
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

FROM TIMED AUTOMATA TO DEVS MODELS

Norbert Giambiasi
Jean-Luc Paillet
Frédéric Châne

LSIS

UMR CNRS 6168
Université Aix-Marseille III

Campus St Jérome
52, Av. Escadrille Normandie Niemen

Marseille, 13397, FRANCE

ABSTRACT

In this paper, we present the formal transformation of
Timed Input/Output Automata into simulation models, ex-
pressed in the DEVS formalism. This transformation takes
place in an approach of a validation of high-level specifi-
cations by simulation. The validation is based on the simu-
lation of a coupled model built with the system to be con-
trolled and the control specifications. An example of this
approach is given in the paper.

1 INTRODUCTION

Many formalisms have been developed to support verifi-
cation and validation of formal specifications of control
systems (Gajski, Vahid, Narayan, and Gong 1994; Peter-
son 1981; Alur and Dill 1994; Bolognesi, Lucidi and
Trigila 1994).
 Timed automata and variants have been used for these
kinds of purposes (Alur and Kurshan 1996; Bengtsson, Lar-
sen, Larsson, Pettersson and Wang 1996; Daws, Olivero,
Tripakis and Yovine 1996; Henzinger and Ho 1995). Some
works are based on the use of simulation technics of timed
automata with the objective of establishing a correspon-
dence between the states of a model M1 regarded as an im-
plementation and a specification model M2.

We propose another approach in which we consider
that the high level specification of a control system, ex-
pressed by a timed automaton, will be verified by simula-
tion of a coupled model built with this specification and
the model of the system to be controlled. The simulation
models are represented in the framework of the DEVS
formalism (Zeigler 1976; Zeigler 1989; Zeigler, Praehofer
and Kim 2000; Giambiasi, Escude and Ghosh 2000).

The DEVS formalism has a clean operational semantics
and a clean interpretation of the model elements in the real
world. DEVS define a method of abstraction of dynamic
•

•

systems that allows building timed simulation models (de-
terministic models) with a good accuracy. In other words,
DEVS is well adapted to represent timed behavior of real
systems. But DEVS does not adapt well to high level speci-
fications of discrete event control systems. This due to the
fact that at the first levels of specifications, the model can be
undeterministic and the occurrence times of events are not
defined precisely. While, Timed Automata are well adapted
for these high levels of specification, it is not well adapted
to represent a precise timed behavior deduced from the
analysis of a real system with explicit state variables.

Consequently, we propose a methodology (Figure 1)
based on the use of these two paradigms:

Timed Automata for the high level specification
of the control part,
DEVS to represent the behavior of the system to
be controlled.

Control

Specified by a
Timed input/output

automaton

System
DEVS
Model

 Control DEVS
model

Coupling

Simulation

Verification

Transformation : TIOA to DEVS

Figure 1: Our Methodology

Giambiasi, Paillet, and Châne

In order to verify the specification with an accurate
timing, we propose to transform T.A. into a DEVS model
and to verify it by simulating the coupled model (control
part coupled with the model of the controlled system).

Then, in a first step, we have to define a formal trans-
formation of a Timed Automaton into a DEVS model.

In this paper, first we give a brief recall on timed
automata and on DEVS formalism. Next, we present the
method for the formal transformation of a timed automata
into a DEVS model. Finally, we illustrate our approach by
a complete example.

2 RECALL

2.1 Timed Automata (Springinveld,
Vaandrager and D’Argenio 2001)

Timed Input/Output Automata are a particular class of
timed automata (Alur and Dill 1994) with “good” proper-
ties, such as deterministic behavior, separation between
input and output activity and input enabling.
 A Bounded Timed Automata Model, a variant of Alur
and Dill’s model (Alur and Dill 1994) proposed by Lynch
and Al (Gawlick, Segala, S_gaard-Andersen and Lynch
1994) is a finite automaton with a timing annotation. This
annotation allows to express timing conditions for the state
transitions, to determine values used for updating clocks,
and to provide conditions, under which the model can re-
main in a given state. A TIOA is defined as Bounded
Timed Domain Automata BTDA (Springintveld and
Vaandrager 1996) together with a partitioning the set of
actions into Input and Output actions (or events).

2.1.1 Finite Automaton or Finite
Labeled Transition System

A labeled transition system (LTS) is a rooted, edge labeled
multigraph. Formally, a LTS is an algebraic structure

A = <Q, E,Σ, src, act, trg, q0>,

where:
•
•
•
•

•

•

•

Q is a set of states,
E is a set of transitions,
Σ is a set of events.
src: E → Q which associates a source state to
each transition,
act: E → Σ which associates an event to each
transition,
trg: E → Q which associates a target state to each
transition.

