
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

REAL-TIME DECISION MAKING USING SIMULATION

Mukesh Dalal
Brett Groel

Armand Prieditis

LookAhead Decisions Inc.
429 F Street, Suite 4

Davis, CA 95616, U.S.A.

ABSTRACT

Based on a discrete-event simulation model, Simulation-
based Real-time Decision-Making (SRDM) is an innova-
tive approach to real-time, goal-directed decision-making.
When applied to a flexible manufacturing system, SRDM
makes better decisions than most fixed policies, such as
deterministic, stochastic and manual. SRDM even im-
proved over fixed policies optimized within a class of
policies by OptQuest, in our numerical experiments.
Compared to these fixed policies, SRDM shows greater
improvement for more complex systems and is quite ro-
bust with respect to modeling errors. SRDM provides an
improvement over fixed policies by its ability to imple-
ment adaptive policies. Since most real-time decisions in
currently deployed manufacturing systems are made ei-
ther manually or by using fixed policies, our results sug-
gest that using SRDM instead could lead to significant
improvement in operating performance.

1 INTRODUCTION

Many real-world systems require making decisions, but
how should good decisions be made? Intuitively, good de-
cisions optimize one or more key performance indicators
(KPIs) such as cost, throughput, lead time, or profit. For
example, in a flexible manufacturing plant (Gershwin
1994), a decision may require choosing among alternative
routes. In a specific situation, routing the next part to a par-
ticular machine might lower the average plant lead time.

Real-time decision-making continuously involves
making a decision within the available time. Such deci-
sion-making trades off time against quality: generally, the
more deliberation time, the higher the decision quality.
However, too much deliberation time can have drastic con-
sequences. For example, inventory might spoil if too much
time is spent deliberating.

In a complex system, it is usually difficult to calculate
the effect of a particular decision on the overall system

KPIs. This is because a complex system is likely to involve
stochastic processes (machines might have probabilistic
run times), complex dependencies among components (one
machine might feed to multiple other machines), and un-
certain external environment (actual demand may vary
over time and may differ from the forecasts). Decision-
making in a complex system becomes even more difficult
under real-time constraints.

As a result, a policy is used instead to decide what to
do in a particular situation. For example, a deterministic
policy might route the part to the least busy machine. The
goal of the policy is to approximate the decisions that op-
timize the KPIs. More generally, a policy is a probability
distribution function over all the alternative decisions, con-
ditioned by a specific situation. For example, the situation
for the part routing decision might be defined in terms of
the length of the queues in front of each machine, and the
stochastic policy might define the probability of choosing a
route using a linear combination of the queue lengths. Dif-
ferent coefficients (called decision variables) in this linear
combination will result in different decision-making be-
havior, which in turn will affect the resulting KPIs. Thus,
creating a policy requires determining the parametric for-
mat of the policy (for example, a linear combination of the
queue lengths) and then finding the optimal values of the
decision variables (for example, the coefficients in this lin-
ear combination).

The parametric format of the policy is usually speci-
fied by some system expert. The typical approach is to de-
termine the most promising formats based on the expert
understanding of the system and then evaluate each of
them to determine the best format.

Sometimes, the optimal values of the decision vari-
ables are also manually specified by the expert. A better
approach is to use automated software tools, such as Opt-
Quest (Glover, Kelly et al. 1996), which is a popular non-
linear optimization package based on scatter search, tabu
search and neural networks. Since many complex systems
are difficult to model using analytical techniques like

Dalal, Groel, and Prieditis

mathematical programming (Luenberger 1984), these op-
timization packages use a discrete event simulation system
for evaluating the performance. This process of finding the
best values of the decision variables based on the output of
a simulation model is known as simulation optimization
(Law and McComas 2002; Olafsson and Kim 2002). Most
commercial simulation systems now offer some simulation
optimization capability, for example, SIMUL8, CSIM, and
Arena offer OptQuest add-ons.

Apart from the reliance on the expert to specify the
correct parametric format, a major problem with a fixed
policy (deterministic or stochastic, manual or optimized)
is that it may provide a poor approximation to the optimal
decision in a specific real-time situation. For example, the
policy that always routes a part to the least busy machine
does not consider that the least busy machine is taking
unusually longer since noon today because of a new op-
erator. This policy also does not consider that several ma-
chines just beyond the first machine are extremely busy
because of a large order of some other products. Such
myopia and rigidity leads a fixed policy to make poor de-
cisions. This paper presents a novel approach, called
Simulation-based Real-time Decision-Making (SRDM)
that removes this myopia and rigidity to make better real-
time decisions.

