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ABSTRACT 

In this paper, we present the formal transformation of 
Timed Input/Output Automata into simulation models, ex-
pressed in the DEVS formalism. This transformation takes 
place in an approach of a validation of high-level specifi-
cations by simulation. The validation is based on the simu-
lation of a coupled model built with the system to be con-
trolled and the control specifications. An example of this 
approach is given in the paper. 

1 INTRODUCTION 

Many formalisms have been developed to support verifi-
cation and validation of formal specifications of control 
systems (Gajski, Vahid, Narayan, and Gong 1994; Peter-
son 1981; Alur and Dill 1994; Bolognesi, Lucidi and 
Trigila 1994).  
 Timed automata and variants have been used for these 
kinds of purposes (Alur and Kurshan 1996; Bengtsson, Lar-
sen, Larsson, Pettersson and Wang 1996; Daws, Olivero, 
Tripakis and Yovine 1996; Henzinger and Ho 1995). Some 
works are based on the use of simulation technics of timed 
automata with the objective of establishing a correspon-
dence between the states of a model M1 regarded as an im-
plementation and  a specification model M2.  

We propose another approach in which we consider 
that the high level specification of a control system, ex-
pressed by a timed automaton, will be verified by simula-
tion of a coupled model built with this specification and 
the model of the system to be controlled. The simulation 
models are represented in the framework of the DEVS 
formalism (Zeigler 1976; Zeigler 1989; Zeigler, Praehofer 
and Kim 2000; Giambiasi, Escude and Ghosh 2000). 

The DEVS formalism has a clean operational semantics 
and a clean interpretation of the model elements in the real 
world. DEVS define a method of abstraction of dynamic 
• 

• 

systems that allows building timed simulation models (de-
terministic models) with a good accuracy. In other words, 
DEVS is well adapted to represent timed behavior of real 
systems. But DEVS does not adapt well to high level speci-
fications of discrete event control systems. This due to the 
fact that at the first levels of specifications, the model can be 
undeterministic and the occurrence times of events are not 
defined precisely. While, Timed Automata are well adapted 
for these high levels of specification, it is not well adapted 
to represent a precise timed behavior deduced from the 
analysis of a real system with explicit state variables. 

Consequently, we propose a methodology (Figure 1) 
based on the use of these two paradigms: 

Timed Automata for the high level specification 
of the control part, 
DEVS to represent the behavior of the system to 
be controlled. 

 
Control

Specified by a
Timed input/output

automaton

System
DEVS
Model

   Control DEVS
model

Coupling 

Simulation 

Verification 

Transformation :   TIOA to DEVS 

 
Figure 1: Our Methodology 
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In order to verify the specification with an accurate 
timing, we propose to transform T.A. into a DEVS model 
and to verify it by simulating the coupled model (control 
part coupled with the model of the controlled system). 

Then, in a first step, we have to define a formal trans-
formation of a Timed Automaton into a DEVS model. 

In this paper, first we give a brief recall on timed 
automata and on DEVS formalism. Next, we present the 
method for the formal transformation of a timed automata 
into a DEVS model. Finally, we illustrate our approach by 
a complete example. 

2 RECALL 

2.1 Timed Automata (Springinveld,  
Vaandrager and D’Argenio 2001) 

Timed Input/Output Automata are a particular class of 
timed automata (Alur and Dill 1994) with “good” proper-
ties, such as deterministic behavior, separation between 
input and output activity and input enabling. 
 A Bounded Timed Automata Model, a variant of Alur 
and Dill’s model (Alur and Dill 1994) proposed by Lynch 
and Al (Gawlick, Segala, S_gaard-Andersen and Lynch 
1994) is a finite automaton with a timing annotation. This 
annotation allows to express timing conditions for the state 
transitions, to determine values used for updating clocks, 
and to provide conditions, under which the model can re-
main in a given state. A TIOA is defined as Bounded 
Timed Domain Automata BTDA (Springintveld and 
Vaandrager 1996) together with a partitioning the set of 
actions into Input and Output actions (or events). 

