
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

DISTRIBUTED SUPPLY CHAIN SIMULATION USING A GENERIC JOB RUNNING FRAMEWORK

Haifeng Xi
Heng Cao

Leonard Berman
David Jensen

IBM T. J. Watson Research Center

Yorktown Heights, NY 10598, U.S.A.

ABSTRACT

For supply chain performance simulation that involves ag-
gregating results from multiple runs of the same underlying
model, simulation iterations can be distributed to networked
computing resources to achieve significant speedup. This
paper presents a generic distributed job running framework
that facilitates such high performance supply chain simula-
tion. We first introduce a supply chain modeling and simula-
tion tool developed by IBM Research, and summarize the
strategy to enhance it. A closer look is then taken at a generic
job running framework we designed and how it was used to
bring the distributed simulation capability to the tool. After
reviewing an ongoing effort to integrate the new tool with the
IBM MathGrid environment, we conclude the paper with a
brief discussion of our future work.

1 INTRODUCTION

Recent tenors in enterprise evolution, driven and enabled
by e-business initiatives, are making our current solutions
to supply chain simulation look obsolete. Most notable
among those trends is the ever-increasing complexity of
enterprise supply chains in terms of both depth and
breadth. On one hand, a new round of business process re-
engineering calls for tighter and more effective integration
of a company’s supply chain with its various business
processes. On the other hand, a company’s supply chain is
quickly becoming an extended value chain that encom-
passes its suppliers, customers and partners.

With the mounting need to conduct complex simula-
tion and the steadily decreasing cost of networked comput-
ing resources, parallel and distributed simulation is becom-
ing more and more attractive as an effective means to
improve simulation performance. See Fujimoto (1999a) for
a good survey of distributed simulation strategies. How-
ever, almost all the algorithms surveyed attempt to explore
the parallelism existing in the simulation models and main-
tain the causality constraint (i.e., events must be processed

in the order specified in their timestamps) when decompos-
ing the simulation model into a collection of logically in-
terdependent processes. These logical processes are exe-
cuted by distributed simulation engines in parallel. In
order to keep the causality constraint, time advancement in
those simulation engines needs to be carefully guided by a
strategy that ensures proper synchronization among the
distributed processes. For example, GRIDS is a generic
runtime infrastructure that facilitates simulation of such
coupled models on distributed hosts (Sudra et al. 2000).

The synchronization strategies can be classified as be-
ing either conservative or optimistic. The former strategy
strictly maintains the causality constraint, making sure that
an event will only be processed when no other event with
an earlier timestamp will arrive in the future. The latter
strategy relaxes the causality constraint in order to explore
parallel execution opportunities; nevertheless when con-
straint violation does happen, the state of involved logical
processes must be rolled back. However, unless there are
reasonably low causal dependencies among decomposed
sub-models, the former strategy can render simulation en-
gines idle for a significant percentage of their running time
simply waiting for synchronization messages, while the lat-
ter can lead to more resource-wasting rollbacks.

Unfortunately, many rollbacks would be needed for
supply chain simulation, where the underlying model con-
sists of objects whose behaviors depend closely upon one
another’s actions and internal states. Therefore, instead of
trying to decompose tightly coupled supply chain models,
we chose to exploit the parallelism of the simulation exe-
cution from a different and more natural perspective. To
fully capture the uncertainties existing in supply chain
processes, it is common practice to run a simulation for
multiple iterations with different values of involved ran-
dom variables. These independent iterations can be run in
parallel without the need to communicate with each other,
causing virtually no overhead at all. In other words, our
approach views the complete supply chain simulation
process as a coherent job that can be decomposed into a set

Xi, Cao, Berman, and Jensen

of weakly coupled tasks each representing one simulation
iteration under a different parametric setting.

The next section gives a brief introduction to an exist-
ing Supply Chain Modeling and Simulation tool (some-
times referred to as “the SCMS tool” or simply “the tool”)
developed within IBM Research, and discusses the design
principles for its enhancement. Section 3 presents a ge-
neric framework we designed that can be used to build dis-
tributed job running systems. Section 4 examines how this
framework is employed to bring distributed simulation ca-
pability into the SCMS tools, followed by some bench-
marking results in Section 5. After reviewing an ongoing
effort to integrate the tool with IBM MathGrid Desktop in
Section 6, we conclude with an outlook for future work.