The rest of the paper is organized as follows. Section 2
describes SRDM. Section 3 describes the design of our
simulation study. Section 4 presents preliminary results
with SRDM. Sections 5 and 6 compare SRDM with expert-
created and OptQuest-generated decision policies, respec-
tively. Section 7 discusses related work. Finally, Section 8
summarizes the conclusions of this paper and describes
promising areas of future work.

2 SIMULATION-BASED REAL-TIME
DECISION-MAKING

Simulation-based Real-time Decision-Making (SRDM) is
a dynamic goal-directed decision making process useful
for systems that continuously make decisions in real-time
in order to optimize some overall system KPIs.

As Figure 1 shows, SRDM relies on a discrete event
simulation model of the underlying application. Though
the simulation uses a fixed policy (deterministic or stochas-
tic, manual or optimized), SRDM does not use that policy
to make a decision in the current situation. Instead it runs
several simulations (called look-aheads) for a small num-
ber of alternative decisions and then selects the decision
that optimizes the KPIs. In short, the look-ahead simula-
tions overcome the myopia and rigidity of the underlying
fixed policy by taking into account the longer-term impact
of each decision in the current situation. Each look-ahead
simulation is used to compute the KPIs by combining the
KPIs observed during the look-ahead and the KPIs esti-
mated from the terminal situation in that look-ahead.
…simulations
of the effects
of decision 1

simulations
of the effects
of decision 2

simulations
of the effects
of decision n

current situation

simulated
decision 1 simulated

decision 2

simulated
decision n

ACTUAL WORLD
SIMULATED WORLD

best decision is the
one that optimizes
the overall system
KPIs

Figure 1: Simulation-Based Real-Time Decision
Making

This paper presents a simple variant of SRDM, which

is defined by four key parameters:
• Policy: Which fixed policy to use during the look-

ahead simulations?
• Depth: How long to run each look-ahead simula-

tion?
• Width: How many look-ahead simulations to run

for each decision alternative?
• Heuristics: Which heuristics to use to estimate the

KPIs at the end of each look-ahead simulation?
Heuristics are necessary to estimate the KPIs for
the work in progress.

 For each decision opportunity, SRDM uses the simula-
tion model to generate the required number of depth-
restricted look-ahead simulations for each alternative. The
KPIs from these look-aheads are averaged and the decision
with the best aggregated KPI is chosen.

The real-time constraint is met as follows: SRDM starts
with depth 0, where the fixed policy completely determines
the decision. SRDM keeps incrementing the depth until the
available time runs out or the depth limit is reached. Finally,
it chooses the decision based on the last depth for which all
the look-aheads were successfully completed.

More sophisticated versions of SRDM are presented in
other papers. For example, one variant interleaves both the
depth and width increments to provide decisions with a de-
sired statistical confidence level.

SRDM has been used to develop the Decision Im-
prover component of LDI’s Rapid Response System
(RRS), whose architecture is illustrated in Figure 2. RRS is
a general-purpose software used for real-time decision
making in wide variety of applications, like manufacturing,
healthcare and business processes. By making real-time
automated decisions, RRS quickly responds to unexpected
real-time events like machine breakdown, patient emer-
gency, traffic congestion, and communication node failure.
Since RRS uses a model of the application, it even antici-
pates and avoids future problems (like traffic congestions)
and exploits future opportunities (like product arrivals).

Dalal, Groel, and Prieditis

Data Store

D
ecision Im

prover

M
odel Learner

R

eport W
riter

Event Playback

M

onitor

Sim
ulator

V
isual M

odel Builder

Exception Handler

Advisory Controller

Supervisory Controller
 Action

Adaptors

Execution
Systems

Sensor
Adaptors

Sensors &
Other Data

Sources

LDI RRS Architecture

Application

Figure 2: RRS Architecture
Since RRS learns this model over time, it is easy and cost-
effective to deploy (no need to manually create this model
by expensive domain experts), and it continually improves
its performance while automatically adapting to changes.
RRS senses and impacts the real world (say, a manufactur-
ing plant) through real-time sensors and execution systems.
It learns and uses a simulation models to improve decision
making using SRDM. This paper ignores the other compo-
nents of RRS, for example, it assumes that the simulation
model has already been built.

