.21 secs
(backward) 4.24 secs

SAL-IND (k = 1) 6.4 secs

For this property, a proof using SAL-BMC without
induction is much harder than with SAL-IND, since the
diameter of the system to be explored is 194. For th
inductiveness of the property under consideration, howev

Rueß and de Moura

y
s

ic

o

s
d
g

o
ng

h
h

s

e
-
lic
s.

ly
nd
es
at

d
d
e
n

to a

s
o

e,
a

ted
ic
rly
te
,
d

-

a-
f
bi-

d
ge
-

Configuration 1.

job priority period budget semaphores
1 100 8 3 {1,3}
2 50 12 4 {1,2}
3 25 20 5 {1,2,3}

Configuration 2.

job priority period budget semaphores
1 100 28 4 {1,3}
2 50 16 4 {1,2}
3 25 16 4 {1,2,3}

Configuration 3.

job priority period budget semaphores
1 100 10 3 {1}
2 75 16 4 {2}
3 50 8 7 {1,3}
4 50 12 6 {1,2}
5 25 20 5 {1,2,3}

Figure 4: Configurations

exploration of depth 1 suffices. The timeliness propert
does not hold for configuration 1, and counterexample
of length 16 are easily generated using forward symbol
model checking and bounded model checking.

SAL-SMC (forward) 7.64 secs
(backward) timeout

SAL-IND 7.7 secs

Configuration 2 only generates 4,992 reachable states
and the diameter is 112. Again, it is straightforward to
establish deadlock-freeness using either model checking
induction.

SAL-SMC (forward) 9,46 secs
(backward) 8.24 secs

SAL-IND (k = 1) 4.15 secs

Symbolic model checking using forward traversal prove
the timeliness property. Both backward simulation an
induction fail, but at least, bounded model checkin
establishes the property up to the diameter.

SAL-SMC (forward) 9.68 secs
(backward) timeout

SAL-BMC (upto k = 112) 24.83 secs

In general, however, the diameter of a system is difficult t
compute, and therefore it is unclear when to stop increasi
the boundk in BMC. k-induction fails for this problem,
since it has to be iterated up to the recurrence diameter (t
length of the longest acyclic path), which usually is muc
e

r

e

larger than the diameter. In contrast, SAL-ESMC prove
this property almost immediately.

Configuration 3 generates a rather huge problem
space with 329,924,301,744 reachable states and th
diameter of the system is 437. Again, all symbolic meth
ods establish deadlock-freeness, but this time symbo
forward traversal is less efficient than both the other method

SAL-SMC (forward) 7055.6 secs
(backward) 16.54 secs

SAL-IND (k = 1) 8.49 secs

Time-partitioning fails for this configuration, and both
forward symbolic model checking andk induction produce
a counterexample of length 8.

SAL-SMC (forward) 17.32 secs
(backward) timeout

SAL-IND 11.38 secs

Altogether, the best choice of verification technique usual
depends on the characteristics of the problem at hand, a
each verification technique has its particular weakness
and strengths. However, they are complementary in th
when one is weak the other is strong.

5 CONCLUSIONS

Highly efficient symbolic evaluation technology can be use
to apply the whole spectrum of analysis of programs an
specifications from testing and debugging to verification. W
believe that the relevant technology consisting of decisio
procedures and constraint propagation has progressed
point where it can be employed efficiently for symbolic
evaluation. A major advantage of symbolic simulation i
that it scales smoothly from explicit-state exploration t
inductive verification. Symbolic simulation ink-induction
proofs, as developed in the SAL framework, for exampl
combines refutation and verification-based methods in
natural and useful way.

We have described a graded sequence of integra
formal analysis technologies in SAL, based on symbol
simulation, and demonstrated their effectiveness. In the ea
life cycle of a model, testing, debugging, and explicit-sta
exploration seem to be particularly effective for validation
whereas more heavy-weight verification tools are applie
at later life cycles.