2 SUPPLY CHAIN MODELING
AND SIMULATION TOOL

IBM Research has been active for several years in pursuing
effective solutions to supply chain simulation. Supply
Chain Analyzer (SCA) achieved significant success in both
internal supply chain reengineering and external consulting
business (Bagchi et al. 1998). Although SCA was sold to a
supply chain vendor in 2000, simulation has remained a
powerful methodology in IBM to predict supply chain per-
formance and to facilitate business process transformation.
Recently, a new Java-based supply chain modeling and
simulation tool (Figure 1) has been developed in IBM Re-
search and successfully applied to a variety of internal
processes. For example, IBM Enterprise Server Group has
used the tool to simulate days-of-supply to optimize its in-
ventory policy (Cao et al. 2003); a few Sense-and-Respond
pilot projects have used it for supply chain performance
evaluation and risk analysis (Lin et al. 2002). The tool has
the following main features:
2.1 Interactive GUI Driven Modeling

The modeling environment comes with visual widgets cor-
responding to supply chain building blocks, and enables
drag-and-drop model composition. The building blocks
include both supply chain entities like Manufacturer, Sup-
plier and Customer etc., and logic nodes like merge and
switch. For each building block, input pads and output
pads are defined according to its event handling capabili-
ties. The relationships among supply chain entities are es-
tablished through the Arc widget which links one supply
chain entity’s output pad to another one’s input pad.

2.2 Agent-Based Model Representation

The tool follows the Java Delegation Event Model (Sun
Microsystems 1999) design pattern. Behind those visual
widgets are software agents that have different event dis-
patchers (source) and handlers (sink). Each dispatcher or
handler has an internal queue, where unprocessed events
are ordered by their timestamps. Once a user links two
supply chain entities with an Arc widget, the underlying
event handler in the sink entity will be registered with a
corresponding event dispatcher in the source entity.

2.3 Discrete Event Simulation Engine

The simulation engine maintains an internal clock for the
“simulated time”. During any simulation step, the engine
will first determine the earliest timestamp of all the unproc-
essed events in the model, and then update its clock with this
timestamp and broadcast it to all the simulation agents.
Upon receipt of such a time update, an agent will process its
queued events that have the same timestamp as the one re-
ceived. As part of the event processing, new events can be
generated and queued up. This iterative process will go on
until there are no unprocessed events in the model, or the
end of the specified simulation duration is reached.
Figure 1: Supply Chain Modeling and Simulation Tool

Xi, Cao, Berman, and Jensen

2.4 Animation for Visual Design Validation

The tool has animation capability built in to visualize event
passing during simulation, as a quick way to validate the
model design and parameter setting.

2.5 Dynamic and Consolidated Reporting

After a supply chain model is designed and before it is
executed, the modeler can select a number of performance
metrics of interest to him/her, such as customer service-
ability, inventory in terms of safety stock or WIP, and
various cost measures. During the model execution proc-
ess, simulation agents gather relevant information and send
them back to a reporting component, which calculates val-
ues for those metrics and present them graphically in dy-
namic reports. At the end of the simulation, results from
all the iterations will be consolidated into a final report.

As model complexity keeps growing, a decision was
made to extend the SCMS tool to take advantage of supply
chain simulation parallelism as explained in Section 1.
There were two concerns when we set out with the en-
hancement tasks. First, since the current code base is
pretty stable, we would like to minimize code refactoring
by following the “if it isn’t broken, don’t fix it” rule. Spe-
cifically, we are interested in making distributed simulation
look transparent to other parts of the tool, meaning that any
existing Java event types and Java listener subscription re-
lationships between the simulation engine and the front-
end GUI should remain untouched. Section 4 explains in
detail how we managed to do that.

The other concern is that we don’t want the implemen-
tation to be tied with any particular distributed protocol at
compile time. Instead, we would like to define an abstrac-
tion of the distributed communication layer and to be able
to “plug in” a particular implementation at runtime through
some configuration mechanism. The benefit of doing so is
runtime configurability which allows the tool to use the
most appropriate implementation based on runtime re-
quirements such as network security, scalability, and per-
formance etc. The following section discusses a generic
framework designed for that purpose.