Initial conditions:
q0 is the initial state.
•
•

So we write:
 δ: q →a q’, the transition with :

src(δ) = q ; act(δ) = a ; trg(δ) = q’

Definition 1: An LTS A is said lean if each transition is

fully determined by its source, event and target, as follows:

src(δ) = src(δ’) ^ act(δ) = act(δ’) ^ trg(δ) = trg(δ’) ⇒ δ = δ’

 Definition 2: An LTS A is said deterministic if it sat-
isfies the following property:

src(δ) = src(δ’) ^ act(δ) = act(δ’) ⇒ δ = δ’

 Definition 3: An LTS A is a finite automaton if both
Q and E are finite.

2.1.2 Bounded Time Domain Automata

A bounded time domain automaton (BTDA) is an exten-
sion of finite automaton model and it is a variant of timed
automaton model.
 A timed automaton is typically a (finite) automaton
extended with a set of clocks.
 For the BTDA model, we have the following defini-
tions :

Definition 4: A clock is a variable x included in a
domain dom(x) of the form I ∪ {∞}, where I is an interval
over R bounded with values ∈ Z. Let C be the set of
clocks.

Definition 5: A term over C is an expression gener-
ated by the grammar z::=x|n|z+n, where x ∈ C and n ∈ R.
Let T(C) be the set of all terms over C.

Definition 6: A constraint over C is a Boolean combi-
nation ϕ of inequalities of the form z ≤ z’ or z < z’ with
z,z’∈ T(C). The Boolean constants are used to indicate if
the constraint is realized or not. Let F(C) be the set of all
these formulas.

Definition 7: A (simultaneous) assignment over C is a
function A : C → T(C). Let M(C) be the set of all assign-
ments.

Definition 8: A clock valuation is a vector that as-
signs to each clock x ∈ C a value in dom(x). Let V(C) be
the set of all valuations over C.
 A timing annotation for a given automaton A is a tuple:

T = <C,Inv,G,A,v0>

 where :

C is a finite set of clocks.
Inv: Q → F(C) associates an invariant to each
state. The automaton A can remain in a state as
long as its invariant remains true.

Giambiasi, Paillet, and Châne

• G: E → F(C) associates a guard to each transi-
tion. A transition may be taken if the guard, a
clock constraint, is satisfied by the current valua-
tion of clocks.

•

•

•
•
•
•

A: E → M(C) associates an assignment to each
transition such as :

src(δ)∧G(δ)⇒Λx∈C(A(δ)(x)∈ dom(x)) ∧Inv(trg(δ))[A(δ)]

holds for each δ ∈ E.
Initial conditions :

v0 ∈ V(C) is the initial valuation of clocks. We
require v0 satisfy Inv(q0) and ∀x ∈ C, v0 (x) ∈
Z∞.

 Definition 9: The addition of a clock value v(x) with
a value d ∈ R>0 is defined as follow :

 (v⊕d)(x) = v(x)+d if (v(x)+d) ∈ dom(x)
 (v⊕d)(x) = ∞ otherwise

 Definition 10: A bounded time domain automata
(BTDA) is a pair B = (A,T), where A is a finite automaton
with ΣA ∩ R = ∅, and T is a timing annotation for A.
 Definition 11: The operational semantics OS(B) of a
BTDA B is the lean LTS A, which is specified by:

QA={(q,v) ∈QB x V(CB) | v |= InvB(q)},
ΣA=ΣB∪ R>0 ,
Q0

A=(Q0
B,v0

B),
And →a is the smallest relation that satisfies the
two following rules :

∀(q,v),(q’,v’) ∈ QA , a ∈ ΣB , δ ∈ EB and d ∈ R>0,

δ: q->aq’, v |= GB(δ),v’=v o AB(δ) ,
(q,v)→a(q’,v’)

q=q’;v’=v⊕d;∀0≤d’≤d:v+d’ |= InvB(q)
(q,v) d→(q’,v’)

We refer to the states of BTDA B as locations, to

avoid confusion between the state of the BTDA and those
of its operational semantics. So we have :

•
•

discrete states ∈ QBxV(CB),
locations ∈ QB .