Compared to testing, symbolic simulation provides in
creasedcoverageand is applicable to partial models and
high-level designs. On the other hand, symbolic simul
tion is often restricted too rather shallow exploration o
state spaces compared to, say, random simulation. Com
nations of explicit with symbolic-state exploration shoul
make it possible to not only drastically increase covera
of explicit-state simulation but also to use localized sym
bolic simulation to drive simulations to territory in the stat

Rueß and de Moura

re
le
y
ri
-
ch
lic

n

ed
e
g

r

ee
e
te
n

-

,
-
e

r,

d

e

z,
i,
,

le

:

.
.

-
–

f
n

s
at

o-
e

r-

ed
-

f

,
-
l,

ty

ly.

-

space that would otherwise remain unexplored. Much mo
intricate combinations seem to be possible. For examp
the state space is divided into explicitly and symbolicall
represented set of sets, and simulation consists of a hyb
of explicit search and constraint solving. Symbolic simula
tion can also be used to generate “cheap” invariants, whi
themselves are used to restrict the search space for exp
exploration.

There is much more to a computational system tha
merely correctness, since it should also provide certainqual-
ity of service. In the priority-ceiling protocol, for example,
an upper bound on the maximum time a process is block
should be established. In some initial experiments, we d
veloped SAL scripts based on explicit-state model checkin
for computing such maximum blocking time, but many
more techniques from traditional simulation, in particula
probabilistic methods, need to be incorporated.

ACKNOWLEDGMENTS

Many of the ideas and techniques presented here have b
developed in close cooperation with our collegues S. Owr
J. Rushby, and N. Shankar. This research was suppor
by NASA Langley Research Center Cooperative agreeme
NCC-1-399 under a subcontract from Honeywell, by NSA
(Maryland Procurement Office) under Contract MDA904
02-C-1196, and by NSF under Contract EIA-0224465.

REFERENCES

Abdulla, P. A., A. Annichini, S. Bensalem, A. Boua-
jjani, P. Habermehl, and Y. Lakhnech. 1999
July. Verification of infinite-state systems by com
bining abstraction and reachability analysis. Se
Halbwachs and Peled (1999), 146–159.

Alur, R., C. Courcoubetis, and D. Dill. 1993, May. Model-
checking in dense real-time.Information and Compu-
tation 104 (1): 2–34.

Alur, R., C. Courcoubetis, N. Halbwachs, T. A. Henzinge
P. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine.
1995, 6 February. The algorithmic analysis of hybri
systems.TCS138 (1): 3–34.

Alur, R., and T. A. Henzinger. 1996, 27–30 July. Reactiv
modules. SeeIEEE Computer Society Press (1996),
207–218.

Bensalem, S., V. Ganesh, Y. Lakhnech, C. Muño
S. Owre, H. Rueß, J. Rushby, V. Rusu, H. Saïd
N. Shankar, E. Singerman, and A. Tiwari. 2000
June. An overview of SAL. InLFM 2000: Fifth
NASA Langley Formal Methods Workshop, ed.
C. M. Holloway, 187–196. Hampton, VA: NASA
Langley Research Center. Proceedings availab
at <http://shemesh.larc.nasa.gov/fm/
Lfm2000/Proc/> .
,

d

it

-

n
,
d
t

Boyer, R. S., and J. S. Moore. 1979.A computational logic.
New York, NY: Academic Press.

Burch, J. R., E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J. Hwang. 1992, June. Symbolic model checking
1020 states and beyond.Information and Computa-
tion 98 (2): 142–170.

Chandy, K., and J. Misra. 1988.Parallel program design:
A foundation. Addison Wesley.

Clarke, E. M., A. Biere, R. Raimi, and Y. Zhu. 2001
Bounded model checking using satisfiability solving
Formal Methods in System Design19 (1): 7–34.

Clarke, E. M., O. Grumberg, and D. E. Long. 1994, Septem
ber. Model checking and abstraction. 16 (5): 1512
1542.