2.1.1 Finite Automaton or Finite  
Labeled Transition System 

A labeled transition system (LTS) is a rooted, edge labeled 
multigraph. Formally, a LTS is an algebraic structure 
 

A = <Q, E,Σ, src, act, trg, q0>, 
 

where:  
• 
• 
• 
• 

• 

• 

• 

Q is a set of states, 
E is a set of transitions, 
Σ is a set of events. 
src: E → Q which associates a source state to 
each transition, 
act: E → Σ which associates an event to each 
transition, 
trg: E → Q which associates a target state to each 
transition. 

Initial conditions: 
q0 is the initial state. 
• 
• 

So we write: 
 δ: q →a q’, the transition with : 

 
src(δ) = q ; act(δ) = a ; trg(δ) = q’ 

 
Definition 1: An LTS A is said lean if each transition is 

fully determined by its source, event and target, as follows: 
 
src(δ) = src(δ’) ^ act(δ) = act(δ’) ^ trg(δ) = trg(δ’) ⇒ δ = δ’ 

 
 Definition 2: An LTS A is said deterministic if it sat-
isfies the following property: 

 
src(δ) = src(δ’) ^ act(δ) = act(δ’) ⇒ δ = δ’ 

 
 Definition 3: An LTS A is a finite automaton if both 
Q and E are finite. 

2.1.2 Bounded Time Domain Automata 

A bounded time domain automaton (BTDA) is an exten-
sion of finite automaton model and it is a variant of timed 
automaton model.  
 A timed automaton is typically a (finite) automaton 
extended with a set of clocks. 
 For the BTDA model, we have the following defini-
tions : 

Definition 4: A clock is a variable x included in a 
domain dom(x) of the form I ∪ {∞}, where I is an interval 
over R bounded with values ∈  Z. Let C be the set of 
clocks. 

Definition 5: A term over C is an expression gener-
ated by the grammar z::=x|n|z+n, where x  ∈ C and n ∈ R. 
Let T(C) be the set of all terms over C. 

Definition 6: A constraint over C is a Boolean combi-
nation ϕ of inequalities of the form z ≤ z’ or z < z’ with 
z,z’∈ T(C). The Boolean constants are used to indicate if 
the constraint is realized or not. Let F(C) be the set of all 
these formulas. 

Definition 7: A (simultaneous) assignment over C is a 
function A : C → T(C). Let M(C) be the set of all assign-
ments. 

Definition 8: A clock valuation is a vector that as-
signs to each clock x ∈ C a value in dom(x). Let V(C) be 
the set of all valuations over C. 
 A timing annotation for a given automaton A is a tuple: 

 
T = <C,Inv,G,A,v0> 

 
 where : 

C is a finite set of clocks. 
Inv: Q → F(C) associates an invariant to each 
state. The automaton A can remain in a state as 
long as its invariant remains true. 
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• G: E → F(C) associates a guard to each transi-
tion. A transition may be taken if the guard, a 
clock constraint, is satisfied by the current valua-
tion of clocks. 

• 

• 

• 
• 
• 
• 

A: E → M(C) associates an assignment to each 
transition such as : 

 
src(δ)∧G(δ)⇒Λx∈C(A(δ)(x)∈ dom(x)) ∧Inv(trg(δ))[A(δ)] 

 
holds for each δ ∈ E. 
Initial conditions : 

v0 ∈ V(C) is the initial valuation of clocks. We 
require v0 satisfy Inv(q0) and ∀x ∈ C, v0 (x) ∈ 
Z∞. 

 Definition 9: The addition of a clock value v(x) with 
a value d ∈ R>0 is defined as follow : 
  
 (v⊕d)(x) = v(x)+d  if (v(x)+d ) ∈ dom(x) 
 (v⊕d)(x) = ∞   otherwise 
 
 Definition 10: A bounded time domain automata 
(BTDA) is a pair B = (A,T), where A is a finite automaton 
with ΣA ∩ R = ∅, and T is a timing annotation for A. 
 Definition 11: The operational semantics OS(B) of a 
BTDA B is the lean LTS A, which is specified by: 

QA={(q,v) ∈QB x V(CB) | v |= InvB(q)}, 
ΣA=ΣB∪ R>0 , 
Q0

A=(Q0
B,v0

B), 
And →a is the smallest relation that satisfies the 
two following rules : 

 
∀(q,v),(q’,v’) ∈ QA , a ∈ ΣB , δ ∈ EB and d ∈ R>0, 
 

δ: q->aq’, v |= GB(δ),v’=v o AB(δ) , 
(q,v)→a(q’,v’) 

q=q’;v’=v⊕d;∀0≤d’≤d:v+d’ |= InvB(q) 
(q,v) d→(q’,v’) 

 
We refer to the states of BTDA B as locations, to 

avoid confusion between the state of the BTDA and those 
of its operational semantics. So we have : 

• 
• 

discrete states ∈ QBxV(CB), 
locations ∈ QB . 