2.1.3 Timed Input/Output Automata (Gawlick,
Segala, S_gaard-Andersen and Lynch 1994)

We recall some basic definitions on timed I/O automaton
(TIOA).
 In addition, some constraints will be added in order to
allow the transformation of a TIOA into a discrete event
simulation model. In fact, for this transformation a TIOA
must be deterministic, with isolated output for excluding
autonomous choice between two or more different outputs
•

•

•

•

•

•

•

or between performing output and accepting input. Finally,
it must be input enabling i.e. each input is enabled only in
the interior of the invariant of each location, this means
that inputs are enabled as long as time can progress.
 Definition 12: A timed input/output automaton
(TIOA) is a pair M = (B,P), where B is a BTDA and
P=(I,O) is a partitioning of ΣB in input events and outputs
events with the following properties :

(Determinism) If src(δ) = src(δ’), act(δ)=act(δ’)
and G(δ) ^ G(δ’) is satisfiable then δ = δ’.
(Isolated outputs) If src(δ) = src(δ’), act(δ) ∈ O
and G(δ) ^ G(δ’) is satisfiable then δ = δ’.
(Input enabled) each input event is enabled only
in the interior of the invariant i.e. only when the
invariant is verified.

 The operational semantics OS(A) of a TIOA A is the
same as the one of BTDA B.

2.2 Discrete Event Specification
Formalism: DEVS

According to the literature on DEVS (Zeigler 1976; Zei-
gler 1989), the specification of a discrete event model is a
structure, M, given by:

M = < X, S, Y, δint, δext , λ, D >

where X is the set of the external input events, S the set of
the sequential states, Y the set of the output events, δint is
the internal transition function :

δint : S → S defines the state changes caused by
internal events,

δext is the external transition function :
δext: QM x XM → S specifies the state changes
due to external events,

λ is the output function :
λ :S → Y

and the function D is the lifetime of the states:
D:S → R≥0 ∪ {∞}. For a given state, s, D(s) repre-
sents the time interval during which the model will
remain in the state s if no external event occurs.

 A state may be viewed as passive when its lifetime is
assumed to be infinite or active when the lifetime interval
is assumed to be a finite real positive number, Zeigler
(Zeigler 1976) introduces the concept of total states, TS, of
a model as:

TS = {(s,e) : s ∈S, o < e < D (s)}

where e represents the elapsed time in state s. The concept
of total state is fundamental in that it permits one to spec-
ify a future state based on the elapsed time in the present
state. Potential benefits may lie in its ability to implement
event filtering (Ghosch and Meng-Lin 1989; Ghosch and
Giambiasi 1999).

Giambiasi, Paillet, and Châne

 A key contribution of DEVS lies in decomposing the
traditional transition function into two sub-functions: in-
ternal transition function and external transition function.
The internal transition function permits one to capture the
autonomous evolution of the model. The external transi-
tion function reflects the evolution of the model corre-
sponding to externally induced input events. The output
function is defined only for active states and is executed
only when the elapsed time in a given state equals its life-
time. When a model is in an active state sk, it sends an
output event as defined by the output function, at the end
of the lifetime of the current active state. From the simula-
tion perspective, this implies that the output function is
executed prior to the internal transition function.

2.3 Coupled Models

A coupled DEVS Model, DN, is a structure :

DN = <X,Y,M,EIC,EOC,IC>

Where :
•
•
•
•

•

•
•

•

•
•
•

X = input events set
Y = output events set
M = DEVS components set
EIC ⊆ DN.INxM.IN : external input coupling re-
lation
EOC ⊆ M.OUTxDN.OUT : external output cou-
pling relation
IC ⊆ M.OUTxM.IN : internal coupling relation
DN.IN and DN.OUT refer to the input and output
ports of the coupled model.
M.IN and M.OUT refer to the input and output
ports of component Models.

EIC, EOC, IC specify the connections between the set
of models M and input and output ports X,Y.

3 FROM TIOA TO ATOMIC DEVS MODEL

For this transformation, we make two hypotheses.
i. The timestamp of a transition over an output

event has a unique value (not define in a time in-
terval).

ii. The conditions of guards of two different transi-
tions, with the same input event and from the
same state must be expressed using different
clocks. Formally:
Let e1,e2 ∈ E such that :

src(e1) = src(e2),
act(e1) = act(e2) and
let X1, X2 the subset of clocks used by G(e1)
and G(e2) respectively.

⇒ X1 ∩ X2 = ∅
 In this case the two guards G(e1) and G(e2) cannot
be true at the same date, according to the constraint of de-
terminism of the automaton.