Copty, F., L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi,
A. Tacchella, and M. Vardi. 2001, July. Benefits o
bounded model checking in an industrial setting. I
Computer-Aided Verification, CAV 2001, Volume 2101
of LNCS, 436–453: Springer-Verlag.

de Moura, L., and H. Rueß. 2002, May. Lemma
on demand for satisfiability solvers. Presented
SAT 2002, accepted for journal publication. Avail-
able at <http://www.csl.sri.com/users/
demoura/sat02_journal.pdf> .

de Moura, L., H. Rueß, and M. Sorea. 2002, July. Lazy the
rem proving for bounded model checking over infinit
domains. InInternational Conference on Automated
Deduction (CADE’02), ed. A. Voronkov, Volume 2392
of LNCS, 438–455. Copenhagen, Denmark: Springe
Verlag.

de Moura, L., H. Rueß, and M. Sorea. 2003, July. Bound
model checking and induction: From refutation to ver
ification. In Computer-Aided Verification, CAV ’2003,
ed. W. A. Hunt, Jr. and F. Somenzi, Volume 2725 o
LNCS, 14–26. Boulder, CO: Springer-Verlag.

Dill, D., T. Henzinger, S. Owre, and N. Shankar. 2001
March. The SAL language. Technical Report SRI-CSL
01-02, Computer Science Laboratory, SRI Internationa
Menlo Park, CA.

Dutertre, B. 2000, December. Formal analysis of the priori
ceiling protocol. In Real Time Systems Symposium.
Orlando, FL: IEEE Computer Society. To appear.

Filliâtre, J.-C., S. Owre, H. Rueß, and N. Shankar. 2001, Ju
ICS: Integrated Canonization and Solving. InComputer-
Aided Verification, CAV ’2001, ed. G. Berry, H. Comon,
and A. Finkel, Volume 2102 ofLNCS, 246–249. Paris,
France: Springer-Verlag.

Godefroid, P., and D. E. Long. 1996, 27–30 July. Sym
bolic protocol verification with queue BDDs. See
IEEE Computer Society Press (1996), 198–206.

Halbwachs, N., and D. Peled. (Eds.) 1999, July.Computer-
aided verification, cav ’99, Volume 1633 ofLNCS,
Trento, Italy. Springer-Verlag.

<http://shemesh.larc.nasa.gov/fm/
http://shemesh.larc.nasa.gov/fm/Lfm2000/Proc/
Lfm2000/Proc/>
http://shemesh.larc.nasa.gov/fm/Lfm2000/Proc/
<http://www.csl.sri.com/users/
http://www.csl.sri.com/users/demoura/sat02_journal.pdf
demoura/sat02_journal.pdf>
http://www.csl.sri.com/users/demoura/sat02_journal.pdf
http://shemesh.larc.nasa.gov/fm/Lfm2000/Proc/
http://shemesh.larc.nasa.gov/fm/Lfm2000/Proc/
http://shemesh.larc.nasa.gov/fm/Lfm2000/Proc/
http://shemesh.larc.nasa.gov/fm/Lfm2000/Proc/
http://www.csl.sri.com/users/demoura/sat02_journal.pdf
http://www.csl.sri.com/users/demoura/sat02_journal.pdf
http://www.csl.sri.com/users/demoura/sat02_journal.pdf
http://www.csl.sri.com/users/demoura/sat02_journal.pdf

Rueß and de Moura

s-
l:

:

ac-
ft-

-

r
r

ty.

n-
he

n

act

-
e

n
-

g.
g

-
nt
ta-

-
sis
-
is

is
l
il
Hardin, D., M. Wilding, and D. Greve. 1998, June. Tran
forming the theorem prover into a digital design too
From concept car to off-road vehicle. InComputer-
AidedVerification, CAV ’98, ed.A. J. Hu and M.Y.Vardi,
Volume 1427 ofLNCS, 39–44. Vancouver, Canada
Springer-Verlag.