3 SIMULATION STUDY DESIGN

For a simulation study to assess the effectiveness of
SRDM, we use the routing problem in a simple reliable
flexible (one-part with multiple routings) manufacturing
system as shown in Figure 3, which is a variant of a system
presented in (Drake and Smith 1996).

C

15

D1

4 D2

D3

A

3

B

6 D

10

E

5

Figure 3: A One-Part, Two-Layer, Multi-
Routing Flexible Manufacturing System
with Stochastic Arrival and Processing

This system consists of 5 machines (A to E) arranged

in two layers and connected by various route segments.
Identical parts arriving from the left side are completely
processed when they depart at the right side, after follow-
ing any of the following alternative routes: A-C, A-D, B-
D, or B-E. Thus, there are three decision opportunities:

D1. New part: choose either Machine A or B.
D2. After Machine A: choose either Machine C or D.
D3. After Machine B: choose either Machine D or E.

 Thus, the decision alternatives are Left (A, C, and D,
respectively, for the three decisions) or Right (B, D, and E,
respectively). The route segments as well as the queues in
front of each machine are FIFO (first-in-first-out). The op-
erational objective (KPI) is to minimize the average lead
time, that is, the average time a part spends in the system
(from arrival to departure).

In our simulation model, the arrival and processing
times are exponentially distributed – Figure 3 also shows
the corresponding means (in Minutes). The travel time be-
tween each pair of nodes is fixed to 2 Minutes.

There were several reasons for choosing this model,
including:

• It represents a very common decision problem in
realistic manufacturing systems.

• Its simplicity allows us to clearly understand the
effects of various strategies. The simplicity also
provided several experimental conveniences re-
garding debugging, simulation duration, etc.

• It can be made increasingly more complex in a
systematic manner, say, by adding more layers of
machines. We will exploit this feature to evaluate
the scaling of SRDM.

• The complexity of such models does not allow
analytic solutions of optimal policies (Gershwin
1994).

Dalal, Groel, and Prieditis

Except in one set of experiments described later, we
used the same simulation model for look-aheads, OptQuest
optimization and experimental comparison of the results. In
an actual deployment of RRS, while a manufacturing execu-
tion system would replace the last use of simulation, the first
two uses will still require building a simulation model.

In each comparison experiment, we conducted enough
trials to get at least 99% confidence level that one approach is
better than the others (except in one case described later) –
this resulted in at least 30 trials in each case. In each trial, the
execution system was simulated for at least 1,000 Minutes of
simulated time, a long enough time for stable results.

For fairness in comparison, we used identical se-
quences of random numbers for each pair of simulation tri-
als. These numbers were generated independently from
the random numbers used during look-ahead. Further, each
machine and the arrivals were based on independent ran-
dom number sequences.

We used SIMUL8 Standard 9.0 and OptQuest 7.0 for
SIMUL8 to get the optimal OptQuest policies, and SLX
0.99 for SRDM and for comparison experiments. While
SIMUL8 provides an OptQuest add-on, SLX (Henriksen
2000) provides built-in support for look-ahead.

4 PRELIMINARY SRDM RESULTS

As we described earlier, there are four important SRDM
parameters: depth, width heuristics, and policy. In this sec-
tion, we study the effect of the first three on the perform-
ance; the effect of the last one will be studied in the next
few sections.

4.1 Effects of Depth and Width

Figure 4 shows the effect of width and depth on the aver-
age lead time. As expected, the performance generally im-
proves with increased width and depth. While depths of 8
Minutes or less of simulated time for look-ahead produces
poor performance, the performance with greater depths is
mostly independent of widths that are 32 or more.

32

37

42

47

52

2 4 8 16 32 64 128

Width

A
ve

ra
ge

 le
ad

 ti
m

e

8

16

32

64

128

Figure 4: Effects of Depth and Width on Average Lead Time
These results suggest that there is a limit to the depth
and width for any system, beyond which the performance
does not improve (diminishing returns effect: major in-
crease in depth results in none or minor decrease in aver-
age lead time).