3.1 Untimed DEVS Syntactic Transformation

We begin by a definition of the syntactic transformation of
a TIOA into a DEVS model.

•

•

•

•

•

 Relationships between sets :
S = Q, the set of discrete states is the same in the
two models.
XM = I, the set of input events of the TIOA model
represents the set of input event variables in the
DEVS model.
YM = O, the set of output events in the TIOA rep-
resents the set of output event variables in the
DEVS model.

Relationships between functions :
∀ei ∈ E :

External transition function -δext-:

if act(ei) ∈ I then δext ((src(ei),e),act(ei)) = trg(ei)

Internal transition function -δint-:

If act(ei) ∈ O the δint(src(ei)) = trg(ei)
 and λ(src(ei)) = act(ei)

 Example: See the untimed automaton in Figure 2.

S0

S1

S2

?a

!b

e1

e2

Figure 2: A Simple Untimed Automaton

 Defined by :

•
•
•
•

•

•

Q = {s0,s1,s2}
E = {e1,e2}
Σ = {I={a},O={b}}
src:

 src(e1) = src(e2) = s0
act:

 act(e1) = a; act(e2) = b
trg:

 trg(e1) = s1; trg(e2) = s2

Giambiasi, Paillet, and Châne

becomes, in DEVS :

•
•
•
•

•

S = Q = {s0,s1,s2}
XM = {a}
YM = {b}
e1 :

act(e1) = a ∈ I ⇒ δext((src(e1),e),act(e1)) = trg(e1)

 ⇒ δext ((s0,e),a) = s1

e2 :

act(e2) = b ∈ O ⇒ δint(src(e2)) = trg(e2)
 and λ(src(e2)) = act(e2)
 ⇒ δint(s0) = s2
 and λ(s0) = b

and the state graph (Figure 3) :

S0

S1

S2

?a

!b

Input event

Output event

(Internal transition in doted line)

Figure 3: State Graph of the Resulting
DEVS Model

 This first step gives an untimed DEVS(which can be
not deterministic).In order to obtain a complete transfor-
mation, we have to introduce new state variables called
temporal state variables, a valuation function and to ex-
press the lifetime function.
 Definition 13: A temporal state variable is a variable
x included in a domain dom(x) = J ∪ {∞}, where J is an
interval over R. Let CM is the set of state variables.
 Definition 14: A term over CM is an expression gen-
erated by the grammar z::=x|n|z+n, where x ∈ CM and n ∈
R. Let TM (C) be the set of all terms over CM.
 Definition 15: A constraint over CM is a Boolean
combination ϕ of inequalities of the form z ≤ z’ or z < z’
with z,z’∈ TM (CM). The Boolean constants are used to in-
dicate if the constraint is realized or not. Let FM (CM) be
the set of all these formulas.
 Definition 16: A (simultaneous) assignment over CM
is a function : CM → TM (CM). Let MM (CM) be the set of
all assignments.
 Definition 17: A temporal state variable valuation v is
a vector that returns for each state variable x ∈ CM a value
in dom(x). Let VM (CM) be the set of all valuations over
CM.
 Definition 18: We define the discrete (or sequential)
state of a DEVS model as follow :

Sd = {(s,v) ∈ SM x VM }

3.2 Lifetime Function -D-

According to the first hypothesis, all transition guards of
input events are fully determined and can occurred only on
one value determined by either an Invariant or a Guard.

D : S x VM (CM) → R

∀si ∈ S :

if Inv(si) = ∅ then D(si) = ∞ •
•

•

•

•

else
 the invariant and guard are included in FM(CM).
Guards and invariants are Boolean combinations of

terms of the form z ≤ z’ or z < z’ and z = z’.
Let Op={≤,<,=}:
1. A formula zi Op zi’ ^ zj Op is equivalent to :

min((zi’- zi),(zj’- zj))

2. A formula zi Op zi’ ∨ zj Op zj ’ is equivalent to :

max ((zi’- zi),(zj’- zj))

3. A combination of this two type of formula is a

combination of min-max.
4. Let GM(ei) = the result of the combination of this

three operations on guard.
5. Let InvM(ei) = the result of the combination of

this three operations on the invariant.
6. Let D(si) = the result of the min of the combina-

tion of this operations on invariant and Guard.
 For a given state D(si) depends on the values of the
temporal state variables.