2.1.3 Timed Input/Output Automata (Gawlick, 
Segala, S_gaard-Andersen and Lynch 1994) 

We recall some basic definitions on timed I/O automaton 
(TIOA).  
 In addition, some constraints will be added in order to 
allow the transformation of a TIOA into a discrete event 
simulation model. In fact, for this transformation a TIOA 
must be deterministic, with isolated output for excluding 
autonomous choice between two or more different outputs 
• 

• 

• 

• 

• 

• 

• 

or between performing output and accepting input. Finally, 
it must be input enabling i.e. each input is enabled only in 
the interior of the invariant of each location, this means 
that inputs are enabled as long as time can progress.  
 Definition 12: A timed input/output automaton 
(TIOA) is a pair M = (B,P), where B is a BTDA and 
P=(I,O) is a partitioning of ΣB in input events and outputs 
events with the following properties : 

(Determinism) If src(δ) = src(δ’), act(δ)=act(δ’) 
and G(δ) ^ G(δ’) is satisfiable then δ = δ’. 
(Isolated outputs) If src(δ) = src(δ’), act(δ) ∈ O 
and G(δ) ^ G(δ’) is satisfiable then δ = δ’. 
(Input enabled) each input event is enabled only 
in the interior of the invariant i.e. only when the 
invariant is verified. 

 The operational semantics OS(A) of a TIOA A is the 
same as the one of BTDA B. 

2.2 Discrete Event Specification  
Formalism: DEVS 

According to the literature on DEVS (Zeigler 1976; Zei-
gler 1989), the specification of a discrete event model is a 
structure, M, given by: 

 
M = < X, S, Y, δint, δext , λ, D > 

 
where X is the set of the external input events, S the set of 
the sequential states, Y the set of the output events, δint  is 
the internal transition function : 

δint : S → S defines the state changes caused by 
internal events,  

δext is the external transition function : 
δext: QM x XM → S specifies the state changes 
due to external events,  

λ is the output function : 
λ :S  → Y 

and the function D is the lifetime of the states: 
D:S → R≥0 ∪ {∞}. For a given state, s, D(s) repre-
sents the time interval during which the model will 
remain in the state s if no external event occurs. 

 A state may be viewed as passive when its lifetime is 
assumed to be infinite or active when the lifetime interval 
is assumed to be a finite real positive number, Zeigler 
(Zeigler 1976) introduces the concept of total states, TS, of 
a model as: 

 
TS = {(s,e) : s ∈S, o < e < D (s)} 

 
where e represents the elapsed time in state s. The concept 
of total state is fundamental in that it permits one to spec-
ify a future state based on the elapsed time in the present 
state. Potential benefits may lie in its ability to implement 
event filtering (Ghosch and Meng-Lin 1989; Ghosch and 
Giambiasi 1999). 
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 A key contribution of DEVS lies in decomposing the 
traditional transition function into two sub-functions: in-
ternal transition function and external transition function. 
The internal transition function permits one to capture the 
autonomous evolution of the model. The external transi-
tion function reflects the evolution of the model corre-
sponding to externally induced input events. The output 
function is defined only for active states and is executed 
only when the elapsed time in a given state equals its life-
time. When a model is in an active state sk, it sends an 
output event as defined by the output function, at the end 
of the lifetime of the current active state. From the simula-
tion perspective, this implies that the output function is 
executed prior to  the internal transition function.  

2.3 Coupled Models 

A coupled DEVS Model, DN, is a structure : 
 

DN = <X,Y,M,EIC,EOC,IC> 
 

Where : 
• 
• 
• 
• 

• 

• 
• 

• 

• 
• 
• 

X = input events set 
Y = output events set 
M = DEVS components set 
EIC ⊆ DN.INxM.IN : external input coupling re-
lation 
EOC ⊆ M.OUTxDN.OUT : external output cou-
pling relation 
IC ⊆ M.OUTxM.IN : internal coupling relation 
DN.IN and DN.OUT refer to the input and output 
ports of the coupled model. 
M.IN and M.OUT refer to the input and output 
ports of component Models. 