Unless explicitly mentioned, we fixed the depth to
64 and width to 32 for the rest of the experiments with
this system.

4.2 Effects of Heuristics

Table 1 shows the effects of heuristics (using depth 25 and
width 10), which are used at the terminal state of a look-
ahead. The simple heuristic computes the average time to
completely process each remaining part, assuming that there
are no other parts in the system. The complex heuristic also
approximates the delays for each part due to the existing
queues in the system. The none column shows the results
without any heuristics. Results show that these heuristics did
not improve the performance. It seems that the approxima-
tions in the heuristics were too gross and/or that the look-
ahead depth of 25 was sufficient enough to completely evalu-
ate the impact of a decision, without resorting to heuristics.

Table 1: Effects of Heuristics on Aver-
age Lead Time

Heuristics Av. Lead Time
None 35.58

Simple 73.93
Complex 36.92

Although it is still open whether some other heuristics

may improve this performance, we did not use any heuris-
tics for any other experiment reported in this paper.

5 COMPARISON WITH MANUAL POLICIES

In this section, we compare the performance of SRDM
with two manually-created fixed policies for our experi-
mental model:

• Deterministic Policy: Choose the machine with
the shortest queue (break ties by choosing the ma-
chine on the Right).

• Stochastic Policy: The probability of choosing a
machine is inversely proportional to its queue
length.

The results (Table 2) show that SRDM lowered the
average lead time with either policy, with much greater
improvement in the stochastic case. SRDM also lowered
the variance in both cases, suggesting that it is more robust
with respect to the uncertainty in the manufacturing envi-
ronment (specifically, arrival rates and processing times).
Interestingly, both the fixed policies led to similar per-
formance of SDRM, suggesting that SDRM’s performance
is somewhat independent of the underlying policy.

Dalal, Groel, and Prieditis
Table 2: Comparison of Fixed Manual Policies and SRDM
in Two Settings – Deterministic and Stochastic

Measure Deterministic Stochastic
Avg. Lead Time – Fixed 39.47 47.62

– SRDM 35.56 35.54
– Improvement 10% 25%

 L.T. Variance – Fixed 36.19 93.66
– SRDM 31.79 32.79

Parts Processed –Fixed 241 236
– SRDM 242 242

6 COMPARISON WITH FIXED POLICIES
ENHANCED BY OPTQUEST

6.1 OptQuest Optimization

Recall that OptQuest requires the user to provide a para-
metric format of the policy – it returns the optimal values
of the decision variables in that format. Since selecting the
right parametric format is still an art, we considered several
different formats in order to select the best ones to compare
with SRDM. For each OptQuest optimization using this
model, we used 30 trials per simulation (1,000 simulated
minutes each) and simulations until convergence was visu-
ally observed (at least 1,000 simulations). We used the fol-
lowing fixed policy formats:

• Deterministic local linear: At D1, choose left
(i.e., A) if the expression “xQ(A) + yQ(B) + z” is
greater than 50, where Q(M) is the length of the
queue for a machine M and x,y,z are the OptQuest
decision variables. Similar for D2 and D3.

• Stochastic local linear: Use the same expression as
above, but divide it by 100 to get the probability of
choosing Left (negative values were replaced by 0
and values larger than 1 were replaced by 1).

• Deep linear (deterministic or stochastic): Similar
to local linear, except that the lengths of all down-
stream queues are considered to make a decision.

• Local normalized (deterministic or stochastic):
Similar to local linear , except that the expression
for D1 is: “x(Q(A)+1)/(Q(A)+Q(B)+2) + y”.
Similar for expressions for D2 and D3.

Table 3 shows the average lead time using the optimal
policy produced by OptQuest for each of the above fixed
policy classes. The results show that deterministic policies
outperformed stochastic ones, local linear outperformed
deep linear, and local normalized outperformed local
linear. It is still open whether some other parametric form
will lead to better OptQuest performance.