3.3 Operational Semantics OS(M)-

Definition 19: The operational semantics OS(M) of a
DEVS M is specified by:

Discrete states:

Sd = {(s,v) ∈ SM x VM }

Total states:

QM = {(Sd,e) = ((s,v),e) ∈ SM x VM x R| 0 ≤e≤ D(s)}

Initial state:

Q0
M= ((s0,v0

B),0)

Giambiasi, Paillet, and Châne

∀ei ∈E in the TIOA:

if act(ei) ∈ I and v(CM) |= GM(ei) then
 v = v+e and v’ = vOA(ei) and
 δext((src(ei),v(CM)),act(ei)) = (trg(ei),v’) and
 e:=0

if act(ei) ∈ O and v(CM)|=GM(ei) and e = D(src(ei)) then
 v = v+e and v’=vOA(ei) and
 δint((src(ei),v(CM))) = (trg(ei),v’) and
 λ(trg(ei)) = act(ei) and
 e:=0

4 EXAMPLE AND SIMULATION

4.1 Filling System Example

We consider that the DEVS model of the system to be
controlled is in the model base. This system, a filling sys-
tem, is composed of a tank with a valve, a conveyor and
barrels (Figure 4).

valve

conveyor

Barrel

tank

Figure 4: A Simple Filling System

•
•

•
•

•

•
•

This filling system model has two discrete event inputs:
Control of the valve : VAL = {Open, Close}
Control of the conveyor : MOT = {Start, Stop}

 And two sensor outputs :
Barrel level : BL = {Full}
Barrel position : BP = {Good}

 The DEVS model of the filling system is in Figure 5.
One possible specification of the control system by a
timed automaton is given in Figure 6.
 This Timed Automaton is defined by :

Q = {
Init,Adcon0,Adcon1,Stop,Filling0,Filling1,Error}
E = {e1,e2,e3,e4,e5,e6,e7,e8}
Σ = {I = {Bp.Good, Bl.Full },

 O={Mot.Start, Mot.Stop, Val.Open, Val.Close}}
Init adcon0
si1

Adcon1
si2

Filling1
si4

filling0
si3 Stop

?Mot.Start !Bp.Good

?Mot.Stop

?Val.Open!Bl.Full

?Val.Close Over-
fill

Over-
position

Figure 5: DEVS Model of the Filling System

Init
c<=sig1

adcon0
c<=sig2 Adcon1

c<=sig3

Filling1
c<=sig6 filling0

c<=sig5

Stop
c<=sig4

e1 :
c=sig1

c := 0
!Mot.Start

e2:
c := 0

?Bp.Good

e3: c:=0
c=sig3 !Mot.Stop

e4:
c=sig4

c := 0
!Val.Open

e5:
c := 0

?Bl.Full

e6: c := 0
c=sig6 !Val.Close Error

e7

e8

!Val.close
c = sig5

!Mot.Stop c = sig2

Figure 6: Timed Automaton of the Control System

•

•

•

•

•
•

•

•

•

src:
 src(e1) = Init; src(e2) = Adcon0;
 src(e3) = Adcon1; …

act:
 act(e1) = Mot.Start; act(e2) = Bp.Good;
 act(e3) = Mot.Stop; …

trg:
 trg(e1) = Adcon0; trg(e2) = Adcon1;
 trg(e3) = Stop; …

q0 = Init
 Timing annotation :

C = {c}
Inv:
Inv(Init) = (c<=sig1); Inv(Adcon0) =

(c<=sig2);
Inv(Adcon1) = (c<=sig3); Inv(Stop) = (c<=sig4);
Inv(Filling0) = (c<=sig5); Inv(Filling1) =

(c<=sig6);
Inv(Error) = ∅
G :
G(e1) = (c = sig1); G(e2) = ∅;
G(e3) = (c = sig3); G(e4) = (c = sig4);
G(e5) = ∅; G(e6) = (c = sig6);
G(e7) = (c = sig2); G(e8) = (c = sig5)
A:
A(e1) = A(e2) = A(e3) = A(e4) = A(e5) = A(e6)

= (c:= 0)
A(e7) = A(e8) = ∅
v0 = {0}

Giambiasi, Paillet, and Châne

Now, in order to verify this specification by simula-

tion, we transform this model into a DEVS atomic model :
 Step 1 : untimed DEVS :

•

•
•
•
•
•
•

•

S=Q=
 {Init,Adcon0,Adcon1,Stop,Filling0,Filling1,Error}

XM = I ={Bp.Good, Bl.Full}
YM = O ={Mot, Val}
s° = q° = Init
CM = {c}
v° (CM) = {0}
Act(e1) ∈ O