3 GENERIC DISTRIBUTED
JOB RUNNING FRAMEWORK

The framework is composed of a set of Java classes, inter-
faces, and abstract classes (Figure 2). It is generic in the
Figure 2: Framework Class Diagram

Xi, Cao, Berman, and Jensen

sense that it can be used to implement any kind of distrib-
uted job-oriented system, of which distributed supply chain
simulation is simply a special case. The classes and inter-
faces in the framework can be classified as job-layer (un-
filled rectangles) or communication-layer (color-filled rec-
tangles) entities. The job-layer entities constitute a high-
level API for developers of distributed applications; they
represent an abstraction at the job level and facilitate distrib-
uted job submission, control, and results collection. The
communication-layer entities represent an abstraction at the
network communication level; they are used by the job-layer
entities and are transparent to application developers.
 Communication-layer entities are either Java inter-
faces or abstract classes, and therefore need system devel-
opers to furnish concrete implementations based on differ-
ent network protocols. The framework comes with a
default implementation in Java RMI, and bindings to other
protocols such as TCP/IP and Globus are possible as well.

There are three job-layer abstract classes that applica-
tion developers must implement. Job represents the struc-
ture of a class of tasks that need to be executed repeatedly
for a given number of iterations; developers specialize it to
model domain tasks of interest to a particular application.
Similarly, subclasses of JobResult need to be defined to
encapsulate domain specific job running results. The ab-
stract class Runner represents the operation required to run
a certain type of jobs. Separation of the structure of a job
and the operation needed to execute it follows the Visitor
design pattern (Gamma et al. 2000) which lets you define a
new operation without changing the classes of the elements
on which it operates. For any concrete Job subclass, an
application developer must provide at least one Runner
subclass (visitor).

Requester is a concrete class mediating between the
user application and the communication layer. It is the
most prominent class in the framework because it is where
the distributed job semantics becomes visible to the user
application. A Requester object needs to talk to remote
job servers and Runner instances in the servers to fulfill its
functionality, therefore we have adopted the Proxy design
pattern (Gamma et al. 2000) to introduce three remote
proxy classes, JobServerProxy, RunnerProxy and Re-
questerProxy, which enable bi-directional communica-
tion between Requester and JobServer and between
Requester and Runner. The original Proxy pattern
would have required Runner and Requester to imple-
ment the same interface as RunnerProxy and Reques-
terProxy respectively, which would have coupled these
application-layer classes with the communication layer.
To avoid this, we have used the Adapter design pattern
(Gamma et al. 2000) to introduce two adaptors, Run-
nerAdaptor and RequesterAdaptor, which implement
RunnerIF and RequesterIF respectively and forward
incoming calls from remote proxies into corresponding
job-layer adaptees.
Now let us take a detailed look at how Requester in-
teracts with other entities in the framework to effect job
submission. Once this becomes clear, job control and
status/result callback mechanism will fall into place. Job
submission involves a three-way handshake: Requester

 Gatekeeper, Gatekeeper Requester, and Re-
quester Runners, which are illustrated in Figure 3, 4
and 5 respectively.

Figure 3: Job Submission: Requester Gatekeeper

Figure 4: Job Submission: Gatekeeper Requester

Figure 5: Job Submission: Requester Runners

 Requester Gatekeeper. The Requester accepts
a job from the user application (client) and forwards it to
the Gatekeeper (a JobServer in the server pool that is
configured to accept and schedule user jobs); the Gate-
keeper schedules the job, i.e., determines how to split the
job to a number of sub jobs based on available resources in
the server pool, and sends each sub job to the server where
it is scheduled to run.

Gatekeeper Requester. Upon receipt of a sub job
from the Gatekeeper, a job server instantiates the correspond-
ing Runner subclass (specifically, the job server retrieves the
fully-qualified Runner class name from the submitted Job
object and dynamically loads the Runner subclass from an
HTTP class server); the server then instantiates a Runner-

Xi, Cao, Berman, and Jensen

Proxy-RunnerAdaptor pair for the Runner, and returns the
RunnerProxy object to the Gatekeeper; finally, the Gate-
keeper returns all the RunnerProxy objects it collects from
job servers to the Requester.

 Requester Runners. With remote proxies (Run-
nerProxy objects) at hand, the Requester can send job
control commands to remote Runners. Now it needs to
establish the connection in the other direction to allow
Runners to send back job running statuses and results. To
accomplish this, the Requester instantiates a Requester-
Proxy-RequesterAdaptor pair for each RunnerProxy
received, and registers the RequesterProxy with the cor-
responding remote Runner.