Table 3: Performance of OptQuest-Optimized Policies

Average lead time Deterministic Stochastic
Local linear 40.09 43.87
Local normalized 39.51 40.94
Deep linear 41.04 54.93

6.2 Comparing Fixed and Adaptive Policies

Tables 4 and 5 compares the performance of the OptQuest-
optimized policies with SRDM, for local linear and local
normalized formats. As before, we used a depth of 64 and
a width of 32. The results show that SRDM outperformed
OptQuest-optimized policies in all cases, with more im-
provement with the stochastic and linear policies, as com-
pared to deterministic and normalized policies, respec-
tively. The results also provide more evidence to our
earlier observation that SDRM’s performance is somewhat
independent of the underlying policy. However, OptQuest
turned out to be slightly more robust (lower variance) with
respect to external uncertainty, except in the stochastic lo-
cal linear case.

Table 4: Comparing SRDM and OptQuest-Optimized
Policies for Local Linear Formats

Measure Deterministic Stochastic
Avg. Lead Time – Fixed 40.09 43.87

– SRDM 36.26 34.69
– Improvement 10% 21%

L.T. Variance – Fixed 30.06 111.63
– SRDM 36.15 34.49

No. parts processed -
Fixed

240 237

– SRDM 242 242

Table 5: Comparing SRDM and OptQuest-Optimized
Policies for Local Normalized Formats

Measure Deterministic Stochastic
Avg. Lead Time – Fixed 39.51 40.94

– SRDM 35.72 34.73
– Improvement 10% 15%

L.T. Variance – Fixed 30.94 30.40
– SRDM 34.44 34.96

 Parts Processed -Fixed 242 240
– SRDM 242 243

6.3 Scaling with System Complexity

In the next set of experiments, we study the effect of scal-
ing up the model complexity on OptQuest and SRDM. For
this, we generated three other models, with varying com-
plexity, as shown in Figure 5. Both OptQuest and SRDM
were run with parameters that provided them enough flexi-
bility to come up with the best possible results. For exam-
ple, the number of OptQuest trials was increased to 50 and
the SRDM depth was also increased to 100.
 Figure 6 plots the performance improvement of adap-
tive policies implemented by SRDM over fixed policies
based on the stochastic local linear policy enhanced by Op-
tQuest, across the four models. It shows that SRDM pro-
vides more improvement in the more complex models

Dalal, Groel, and Prieditis

C

15

D1

4 D2

D3

A

3

B

6 D

10

E

5

D4

D5

D6

F

20

G

15

H

15

I

20

D1

4 A

3

B

6

C
15

D1
4

D2

D3

A
3

B
6 D

10

E
5

D4

D5

D6

F
20

G
15

H
15

I
20

D7

D8

D9

D10

J
34

K
18

L
22

M
29

N
26

Figure 5: Three, One, and Four-Layer One-Part Flexi-
ble Manufacturing Systems with Multiple Routings

8% 11%

34%

28%

0

50

100

150

200

250

300

1 2 3

No. of Layers

A
ve

ra
ge

 L
ea

d
Ti

m
e

4

Fixed
Adaptive

Figure 6: Performance Scaling of Fixed and
Adaptive Policies

tested in this experiment. This suggests that SRDM might
provide significant improvements in real-world systems,
since they are typically more complex than the models
considered here. Note that as problem complexity in-
creases, deeper and wider look-aheads might be required.
Indeed, our results showed that the time per decision also
increases with model complexity.
6.4 Processing Time

The processing time taken by OptQuest and SRDM
directly depends on the specifications of the host machine.
Our experiments used a 2.25 GHz single-processor
machine with 512 MB of RAM. To analyze the processing
time, we examined the average CPU time per decision.
The OptQuest average CPU time per decision is essentially
zero, because each decision using an OptQuest generated
policy requires at most one linear function evaluation.
However, OptQuest requires several hours of offline
processing time to determine the optimal coefficients for
the policy function. SRDM requires no offline processing
time, and Table 6 summarizes the SRDM average CPU
time per decision for each model.

Table 6: SRDM Average CPU Time Per Decision
Model Layers Average CPU Time Per Decision

1 0.015 s
2 0.026 s
3 0.041 s
4 0.061 s

 The results show that the average CPU time per deci-
sion increases with the model complexity. However, even
for the 4-layer model, the average CPU time per decision is
still less than 1/10 of a second, which is small enough to be
viable for a real-time decision-making system. Processing
time can be further reduced by distributing the calculations
across multiple machines or by dividing a large model into
smaller sub-models.