 ⇒ δint(src(e1)) = trg(e1)
 and λ(trg(e1)) = act(e1)
 ⇒ δint(Init) = Adcon0
 and λ(Adcon0) = /Mot.Start

Act(e2) ∈ I
 ⇒ δext ((src(e2),e),act(e2)) = trg(e2)

 ⇒ δext ((Adcon0,e),Bp.Good) = Adcon1
 …
 Step 2 : Transformation in atomic DEVS :
 We add state variable sets :

CM = {c}
and the initial valuation of state variable c :

v° (CM) = {0}
Operational semantics :
Total states :
 QM = {((Init,v),e), ((Adcon0,v),e),
 ((Adcon1,v),e), ((Stop,v),e),
 ((Filling0,v),e), ((Filling1,v),e),
 ((Error,v),e)}
 Q° = ((Init,v),e)
Lifetime Function :
 Inv(Init) = (c<=sig1) ⇒ D(Init) = sig1-v(c)
 Inv(Adcon0) = (c <= sig2) ⇒ D(Adcon0) = sig2-v(c)
 Inv(Adcon1) = (c<=sig3) ⇒ D(Adcon1) = sig3-v(c)
 Inv(Stop) = (c<=sig4) ⇒ D(Stop) = sig4-v(c)
 Inv(Filling0) = (c <= sig5) ⇒ D(Filling0) = sig5-v(c)
 Inv(Filling1) = (c <= sig6) ⇒ D(Stop) = sig6-v(c)
 Inv(Error) = ∅ ⇒ D(Error) = ∞
Then internal and external transition functions become:
 Act(e1) ∈ O ⇒ if v |= GM(e1) and e = D(src(e1))

⇒ if v |= (c = sig1) and e = D(Init)
⇒ if v |= (c = sig1) and e = sig1-v(c)

 ⇒ v = v+e and v’ = v O A(e1)
 ⇒ δint((Init,v)) = (Adcon0,v’)
 and λ((Init,v’)) = /Mot.Start ;
 Act(e2) ∈ I ⇒ if v |= ∅
 ⇒ v = v+e and v’ = v O A(e2)

 ⇒ δext (((Adcon0,v),e),Bp.Good) =
(Adcon1,v’)

…
 In this case c has the same behavior than e, c is un-
used. The final DEVS state graph is in Figure 7.
Init
 sig1

adcon0
 sig2 Adcon1

 sig3

Filling1
 sig6 filling0

 sig5

Stop
 sig4

!Mot.Start ?Bp.good

!Mot.Stop

!Val.Open ?Bl.Full

!Val.Close Error

!Val = Close

!Mot = Stop

Figure 7: Final State Graph of the DEVS Model of the
Control System

4.2 Coupled Model and Simulation

The coupled model is built with the control model and the
system model by connecting the input/output ports of the
two basic models (Figure 8).

Control

Mot

Val

Bp

Bl

Filling System

Mot

Val

Bp

Bl

Figure 8: Coupled Model of the Control and the Filling
System

Simulation :
 Global Clock T = 0.
 v°(CM) = {0}.
Let the DEVS model of the system (Figure 9) :

Init adcon0
 2

Adcon1
 3

Filling1
 4

filling0
 2 Stop

?Mot.Start !Bp.Good

?Mot

?Val.Open!Bl.Full

?Val.Close Over-
fill

Over-
position

Figure 9: DEVS Model of the Filling System

Giambiasi, Paillet, and Châne

 The following tables give the timed evolution of the
coupled model (Table 1).

Table 1: Simulation Table

Event
Date
(t.u.)

Current
state

Timelife
D External transition function(ext) Internal transition

function(int)
Trans.
Date

Output
function (O) Output Next state

0 Init Infinite ext((init,e),?Mot.Start) 1 Adcon0
1 Adcon0 si1 = 2 int(Adcon0) 3 O(Adcon0) !Bp.Good Adcon1
3 Adcon1 si2 = 3 int(Adcon1) Over-pos.
" " " ext((Adcon1,e),?Mot.Stop) 4 Stop
4 Stop Infinite ext((Stop,e),?Val.Open) 6 Filling0
6 Filling0 si3 = 2 int(Filling0) 8 O(filling0) !Bl.Full Filling1
8 Filling1 si4 = 4 int(Filling1) Over-fill
" " " ext((Filling1,e),?Val.Close) 11 Init

Over-Pos. Infinite
Over-Fill Infinite

Event
Date
(t.u.)