EIC, EOC, IC specify the connections between the set 
of models M and input and output ports X,Y. 

3 FROM TIOA TO ATOMIC DEVS MODEL 

For this transformation, we make two hypotheses. 
i. The timestamp of a transition over an output 

event has a unique value (not define in a time in-
terval). 

ii. The conditions of  guards of two different transi-
tions, with the same input event and from the 
same state must be expressed using different 
clocks. Formally: 
Let e1,e2 ∈ E such that : 

src(e1) = src(e2),  
act(e1) = act(e2) and 
let X1, X2 the subset of clocks used by G(e1) 
and G(e2) respectively.  

 
⇒ X1 ∩ X2 = ∅ 
 In this case the two guards G(e1) and G(e2) cannot 
be true at the same date, according to the constraint of de-
terminism of the automaton. 

3.1 Untimed DEVS Syntactic Transformation  

We begin by a definition of the syntactic transformation of 
a TIOA into a DEVS model. 

• 

• 

• 

• 

• 

 Relationships between sets : 
S = Q, the set of discrete states is the same in the 
two models. 
XM = I, the set of input events of the TIOA model 
represents the set of input event variables in the 
DEVS model. 
YM = O, the set of output events in the TIOA rep-
resents the set of output event variables in the 
DEVS model. 

Relationships between functions : 
∀ei ∈ E : 

External transition function -δext-: 
 
if act(ei) ∈ I then δext ((src(ei),e),act(ei)) = trg(ei) 
 

Internal transition function -δint-: 
 

If act(ei) ∈ O the δint(src(ei)) = trg(ei) 
 and λ(src(ei)) = act(ei) 

 
 Example: See the untimed automaton in Figure 2. 

 

S0

S1

S2

?a

!b

e1

e2

 
Figure 2: A Simple Untimed Automaton 

 
 Defined by : 

• 
• 
• 
• 

• 

• 

Q = {s0,s1,s2} 
E = {e1,e2} 
Σ = {I={a},O={b}} 
src: 

  src(e1) = src(e2) = s0 
act: 

  act(e1) = a; act(e2) = b 
trg: 

  trg(e1) = s1; trg(e2) = s2 
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becomes, in DEVS : 

• 
• 
• 
• 

• 

S = Q = {s0,s1,s2} 
XM = {a} 
YM = {b} 
e1 : 

 
act(e1) = a ∈ I  ⇒ δext((src(e1),e),act(e1)) = trg(e1) 

     ⇒ δext ((s0,e),a) = s1 
 

e2 : 
 

act(e2) = b ∈ O ⇒ δint(src(e2)) = trg(e2) 
      and λ(src(e2)) = act(e2) 
    ⇒ δint(s0) = s2  
    and λ(s0) = b 

 
and the state graph (Figure 3) : 

 

S0

S1

S2

?a

!b

Input event

Output event

(Internal transition in doted line)

 
Figure 3: State Graph of the Resulting 
DEVS Model 

 
 This first step gives an untimed DEVS(which can be 
not deterministic).In order to obtain a complete transfor-
mation, we have to introduce new state variables called 
temporal state variables, a valuation function and to ex-
press the lifetime function. 
 Definition 13: A temporal state variable is a variable 
x included in a domain dom(x) = J ∪ {∞}, where J is an 
interval over R. Let CM is the set of state variables. 
 Definition 14: A term over CM is an expression gen-
erated by the grammar z::=x|n|z+n, where x  ∈ CM and n ∈ 
R. Let TM (C) be the set of all terms over CM. 
 Definition 15: A constraint over CM is a Boolean 
combination ϕ of inequalities of the form z ≤ z’ or z < z’ 
with z,z’∈ TM (CM). The Boolean constants are used to in-
dicate if the constraint is realized or not. Let FM (CM) be 
the set of all these formulas. 
 Definition 16: A (simultaneous) assignment over CM 
is a function : CM → TM (CM). Let MM (CM) be the set of 
all assignments. 
 Definition 17: A temporal state variable valuation v is 
a vector that returns for each state variable x ∈ CM a value 
in dom(x). Let VM (CM) be the set of all valuations over 
CM. 
 Definition 18: We define the discrete (or sequential) 
state of a DEVS model as follow : 

 
Sd = {(s,v) ∈ SM  x VM } 

3.2 Lifetime Function -D-  

According to the first hypothesis, all transition guards of 
input events are fully determined and can occurred only on 
one value determined by either an Invariant or a Guard.  