7 OTHER RESULTS

By varying some experimental parameters, we did some
ad-hoc sensitivity analysis of our results, using the original
two-layer system and deterministic local linear policy:

• Effect of processing and arrival times: We gen-
erated two more sets of these stochastic distribu-
tions. For a congested system with means (3, 5,
6, 9, 8, 10), the average lead times for OptQuest
and SRDM were 78.10 and 74.57, respectively –
a 5% improvement (with 95% confidence). For
a less congested system with means (5, 5, 6, 10,
4, 9), the average lead times for OptQuest and
SRDM were 29.70 and 25.27, respectively – a
15% improvement.

• Effect of erroneous distributions: We changed the
mean processing times for the simulation of the
execution system, but not for the look-ahead and
OptQuest optimization (thus, both look-ahead and
OptQuest used the same erroneous distribution).
For two such systems (System 1 and System 2),
the errors and the results are shown in Table 7.
The results suggest that SRDM is more stable in
presence of errors.

Dalal, Groel, and Prieditis

Table 7: An Adaptive Policy Outperforms a Fixed Policy
Even When Both Use Erroneous Models

Parameter System 1 Model System 2
Arrival rate 4 4 4
Machine A 1.5 3 4.5
Machine B 9 6 3
Machine C 7.5 15 22.5
Machine D 15 10 5
Machine E 2.5 5 7.5
OptQuest 44.00 136.60
SRDM 35.54 28.49
Improvement 19%

Used by
SRDM and
OptQuest 79%

• Effect of longer Simulation runs: Instead of using

1,000 simulated Minutes to run both OptQuest as
well as execution system simulations, we tried the
following variants (the look-ahead depth remains
64 in all cases):
1.

2.

The execution system simulations were run
for 2,000 Minutes: The average lead times for
OptQuest and SRDM were 43.02 and 37.11,
respectively – a 14% improvement.
Both the execution system and OptQuest
simulations were run for 2,000 Minutes: The
average lead times for OptQuest and SRDM
were 41.78 and 37.22, respectively – an 11%
improvement.

The results show that the adaptive policies of
SRDM continue to outperform the best policy iden-
tified by the OptQuest tool from a class of fixed
policies that we selected for these experiments.

8 RELATED WORK

Simulation optimization algorithms, like OptQuest, deter-
mine the optimal parameters of a pre-specified policy using
several simulation runs with different parameter values.
This is quite different from SRDM’s use of simulation in
run-time evaluation and comparison of the alternatives. Al-
though these algorithms are mostly used off-line, some re-
search has been done on the online use of those based on
infinitesimal perturbation analysis (Glasserman 1991).

Online simulations have also been used in real-time
systems for control, planning, scheduling, etc. (Smith,
Wysk et al. 1994; Gonzalez and Davis 1997). Emulation
also requires online simulations (McGregor 2002).

Zee (2001) recently presented a look-ahead strategy
for real-time adaptive solution of the batching problem,
where the decision at each moment requires answering the
question “to start the machine now or to wait for the next
customer to arrive”. It reported significant improvement in
performance, but like the earlier work on look-ahead
strategies starting from Glassey and Weng (1991), uses
heuristics that require the knowledge of a few near future
arrivals. In contrast, SRDM does not need this information.
Moreover, this heuristics-based approach is fundamentally
different from SRDM’s simulation-based approach.

Rather than using as simulation optimization system to
find the policy, another approach is to learn a policy from
example decisions made in the actual environment
(Damerdji 1993; Mahadevan, Marchalleck et al. 1997;
Mahadevan and Theocharous 1998; Schneider, Boyan et
al. 1998; Riedmiller and Riedmiller 1999; Miyashita
2000). This method, known as reinforcement learning,
uses feedback from the environment (simulated or real) to
update the policy after each decision. For example, Russell
and Norvig (1995) survey several reinforcement learning
techniques, which learn a deterministic policy through sin-
gle-depth simulation in the environment. Another tech-
nique, known as policy iteration, picks a deterministic pol-
icy and then calculates the performance indicator for each
situation given the policy. It repeatedly chooses the best
policy for each situation based on the previous policy as-
signment until the policy stabilizes. For either reinforce-
ment learning or policy iteration, the resulting policy will
suffer from the same problems of rigidity and myopia as a
policy found through simulation optimization. In general,
the source of the fixed policy does not eliminate the prob-
lems inherently associated with its use.