Current
state

Timelife
D External transition function(ext) Internal transition

function(int)
Trans.
Date

Output
function (O) Output Next state

0 Init sig1 = 1 int(Init,v) 1 O(Init,v) !Mot.Start (Adcon0,v)
1 Adcon0 sig2 = 3 ext(((Adcon0,v),e),?Bp.Good) 3 (Adcon1,v)
" " " int(Adcon0,v) O(Adcon0,v) !Mot.stop (Error,v)
3 Adcon1 sig3 = 1 int(Adcon1,v) 4 O(Adcon1,v) !Mot.stop (Stop,v)
4 Stop sig4 = 2 int(stop,v) 6 O(stop,v) !Val.Open (Filling0,v)
6 Filling0 sig5 = 1 int(Filling0,v) 8 O(Filling0,v) !Val.Close (Filling1,v)
" " " ext(((Filling0,v),e),?Bl.Full) (Error,v)
8 Filling1 sig6 = 3 int(Filling1,v) 11 O(Filling1,v) !Val.Close (Init,v)

Error Infinite

Control DEVS Model

System DEVS Model

5 CONCLUSION

In this paper, we have presented the formal transformation
of a TIOA into a DEVS model in order to verify by simu-
lation, high level specifications given by a TIOA.

The proposed methodology seems to be realistic be-
cause it allows the simulation of very complex coupled
models, for which a formal proof is quite impossible. In
addition, going from high level specifications to the low
level design need to define deterministic models, which is
done for the transformation of a TIOA into DEVS

REFERENCES

Alur, R. and Dill, D.L. 1994. A theory of timed automata,
Theorical computer science, Vol. 126, No 2, pp 183-
235.

Alur, R. and Kurshan, R.P. 1996. Timing analysis in
COSPAN. In Alur et al. 1996, pages 220-231.

Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P.
and Wang Yi. 1996. UPPAAL: a tool suite for the
automatic verification of real-time systems. In Alur et
al. 1996, pages 232-243.

Bolognesi, T., Lucidi, F. and Trigila, S. 1994. A timed full
LOTOS with time/action tree semantics, in: T. Rus
and C. Rathay (eds), Theories and Experiences for
Real-Time System Development, Amast Series in
Computing, World Scientific, Singapore, pp. 205-237.

Daws, C., Olivero, A., Tripakis, S. and S. Yovine, S. 1996.
The tool kronos. In Alur et al. 1996, pages 208-219.
Gajski, D., Vahid, F., Narayan, S. and Gong, J. 1994.
Specification and Design of Embedded Systems,
Prentice-Hall, Englewood Cliffs, NJ.

Ghosch, S. and Meng-Lin Yu 1989. A preemptive sched-
uling mechanism for occurate behavioral simulation
of digital designs; IEEE trans. on Computers, vol. 38,
Nov.

Ghosch, S. and Giambiasi, N. 1999. “LANGUAGE
BARRIERS IN HARDWARE DESIGN: On the
Need for Consistency between the VHDL Language
Constructs and Underlying Hardware Design”, IEEE
Circuits and Devices, Vol. 15, No. 5, September, pp.
25-40.

Giambiasi, N., Escude, B. and Ghosch, S. 2000. “GDEVS:
A Generalized Discrete Event Specification for Accu-
rate Modeling of Dynamic Systems”. Transactions of
the SCS, 17(3) pp. 120-134.

Gawlick, R., Segala, R., S_gaard-Andersen, J.F. and
Lynch ,N. 1994. Liveness in timed and untimed sys-
tems. In S. Abiteboul and E. Shamir, editors, Proceed-
ings 21th ICALP, Jerusalem, volume 820 of Lecture
Notes in Computer Science. Springer-Verlag. A full
version appears as MIT Technical Report number
MIT/LCS/TR-587.

Henzinger, T.A. and Ho, P.-H. 1995. HyTech: TheCornell
HYbrid TECHnology Tool. In U.H. Engberg, K.G.
Larsen, and A. Skou, editors, Proceedings of the
Workshop on Tools and Algorithms for the Construc-
tion and Analysis of Systems, Aarhus, Denmark, vol-
ume NS-95-2 of BRICS Notes Series, pages 29{43.
Department of Computer Science, University of Aar-
hus, May.

Peterson, J.L. 1981. Petri Net Theory and the Modeling of
Systems, Prentice-Hall, Englewood Cliffs, NJ.