Application developers don’t need to understand the
communication-layer details, yet they have to know how to
configure the framework to use a certain implementation.
There are two configuration files serving that purpose, one
for the job layer and the other is communication-layer im-
plementation specific. The job-layer configuration file is
used by the client to specify Job-Runner mapping, and to
plug in a communication-layer implementation by specifying
a factory class (Abstract Factory design pattern in Gamma et
al. 2000); it is used by the job server to find out about the
class server location. Here is a snippet of the properties file:

Client-side config: Job-Runner mapping
format:
job_alias=runner_class_name

job.foo=com.ibm.job.runner.FooRunner
job.scms=com.ibm.scms.job.SimuRunner

Client-side config: plug in a communication
layer implementation via Abstract Factory
design pattern
creates:
JobServerProxy
RequesterProxy
RequesterAdaptor

factory=com.ibm.job.factory.RMIFactory
#factory=com.ibm.job.factory.SocketFactory
#factory=com.ibm.job.factory.GlobusFactory

Server-side config: class server URL

classserver=http://huashan:9099/

The other file is used by the implementation specific
JobServerProxy to find out about gatekeeper location
information. Here is a snippet of the properties file that
comes with the Java RMI implementation:

RMIJobServerProxy config:
Gatekeeper location

gatekeeper.url=rmi://huashan:1099
gatekeeper.name=JobServer
Apparently, this layered design has managed to ad-
dress the second concern in Section 2 and offers the ex-
pected runtime configurability. What needs to be pointed
out is an additional benefit that enables developer role
separation, i.e., an application developer can code against
the job-layer API and focus on his domain issues, while a
system developer with expertise in distributed system can
concentrate on providing high-quality communication-
layer implementations.

Something also worthy of mention is the built-in fault-
tolerance in Requester and Runner classes. During a job
run, they keep monitoring the availability of the party at
the other end of the communication link, and in the case of
a link failure, the connection will eventually be shut down
on both ends, and any allocated resources will be grace-
fully released.

4 SCMS ENHANCEMENT FOR
DISTRIBUTED SIMULATION

In the original SCMS tool, when a user requests the simu-
lation of a constructed supply chain model (a SimuModel
object), the application will create a simulation engine (a
SimuEngine object), assign the model to the engine, and
start it up; events generated from the engine (SimuEvent
objects) are fired to the simulation event listener interface
SimuEventListener implemented in the main JFrame
window SCMSMainFrm. This is fine when running
SimuEngine locally is the only option for the tool to per-
form simulation. However, with distributed simulation as
another possibility, that is no longer the case.

The Strategy design pattern is perfect for such situa-
tion where a family of algorithms are interchangeable and
can vary independently from clients that use it (Gamma et
al. 2000). In our case, a base strategy class Simulator
and two concrete strategy classes LocalSimulator and
DistributedSimulator have been introduced accord-
ingly (Figure 6). LocalSimulator is nothing but an
adapter of SimuEngine based on object composition;
DistributedSimulator is more complicated and will
be discussed later. Now, all that needs to be changed in the
SCMS tool is the way a simulation run is initiated, i.e., in-
stead of directly starting a SimuEngine instance, the tool
will use one of the two Simulator strategies. In either
case, all the simulation-related presentation logics, such as
animation and dynamic reporting, remain unchanged,
which has addressed the first concern outlined in Section 2.

DistributedSimulator is implemented by using
the generic framework and simulation domain specific sub-
classes of Job, Runner and JobResult (Figure 7).
SimuJob and SimuJobResult are simply wrapper classes
of SimuModel and SimuEvent respectively. SimuRun-
ner has been designed to use a SimuEngine object as
adaptee, in a similar way as SimuEngine is adapted by

Xi, Cao, Berman, and Jensen

Figure 6: Simulator Strategy

LocalSimulator. However, there is a major difference:
LocalSimulator runs in the same JVM as
SCMSMainFrm, while SimuRunners generally don’t. As a
result, SimuRunner can not send simulation events (fired
by the adapted SimuEngine object) directly to the SCMS
tool, as LocalSimulator does; instead, it has to intercept
those simulation events with an inner class that implements
the SimuEventListener interface, and wraps such an
event in a SimJobResult object which is carried as “pay-
load” in a JobResultEvent object. This job-layer event
travels the communication layer and gets back to the origi-
nal Requester. The SimuJobListener registered with
the Requester then retrieves the wrapped simulation
event and forwards it to the GUI component.