9 CONCLUSIONS AND FUTURE WORK

We described a new approach (SRDM) for real-time goal-
directed decision-making and compared it with fixed-
policies using a flexible manufacturing simulation study.
Our results show that SRDM significantly improved over
several fixed policies: deterministic, stochastic, local, deep,
linear, normalized, manually-created, and even optimized
with OptQuest within the classes of policies considered
here. While coming up with the best parametric form for
optimization is quite challenging, especially for complex
applications, this is not a problem for SRDM, since its per-
formance was almost independent of the underlying policy.

Our results also show that SRDM provides more im-
provement for more complex systems, though it takes
longer to make each decision. We see this increase in deci-
sion time as the biggest potential problem in using SRDM
for very complex applications. Since the focus of this paper
was on KPI improvement, we have not tuned our SRDM
implementation to optimize the decision time. Moreover,
the low decision times observed in our experiments, even
for the relatively complex 4-layer network, suggests that
the current implementation of SRDM might be practical
for many real-world applications.

 Our results also show that SRDM is quite robust with
respect to modeling inaccuracies. This is an important prac-
tical consideration, since the models do not accurately reflect
the reality. Our future work includes learning and tuning the
model based on observation from the real system.

Dalal, Groel, and Prieditis

ACKNOWLEDGMENTS

This work was performed under the support of the U.S.
Department of Commerce, National Institute of Standards
and Technology, Advanced Technology Program,
Cooperative Agreement Number 70NANB1H3034. We
thank Wolverine Software Corp. and SIMUL8 Corp. for
providing their software and technical support, and OptTek
Sytems Inc. for quickly fixing a bug we discovered in
OptQuest. We are also grateful to Wolverine Software
Corp. for modifying their SLX system to support look-
ahead. The errors and omissions in this paper are the sole
responsibility of the authors.

REFERENCES

Damerdji, H. 1993. Parametric Inference for Generalized
Semi-Markov Processes. Proceedings of the Winter
Simulation Conference, G. W. Evans, M. Mol-
laghasemi, E. C. Russell, and W. E. Biles, eds., Los
Angeles, California, USA, 323-328.

Drake, G. and J. S. Smith. 1996. Simulation System for
Real-Time Planning, Scheduling, and Control. Pro-
ceedings of the 1996 Winter Simulation Conference.

Gershwin, S. B. 1994. Manufacturing Systems Engineer-
ing. Prentice Hall.

Glasserman, P. 1991. Gradient Estimation via Perturba-
tion Analysis. Kluwer Academic Publishers.

Glassey, C. R. and W. W. Weng. 1991. Dynamic batching
heuristic for simultaneous processing. IEEE Transac-
tions on Semiconductor Manufacturing, 4, 77-82.

Glover, F., J. P. Kelly, and M. Laguna. 1996. New Ad-
vances and Applications of Combining Simulation and
Optimization. Proceedings of the 1996 Winter Simula-
tion Conference, J. M. Charnes, D. J. Morrice, D. T.
Brunner, and J. J. Swain, eds., 144-152.

Gonzalez, F. G. and W. J. Davis. 1997. A simulation-based
controller for distributed discrete-event systems with
application to flexible manufacturing. Proceedings of
the 1997 Winter Simulation Conference, S. Andradót-
tir, K. J. Healy, D. H. Withers, and B. L. Nelson, eds.,
845-853.

Henriksen, J. O. 2000. SLX: The X is for Extensibility.
Proceedings of the 2000 Winter Simulation Confer-
ence, J. A. Joines, R. R. Barton, K. Kang, and P. A.
Fishwick, eds., 183-190.

Law, A. M. and M. G. McComas. 2002. Simulation-Based
Optimization. Proceedings of the 2002 Winter Simula-
tion Conference, E. Yucesan, C.-H. Chen, J. L. Snow-
don, and J. M. Charnes, eds., 41-44.

Luenberger, D. 1984. Introduction to Linear and Nonlinear
Programming. Addison Wesley.

Mahadevan, S. and G. Theocharous. 1998. Optimizing
Production Manufacturing using Reinforcement
Learning. Proceedings of the 11th International
FLAIRS Conference, AAAI Press, 372-377.