Holzmann, G. 1998, March. Designing executable abstr
tions. InSecond Workshop on Formal Methods in So
ware Practice (FMSP ’98), ed. M. Ardis, 103–109.
Clearwater Beach, FL: Association for Computing Ma
chinery.

IEEE Computer Society Press 1996, 27–30 July.Proceed-
ings, 11th annual ieee symposium on logic in compute
science, New Brunswick, New Jersey. IEEE Compute
Society Press.

Kautz, H. A., and B. Selman. 1992. Planning as satisfiabili
In European Conference on Artificial Intelligence, 359–
363.

Loiseaux, C., S. Graf, J. Sifakis, A. Bouajjani, and S. Be
salem. 1995. Property preserving abstractions for t
verification of concurrent systems.FMSD 6:11–44.

Manna, Z., and A. Pnueli. 1995.Temporal verification of
reactive systems: Safety. Springer-Verlag.

McMillan, K. 1993a. Symbolic model checking. Kluwer
Academic Publishers, Boston.

McMillan, K. L. 1993b.Symbolic model checking. Boston,
MA: Kluwer Academic Publishers.

Moore, J. S. 1998, November. Symbolic simulation: A
ACL2 approach. InFormal Methods in Computer-
Aided Design (FMCAD ’98), ed. G. Gopalakrishnan
and P. Windley, Volume 1522 ofLNCS. Palo Alto, CA:
Springer-Verlag.

Saïdi, H., and S. Graf. 1997, June. Construction of abstr
state graphs with PVS. InComputer-Aided Verification,
CAV ’97, ed. O. Grumberg, Volume 1254 ofLNCS, 72–
83. Haifa, Israel: Springer-Verlag.

Saïdi, H., and N. Shankar. 1999, July. Ab
stract and model check while you prove. Se
Halbwachs and Peled (1999), 443–454.

Shankar, N. 2000, March. Symbolic analysis of transitio
systems. InAbstract State Machines: Theory and Ap
plications (ASM 2000), ed. Y. Gurevich, P. W. Kutter,
M. Odersky, and L. Thiele, Volume 1912 ofLNCS,
287–302. Monte Verità, Switzerland: Springer-Verla

Sorea, M. 2002. Bounded model checkin
for timed automata. ENTCS 68 (5). At:
<http://www.elsevier.com/locate/
entcs/volume68.html> .

AUTHOR BIOGRAPHIES

HARALD RUESS is a Computer Scientist at the Com
puter Science Laboratory of SRI International. His curre
work is concerned with the development and implemen
tion of decision procedures, the application of formal meth
ods for analyzing software and hardware systems, analy
of security protocols, and the logical foundation of ev
idential transactions. The address of his home page
<http://www.csl.sri.com/users/ruess/> .

LEONARDO DE MOURA is a Computer Scientist at the
Computer Science Laboratory of SRI International. He
mainly concerned with developing and implementing mode
checkers, simulators, and other verification tools. His e-ma
address is<demoura@csl.sri.com> .

<http://www.elsevier.com/locate/
http://www.elsevier.com/locate/entcs/volume68.html
entcs/volume68.html>
http://www.elsevier.com/locate/entcs/volume68.html
<http://www.csl.sri.com/users/ruess/>
http://www.csl.sri.com/users/ruess/
<demoura@csl.sri.com>
mailto:demoura@csl.sri.com
http://www.elsevier.com/locate/entcs/volume68.html
http://www.elsevier.com/locate/entcs/volume68.html
http://www.elsevier.com/locate/entcs/volume68.html
http://www.elsevier.com/locate/entcs/volume68.html
http://www.csl.sri.com/users/ruess/
http://www.csl.sri.com/users/ruess/
mailto:demoura@csl.sri.com
mailto:demoura@csl.sri.com

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 888
	02: 889
	03: 890
	04: 891
	05: 892
	06: 893
	07: 894
	08: 895
	09: 896