Figure 7: Simulation Job Class Diagram

Using a framework and proper design patterns has

made it fairly easy to add a complex feature to the existing
tool in a non-intrusive way.

5 BENCHMARKING

In this section, we will look at what kind of speedup dis-
tributed simulation can achieve over local sequential simu-
lation. We developed a simple simulation model for
benchmarking purpose that has one Customer and one
Manufacturer. The Manufacturer can produce one type of
end product that is assembled from two part types. The
Customer provides 12-month demand forecast to the
Manufacturer. Four computers were used and their rele-
vant configuration information is listed in Table 1. The
benchmarking result is presented in Table 2.

Table 1: Computer Configurations

 CPU Memory OS

Computer 1 Pentium 4 3.06GHz 512 MB Windows
XP

Computer 2 Pentium 4 2.2GHz 512 MB Windows
XP

Computer 3 2 x
Pentium III 500MHz

768 MB RedHat
Linux

Computer 4 Pentium III 930MHz 768 MB Windows
2000

Table 2: Benchmarking Result

Time (seconds)
Local Simulation

Iterations

Computer 1 Computer 4
Distributed
Simulation

20 2 5 5
50 7 19 6
100 10 27 10
200 20 51 20
500 50 128 45
1000 97 252 81

 The following observation can be made from Table 2:
when the computer used for local simulation (Computer 1)
has above-average computing power (compared with all
the machines involved in the distributed simulation), the
local simulation performance is comparable with that of
the distributed simulation up to 500 iterations; when the
machine used for local simulation has below-average com-
puting power (Computer 4), distributed simulation exhibits
a significant performance speedup. Considering the fact
that the current RMI job server has implemented a very
primitive job scheduling algorithm, which is to distribute
iterations evenly across available computers, our bench-
marking result is easy to interpret: the performance of dis-
tributed simulation is largely determined by the slowest
computer in the server pool (Computer 4 in our case).

Two quick conclusions can be drawn:
• When the servers are heterogeneous, an intelligent

scheduling algorithm should be used to balance
job loads among fast and slow machines to mini-
mize the overall running time.

• If we have a supercomputer that has far more supe-
rior computing power than that of the server pool
average, then, depending on the size of the server
pool and the amount of distributed communication

Xi, Cao, Berman, and Jensen

overhead involved, we may be better off by running
simulation jobs locally on the supercomputer.

6 INTEGRATION WITH IBM
MATHGRID DESKTOP

One weakness of our generic job running framework is
lack of deployment support. For example, in order to con-
duct the benchmarking discussed in Section 5, we had to
manually deploy the framework and start the RMI job
server on each computer involved, which can become a
maintenance headache in real-world application.

To solve this problem, we have been seeking to inte-
grate the enhanced SCMS tool with IBM MathGrid Desk-
top (IMGD). IMGD is a GUI toolkit developed in the
Math Science Department of the Watson Research Center
to simplify the development and distribution of grid-
enabled applications (both legacy and newly written). It is
built on the Java Community Grid (CoG) Kit and interacts
with a back-end grid built on Globus Toolkit 2.0. To ac-
complish its goal, IMGD has provided:

• A visual desktop with which developers can ad-
vertise, distribute, install, and demonstrate their
application

• A client, containing the desktop, which can hold
any Swing based application GUI

• Server technology that allows functionality from
any server based shared library to be accessed
from the client

By wrapping our job framework according to IMGD’s
server-side specification , we can use IMGD to deploy the
framework to MathGrid computers with just a few mouse
clicks. In addition, we can run the Swing based SCMS GUI
from the same environment and submit distributed supply
chain simulation requests to those MathGrid computers.

7 FUTURE WORK

While continuing the effort to integrate with IMGD, we
will concentrate our future work on improving the generic
job running framework from two aspects:

7.1 Better Fault Tolerance

Fault-tolerance currently built into the framework aims at
releasing resources and restoring communication-layer in-
tegrity upon link failures; however, it does not recover the
lost sub job(s) due to the same failures. We would like to
enhance the Requester implementation to enable auto-
matic job re-scheduling when a link failure occurs. An-
other potential issue is the single point of failure at the
Gatekeeper, which might be addressed in JobServer im-
plementations with a distributed leader election protocol.
7.2 Communication Layer Binding to Globus

The communication layer has only one default implemen-
tation as of now, we would like to build another one using
Globus Toolkit 3.0. Applications using this protocol bind-
ing will be able to take advantage of standard Globus fea-
tures such as Grid Security Infrastructure and Grid Infor-
mation Services. For instance, Grid Information Services
will make it easy to incorporate intelligent job scheduling
into the JobServer implementation, while it is quite diffi-
cult to do so with Java RMI which doesn’t offer a similar
resources information service.