 
D : S x VM (CM ) →  R 

 
∀si ∈ S : 

if Inv(si) = ∅ then D(si) = ∞ • 
• 

• 

• 

• 

else  
 the invariant and guard are included in FM(CM).  
Guards and invariants are Boolean combinations of 

terms of the form z ≤ z’ or z < z’ and z = z’.  
Let Op={≤,<,=}: 
1. A formula zi Op zi’ ^ zj Op is equivalent to : 

 
min((zi’- zi),( zj’- zj)) 

 
2. A formula zi Op zi’ ∨ zj Op zj ’ is equivalent to : 

 
max ((zi’- zi),( zj’- zj)) 

 
3. A combination of this two type of formula is a 

combination of min-max. 
4. Let GM(ei) = the result of the combination of this 

three operations on guard. 
5. Let InvM(ei) = the result of the combination of 

this three operations on the invariant. 
6. Let D(si) = the result of the min of the combina-

tion of this operations on invariant and Guard. 
 For a given state D(si) depends on the values of the 
temporal state variables. 

3.3 Operational Semantics OS(M)-  

Definition 19: The operational semantics OS(M) of a 
DEVS M is specified by: 

Discrete states: 
 

Sd = {(s,v) ∈ SM  x VM } 
 

Total states: 
 

QM  = {(Sd,e) = ((s,v),e) ∈ SM  x VM  x R| 0 ≤e≤ D(s)} 
 

Initial state: 
 

Q0
M= ((s0,v0

B),0) 
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∀ei ∈E in the TIOA: 

 
if act(ei) ∈ I and v(CM) |= GM(ei) then  
  v = v+e and v’ = vOA(ei) and  
   δext((src(ei),v(CM)),act(ei)) = (trg(ei),v’) and 
   e:=0 

 
if act(ei) ∈ O and v(CM)|=GM(ei) and e = D(src(ei)) then 
   v = v+e and v’=vOA(ei) and 
   δint((src(ei),v(CM))) = (trg(ei),v’) and 
   λ(trg(ei)) = act(ei) and 
   e:=0 

4 EXAMPLE AND SIMULATION  

4.1 Filling System Example 

We consider that the DEVS model of the system to be 
controlled is in the model base. This system, a filling sys-
tem, is composed of a tank with a valve, a conveyor and 
barrels (Figure 4). 

 

valve

conveyor 

Barrel

tank 

Figure 4: A Simple Filling System 
 
 

• 
• 

• 
• 

• 

• 
• 

This filling system model has two discrete event inputs: 
Control of the valve : VAL = {Open, Close} 
Control of the conveyor : MOT = {Start, Stop} 

 And two sensor outputs : 
Barrel level : BL = {Full} 
Barrel position : BP = {Good} 

 The DEVS model of the filling system is in Figure 5. 
One possible specification of the control system by a 
timed automaton is given in Figure 6. 
 This Timed Automaton is defined by : 

Q = { 
Init,Adcon0,Adcon1,Stop,Filling0,Filling1,Error} 
E = {e1,e2,e3,e4,e5,e6,e7,e8} 
Σ = {I = {Bp.Good, Bl.Full },   

  O={Mot.Start, Mot.Stop, Val.Open, Val.Close}} 
Init adcon0 
si1 

Adcon1
si2

Filling1
si4

filling0 
si3 Stop

?Mot.Start !Bp.Good

?Mot.Stop

?Val.Open!Bl.Full

?Val.Close Over-
fill

Over- 
position 

 
Figure 5: DEVS Model of the Filling System 

 