Mahadevan, S., N. Marchalleck, T. K. Das, and A. Gosavi.
1997. Self_Improving Factory Simulation Using Con-
tinuous-Time Average-Reward Reinforcement Learn-
ing. Proceedings of the International Confernce on
Machine Learning, Nashville, TN, Morgan Kaufmann.

McGregor, I. 2002. The relationship between simulation
and emulation. Proceedings of the 2002 Winter Simu-
lation Conference, E. Yucesan, C.-H. Chen, J. L.
Snowdon, and J. M. Charnes, eds., 1683-1688.

Miyashita, K. 2000. Job-Shop Scheduling with Genetic
Programming. Proceedings of the Genetic and Evolu-
tionary Computation Conference, Morgan Kaufmann,
505-512.

Olafsson, S. and J. Kim. 2002. Simulation Optimization.
Proceedings of the 2002 Winter Simulation Confer-
ence, E. Yucesan, C.-H. Chen, J. L. Snowdon, and J.
M. Charnes, eds., 79-84.

Riedmiller, S. and M. Riedmiller. 1999. A Neural Rein-
forcement Learning Approach to Learn Local Dis-
patching Policies in Production Scheduling. Proceed-
ings of the Sixteenth International Joint Conferences
on Artificial Intelligence, Stockholm, Sweden, Morgan
Kaufmann, 764-769.

Russell, S. and P. Norvig. 1995. Artificial Intelligence: A
Modern Approach. Prentice-Hall.

Schneider, J., J. Boyan, and A. Moore. 1998. Value Func-
tion Based Production Scheduling. Proceedings of the
International Conference on Machine Learning, Mor-
gan Kaufmann.

Smith, J. S., R. A. Wysk, D. T. Sturrock, S. E. Ramas-
wamy, G. D. Smith, and S. B. Joshi. 1994. Discrete
Event Simulation for Shop Floor Control. Proceedings
of the Winter Simulation Conference, Lake Buena
Vista, FL, 962-969.

Zee, D.-J. v. d. 2001. Real-time adaptive control of multi-
product multi-server bulk service processes. Proceed-
ings of the 2001 Winter Simulation Conference, B. A.
Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer,
eds., IEEE Computer Society, 930-936.

AUTHOR BIOGRAPHIES

MUKESH DALAL is a Senior Scientist at LookAhead
Decisions Inc. He has a B.Tech. degree from Indian Insti-
tute of Technolgy, and a M.S. and Ph.D from Rutgers Uni-
versity in New Jersey, all in Computer Science. Before
LDI, he was an Assistant Professor at Columbia University
in New York, and then a Senior Member at i2 Technolo-
gies in Dallas. His research interests include decision mak-
ing, optimization, artificial intelligence, real-time systems,
and supply chain management. His email address is:
<Mukesh@LookAheadDecisions.Com>.

mailto:<Mukesh@LookAheadDecisions.Com
mailto:Mukesh@LookAheadDecisions.Com

Dalal, Groel, and Prieditis

BRETT GROEL is a Scientist at LookAhead Decisions
Inc. He has a B.S. degree in Computer Science from the
University of California at Davis. His undergraduate
research projects involved distributed computing. His
current interests include simulation, graphics, and
visualization. His e-mail address is: <Brett@Look
AheadDecisions.Com>.

ARMAND PRIEDITIS is a Senior Scientist at LookAhead
Decisions Inc. He has a B.S. degree from the University of
Minnesota, Minneapolis, and a M.S. and Ph.D from Rutgers
University in New Jersey, all in Computer Science. Before
LDI, he was an Assistant Professor at the University of
California-Davis and CEO of Unconventional Wisdom. His
research interests include decision making, search, heuris-
tics, and machine learning. His email address is:
<Prieditis@LookAheadDecisions.Com>.

mailto:<Brett@Look�AheadDecisions.Com
mailto:<Brett@Look�AheadDecisions.Com
mailto:<Prieditis@�LookAheadDecisions.Com
mailto:Brett@LookAheadDecisions.Com
mailto:Brett@LookAheadDecisions.Com
mailto:Prieditis@LookAheadDecisions.Com

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1456
	02: 1457
	03: 1458
	04: 1459
	05: 1460
	06: 1461
	07: 1462
	08: 1463
	09: 1464