Springinveld, Jan, Vaandrager, Frits and D’Argenio, Pedro
R. 2001. Testing Timed Automata, Theorical Com-
puter Science, Vol. 254, pp. 225-257.

Springintveld, J.G. and Vaandrager, F.W. 1996. Minimi-
zable timed automata. In B. Jonsson and J. Parrow,
editors, Proceedings of the Fourth International Sym-
posium on Formal Techniques in Real Time and Fault
Tolerant Systems (FTRTFT'96), Uppsala, Sweden,
volume 1135 of Lecture Notes in Computer Science,
pages 130-147. Springer-Verlag.

Zeigler, B. P. 1976. Theory of Modeling and Simulation,
John Wiley, New York.

Zeigler, B.P. 1989. DEVS Representation of Dynamical
system, in: Proc. of the IEEE, Vol.77, pp.72-80.

Zeigler, B. P., Praehofer, H., and Kim, T.G. 2000. Theory
of Modeling and Simulation, Integrating Discrete
Event and Continuous Complex Dynamic System, 2nd
Edition.

Giambiasi, Paillet, and Châne

AUTHOR BIOGRAPHIES

NORBERT GIAMBIASI is a Professor of the University
of “Aix-Marseille III” since 1981. In October 1987, he
created the LERI in a new engineering school where he
was the director of Research and Development. He created
recently the “Laboratoire des Sciences de l'Information et
des Systemes” (LSIS), UMR CNRS 6168. He wrote a
book on C.A.D and he is an author of more than 150 inter-
national publications. He is a member of the program
committee of several international conferences (Micad,
RFIA, CIAM, N'Euro 88, Expert Systems and their Appli-
cations, IMACS, ESS, ESM....) and president of 'Neural-
network and their Applications'. He has been a scientific
manager of more than 50 research contracts (with E.S
Dassault, Thomson-Cimsa, Bull, Siemens, Cnet, Esprit,
Euréka, Usinor, etc.). His main current interests converge
on: formalism for specification of hybrid simulation mod-
els, distributed simulation, discrete event simulation of
hybrid systems, CAD systems and design automation. He
can be contacted by e-mail at <norbert.giambiasi@
univ.u-3mrs.fr>.

JEAN-LUC PAILLET is a “Maitre de Conferences” of
the Université de Provence (Aix-Marseille I). He super-
vised the works of the “Modeling and Verifying Digital
Systems” team in the “Laboratoire d'Informatique de Mar-
seille” (LIM) until 2000. He is presently member of the
“Laboratoire des Sciences de l'Information et des Syste-
mes” (LSIS). After attending an initial education in
Mathematics, he published works in mathematical logics,
and then worked on logics applied to Computer Sciences.
In 1990, he defended the “Habilitation a diriger des re-
cherches” in Computer Sciences at the “Université de Pro-
vence”. His principal contributions in the Computer Sci-
ences are: defining a functional semantics for the
microprocessors, designing a BDD-based Tautology
Checker “TACHE”, defining the functional algebra “P-
calculus” for modeling the synchronous behaviors, and de-
fining a mathematical model and a formal language for
high level specifications of discrete event systems, named
DECM (Discrete Event Calculus Model). He can be con-
tacted by e-mail at <jean-luc.paillet@cmi.univ
-mrs.fr>.

FREDERIC E. CHANE is a D.E.A. M.C.A.O. student at
the University Aix-Marseille III where he rejoin the “Labo-
ratoire des Sciences de l'Information et des Systemes”
(LSIS) in Marseille, France. He had just finished his studies
in computer sciences and it is his first paper. He can be con-
tacted by e-mail at <fchane@club-internet.fr>.

mailto:<norbert.giambiasi@�univ.u-3mrs.fr>
mailto:<norbert.giambiasi@�univ.u-3mrs.fr>
mailto:<jean-luc.paillet@cmi.univ�-mrs.fr>
mailto:<jean-luc.paillet@cmi.univ�-mrs.fr>
mailto:<fchane@club-internet.fr>
mailto:norbert.giambiasi@univ.u-3mrs.fr
mailto:norbert.giambiasi@univ.u-3mrs.fr
mailto:jean-luc.paillet@cmi.univ-mrs.fr
mailto:jean-luc.paillet@cmi.univ-mrs.fr
mailto:fchane@club-internet.fr

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 923
	02: 924
	03: 925
	04: 926
	05: 927
	06: 928
	07: 929
	08: 930
	09: 931