Init 
c<=sig1 

adcon0 
c<=sig2 Adcon1 

c<=sig3 

Filling1 
c<=sig6 filling0 

c<=sig5 

Stop 
c<=sig4 

e1 : 
c=sig1 

c := 0 
!Mot.Start 

e2: 
c := 0 

?Bp.Good 

e3: c:=0 
c=sig3 !Mot.Stop

e4: 
c=sig4 

c := 0 
!Val.Open 

e5: 
c := 0 

?Bl.Full 

e6: c := 0 
c=sig6 !Val.Close Error 

e7 

e8 

!Val.close 
c = sig5 

!Mot.Stop  c = sig2 

 
Figure 6: Timed Automaton of the Control System 

 
• 

• 

• 

• 

• 
• 

• 

• 

• 

src: 
  src(e1) = Init;  src(e2) = Adcon0; 
  src(e3) = Adcon1; … 

act: 
  act(e1) = Mot.Start;   act(e2) = Bp.Good; 
  act(e3) = Mot.Stop;   … 

trg: 
  trg(e1) = Adcon0; trg(e2) = Adcon1; 
  trg(e3) = Stop;  … 

q0 = Init 
 Timing annotation : 

C = {c} 
Inv: 
Inv(Init) = (c<=sig1);  Inv(Adcon0) = 

(c<=sig2); 
Inv(Adcon1) = (c<=sig3); Inv(Stop) = (c<=sig4); 
Inv(Filling0) = (c<=sig5); Inv(Filling1) = 

(c<=sig6); 
Inv(Error) = ∅ 
G : 
G(e1) = (c = sig1); G(e2) = ∅; 
G(e3) = (c = sig3); G(e4) = (c = sig4); 
G(e5) = ∅;    G(e6) = (c = sig6); 
G(e7) = (c = sig2); G(e8) = (c = sig5) 
A: 
A(e1) = A(e2) = A(e3) = A(e4) = A(e5) = A(e6) 

= (c:= 0) 
A(e7) = A(e8) = ∅ 
v0 = {0} 
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Now, in order to verify this specification by simula-

tion, we transform this model into a DEVS atomic model : 
 Step 1 : untimed DEVS : 

• 

• 
• 
• 
• 
• 
• 

• 

S=Q= 
 {Init,Adcon0,Adcon1,Stop,Filling0,Filling1,Error} 

XM = I ={Bp.Good, Bl.Full} 
YM = O ={Mot, Val} 
s° = q° = Init 
CM = {c} 
v° (CM) = {0} 
Act(e1) ∈ O  

   ⇒ δint(src(e1)) = trg(e1)  
   and λ(trg(e1)) = act(e1)  
   ⇒ δint(Init) = Adcon0 
   and λ(Adcon0) = /Mot.Start  

Act(e2) ∈ I 
  ⇒ δext ((src(e2),e),act(e2)) = trg(e2)  

   ⇒ δext ((Adcon0,e),Bp.Good) = Adcon1 
 … 
 Step 2 : Transformation in atomic DEVS : 
 We add state variable sets : 

CM = {c} 
and the initial valuation of state variable c : 

v° (CM) = {0} 
Operational semantics : 
Total states : 
  QM =  {((Init,v),e), ((Adcon0,v),e), 
    ((Adcon1,v),e), ((Stop,v),e), 
    ((Filling0,v),e), ((Filling1,v),e), 
    ((Error,v),e)} 
  Q° =  ((Init,v),e) 
Lifetime Function : 
 Inv(Init) = (c<=sig1) ⇒ D(Init) = sig1-v(c) 
 Inv(Adcon0) = (c <= sig2) ⇒ D(Adcon0) = sig2-v(c) 
 Inv(Adcon1) = (c<=sig3) ⇒ D(Adcon1) = sig3-v(c) 
 Inv(Stop) = (c<=sig4) ⇒ D(Stop) = sig4-v(c) 
 Inv(Filling0) = (c <= sig5) ⇒ D(Filling0) = sig5-v(c) 
 Inv(Filling1) = (c <= sig6) ⇒ D(Stop) = sig6-v(c) 
 Inv(Error) = ∅ ⇒ D(Error) = ∞ 
Then internal and external transition functions become: 
 Act(e1) ∈ O ⇒ if v |= GM(e1) and e = D(src(e1)) 

⇒ if v |= (c =  sig1) and e = D(Init) 
⇒ if v |= (c =  sig1) and e = sig1-v(c) 