REFERENCES

Bagchi, S., S. J. Buckley, M. Ettl, and G. Y. Lin. 1998.
Experience Using the IBM Supply Chain Simulator. In
Proceedings of the 1998 Winter Simulation Confer-
ence, ed. J. M. Charnes, D. M. Morrice, D. T. Brunner,
and J. J. Swain, 65–72. Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers.

Cao, H. et al. 2003. A Simulation-based Tool for Inventory
Analysis in a Server Computer Manufacturing Envi-
ronment. In Proceedings of the 2003 Winter Simula-
tion Conference, ed. S. Chick, P. J. Sánchez, D. Ferrin,
and D. J. Morrice.

Fujimoto, R. M. 1999a. Parallel and Distributed Simula-
tion Systems (Wiley series on parallel and distributed
computing). John Wiley & Sons, New York, NY.

Gamma, E. et al. 2000. Design Patterns: Elements of Re-
usable Object-Oriented Software. Addison-Wesley.

Lin, Y. G. et al. 2002. The New Frontier: Sense and Re-
spond System for Value Chain Optimization. ORMS
Today: April 2002.

Mascarenhas, E., V. Rego, and J. Sang. 1995. DISplay: A
System for Visual-Interaction in Distributed Simula-
tions. In Proceedings of the 1995 Winter Simulation
Conference, ed. C. Alexopoulos, K. Kang, W. R. Li-
legdon, and D. Goldsman, 698-705.

Sudra, R., S. J.E. Taylor, and T. Janahan. 2000. Distributed
Supply Chain Simulation in GRIDS. In Proceedings of
the 2000 Winter Simulation Conference, ed. J. A.
Joines, R. R. Barton, K. Kang, and P. A. Fishwick,
356-361.

Sun Microsystems, Inc. 1999. Delegation Event Model.
<http://java.sun.com/productsjdk/
1.1/docs/guide/awt/designspec/events.
html>.

AUTHOR BIOGRAPHIES

HAIFENG XI is an advisory software engineer at the IBM
T. J. Watson Research Center. He received the M.S. de-
gree in Electrical and Computer Engineering from the Uni-
versity of Maryland. His current interests include Web ap-

http://java.sun.com/productsjdk/1.1/docs/guide/awt/designspec/events.html
http://java.sun.com/productsjdk/1.1/docs/guide/awt/designspec/events.html
http://java.sun.com/productsjdk/1.1/docs/guide/awt/designspec/events.html

 and Jensen

Xi, Cao, Berman,

plication architecture, business integration, grid computing,
and supply chain simulation. He can be reached by e-mail
at <haifengx@us.ibm.com>

HENG CAO is a staff software engineer at the IBM T. J.
Watson Research Center. She received the M.S. degree in
Robotics from Carnegie Mellon University. In addition to
modeling, analysis and simulation of supply chain systems,
her interests include artificial intelligence, data mining and
business integration. She can be reached by e-mail at
<hengcao@us.ibm.com>

LEONARD BERMAN is a research staff member at the
IBM T. J. Watson Research Center. He received his Ph.D.
in Computer Science from Cornell University in 1977 and
has been with IBM since then. His current research is in
the area of heterogeneous computing. He can be reached
by e-mail at <namreb@us.ibm.com>

DAVID JENSEN is a senior manager at the IBM T. J.
Watson Research Center. He received his Ph.D. in Opera-
tions Research and Industrial Engineering from Cornell
University, and joined IBM in 1987. His interests include
linear and nonlinear optimization and Web based deploy-
ment of analytical methods. He can be reached by e-mail at
<davjen@us.ibm.com>

mailto:<haifengx@us.ibm.com>
mailto:<hengcao@us.ibm.com>
mailto:<namreb@us.ibm.com>
mailto:<davjen@us.ibm.com>
mailto:haifengx@us.ibm.com
mailto:hengcao@us.ibm.com
mailto:namreb@us.ibm.com
mailto:davjen@us.ibm.com

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1305
	02: 1306
	03: 1307
	04: 1308
	05: 1309
	06: 1310
	07: 1311
	08: 1312