     ⇒ v = v+e and v’ = v O A(e1)  
     ⇒ δint((Init,v)) = (Adcon0,v’) 
     and λ((Init,v’)) = /Mot.Start ;  
 Act(e2) ∈ I ⇒ if v |= ∅ 
     ⇒ v = v+e and v’ = v O A(e2) 

  ⇒ δext (((Adcon0,v),e),Bp.Good) = 
(Adcon1,v’) 

…  
 In this case c has the same behavior than e, c is un-
used. The final DEVS state graph is in Figure 7. 
Init
   sig1 

adcon0 
   sig2 Adcon1

   sig3 

Filling1
   sig6 filling0 

   sig5 

Stop
   sig4 

!Mot.Start ?Bp.good 

!Mot.Stop

!Val.Open ?Bl.Full 

!Val.Close Error 

!Val = Close 

!Mot = Stop 

 
Figure 7: Final State Graph of the DEVS Model of the 
Control System 

4.2 Coupled Model and Simulation 

The coupled model is built with the control model and the 
system model by connecting the input/output ports of the 
two basic models (Figure 8). 

 

Control 

Mot 

Val 

Bp

Bl 

Filling System 

Mot 

Val 

Bp

Bl

Figure 8: Coupled Model of the Control and the Filling 
System 
 
Simulation :  
 Global Clock T = 0. 
 v°(CM) = {0}. 
Let the DEVS model of the system (Figure 9) : 
 

Init adcon0 
  2 

Adcon1
  3

Filling1
  4

filling0 
  2 Stop

?Mot.Start !Bp.Good

?Mot

?Val.Open!Bl.Full

?Val.Close Over-
fill

Over-
position

 
Figure 9: DEVS Model of the Filling System 
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 The following tables give the timed evolution of the 
coupled model (Table 1). 

 
Table 1: Simulation Table 

Event 
Date 
(t.u.)

Current 
state

Timelife 
D External transition function(ext) Internal transition 

function(int)
Trans. 
Date

Output 
function (O) Output Next state

0 Init Infinite ext((init,e),?Mot.Start) 1 Adcon0
1 Adcon0 si1 = 2 int(Adcon0) 3 O(Adcon0) !Bp.Good Adcon1
3 Adcon1 si2 = 3 int(Adcon1) Over-pos.
" " " ext((Adcon1,e),?Mot.Stop) 4 Stop
4 Stop Infinite ext((Stop,e),?Val.Open) 6 Filling0
6 Filling0 si3 = 2 int(Filling0) 8 O(filling0) !Bl.Full Filling1
8 Filling1 si4 = 4 int(Filling1) Over-fill
" " " ext((Filling1,e),?Val.Close) 11 Init

Over-Pos. Infinite
Over-Fill Infinite

Event 
Date 
(t.u.)

Current 
state

Timelife 
D External transition function(ext) Internal transition 

function(int)
Trans. 
Date

Output 
function (O) Output Next state

0 Init sig1 = 1 int(Init,v) 1 O(Init,v) !Mot.Start (Adcon0,v)
1 Adcon0 sig2 = 3 ext(((Adcon0,v),e),?Bp.Good) 3 (Adcon1,v)
" " " int(Adcon0,v) O(Adcon0,v) !Mot.stop (Error,v)
3 Adcon1 sig3 = 1 int(Adcon1,v) 4 O(Adcon1,v) !Mot.stop (Stop,v)
4 Stop sig4 = 2 int(stop,v) 6 O(stop,v) !Val.Open (Filling0,v)
6 Filling0 sig5 = 1 int(Filling0,v) 8 O(Filling0,v) !Val.Close (Filling1,v)
" " " ext(((Filling0,v),e),?Bl.Full) (Error,v)
8 Filling1 sig6 = 3 int(Filling1,v) 11 O(Filling1,v) !Val.Close (Init,v)

Error Infinite

Control DEVS Model

System DEVS Model

 

5 CONCLUSION 

In this paper, we have presented the formal transformation 
of a TIOA into a DEVS model in order to verify by simu-
lation, high level specifications given by a TIOA.  

The proposed methodology seems to be realistic be-
cause it allows the simulation of very complex coupled 
models, for which a formal proof is quite impossible. In 
addition, going from high level specifications to the low 
level design need to define deterministic models, which is 
done for the transformation of a TIOA into DEVS 
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