
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

FAST SIMULATION MODEL FOR GRID SCHEDULING USING HYPERSIM

Sugree Phatanapherom
Putchong Uthayopas

High Performance Computing and Networking Center

Faculty of Engineering
Kasetsart University

Bangkok, 10900, THAILAND

 Voratas Kachitvichyanukul

Industrial Engineering & Management
School of Advanced Technologies

Asian Institute of Technology
Pathumthani, 12120, THAILAND

ABSTRACT

To develop grid scheduling algorithms, a high performance
simulator is necessary since grid is an uncontrollable and
unrepeatable environment. In this paper, a discrete event
simulation library called HyperSim is used as extensible
building blocks for grid scheduling simulator. The use of
event graph model for the grid simulation are proposed.
This model is well supported by HyperSim which yields a
very high performance simulation. The experiments are
conducted to compare HyperSim with other several simu-
lators in terms of speed and scalability. The result shows a
significant simulation speed improvement over many
widely used simulators. Furthermore, sample simulation
results of basic job scheduling problem are shown to com-
pare to well-known heuristics.

1 INTRODUCTION

Grid computing system (Foster and Kesselman 1998b) is a
promising infrastructure and technology for harnessing
geographically distributed resources across many organiza-
tions. Grid has a great potential to help scientists solve
problems faster than ever using much larger resource pool.
However, resource discovery and allocation processes are
still mostly done manually by job owner. These processes
may lead to unsatisfactory results in terms of utilization,
turnaround time, and load balancing of the system. Many
scheduling heuristics have been developed over the past
few years to efficiently allocate resources for a given batch
of jobs with particular purpose. The main challenge of
scheduling heuristics development is the unrepeatable na-
ture of the grid system since no one has the capability to
fully control all available resources and tasks. The second
problem is the small size of current experimental grid. Al-
though, there are many small, inter-organization, grid test-
beds available, none of these test-beds are large enough to
reflect the true behavior of the real production quality grid.

Therefore, a simulator is the most important tool for the

evaluation of grid scheduling heuristics. A good simulator
allows researchers to explore more alternatives and give an
accurate, statistically valid results. Furthermore, the simula-
tor can be used to study many heuristics which have their
own different system model and application model.

In this paper, the modeling of grid environment using
a newly developed, high speed, simulation library called
HyperSim is presented. HyperSim is developed to be a
general purpose, extensible, configurable, and high-speed
simulation library. This simulator is based on event graph
model to maximize speed and scalability. The main advan-
tage of HyperSim is its superior simulation speed com-
pared to other simulators available. This allows researchers
to model a much larger Grid system than before. The de-
sign, architecture and example of HyperSim are discussed.
In addition, HyperSim is compared to other well-known
grid scheduling simulators in terms of simulation speed.
The experimental evaluation shows that HyperSim can be
used to simulate the same grid environment with a much
faster simulation speed.

This paper is organized as follows. Section 2 discusses
related work followed by Section 3 which introduce the Hy-
perSim simulator. Section 4 proposes the approach of how to
model grid scheduling using event graph model and shows
briefly how to implement the model into HyperSim. Section
5 presents the experimental results and discussions. Finally,
Section 6 concludes the paper and discusses future work.

2 RELATED WORKS

For the Grid system, one approach used to study the sys-
tem characteristics is to emulate a grid system on a real
computing system. This approach is used by MicroGrid
(Song et al. 2000) which emulates multiple computing re-
sources on a real resource to increase grid size using lim-
ited resources. MicroGrid is usually suitable for testing real
application on real, controllable environment. However,
runtime is still not reduced so MicroGrid is not suitable for

Phatanapherom, Uthayopas, and Kachitvichvanukul

scheduling simulation due to turnaround time of each
workload set which may take a substantially long time.
Hence, in order to minimize the turnaround time for the ex-
tensive study of grid environment, a simulator is needed.

Simulator has been used for modeling and evaluating
real world systems in many areas e.g., industrial, comput-
ing, mechanical, and more. Many general-purpose simula-
tion modeling tools are available. Some of them are in
form of a language e.g., Simscript (CACI 2003), an exten-
sion of existing language e.g., Parsec (Bagrodia et al.
1998), or library for specific language e.g., NS (LBNL et
al. 2003), NS-2 (USC/ISI and ACIRI 2003), OMNeT++
(Varga 2001), SimJava (Howell and McNab 1998). Appli-
cation specific simulators are also available with some cus-
tomizable parameters of each run. This kind of simulator is
usually available in industrial and related fields.

There are a few grid simulators available. For exam-
ple, GridSim (Buyya and Murshed 2002), which is a Java-
based discrete event grid scheduling simulator built on top
of SimJava. GridSim provides high extensibility and port-
ability through Java and thread technologies. Every com-
ponents in the system model are initiated as a thread with a
unique name. Each component runs individually with sepa-
rate event queue. An event is transmitted to the target
component's event queue directly. For system behavior,
GridSim estimates the status of each component based on
pre-defined condition. Although very flexible, GridSim is
not scalable since it depends on the number of threads
which is rather limited. In addition, the threads manage-
ment in Java create a very high overhead which results in a
very slow runtime.

Bricks (Aida et al. 2000) is another Java-based dis-
crete event grid simulator built from the ground up. Bricks
is designed to maximize modularity of restructuring system
model based on client-server architecture. One may run
Bricks to evaluate scheduling heuristics or to evaluate data
movement algorithms on grid. Status of each component
are estimation of real world system trace. Unfortunately,
Bricks is not publicly available at this time.

SimGrid (Casanova 2001) is a C-based discrete event
job scheduling simulation library developed by San Diego
Super Computing Center (SDSC). SimGrid provides
highly accurate network model for TCP and non-TCP
transport. One may construct network topology (connec-
tion of hosts and routers) to represent real world system for
data-intensive application simulation. SimGrid is much
faster than most Java-based simulator. However, the ap-
proach of using user level thread to model resources also
make SimGrid being limited by the thread switching capa-
bility and overhead of the system.

ChicSim (Ranganathan and Foster 2002) is a Parsec-
based simulator for concurrent job and data scheduling.
System model is fixed. The user just needs to specify re-
sources, networks, and workload characteristics to the
simulator by a list of files.
3 INTRODUCTION TO HYPERSIM

HyperSim is a general-purpose discrete event simulation
library developed on C++. It provides comprehensive
classes for constructing a simulator such as the distribution
generator, statistical analyzer, event manipulator, auto-
matic traceable simulation class, and much more.

HyperSim follows the event graph model (Schruben
1983). To construct a simulation model of any system, de-
veloper must design an event graph model of that system
first. An event graph consists of at least one event repre-
sented by a node, denoted by a circle. Two events are
linked by a directed line or edge denoted by an arrow.
Figure 1 shows the representation of a basic event graph
model with 2 events, A and B, and a transition from event
A to event B. In this figure, the current event is A. If condi-
tion i is true, event B will be scheduled to occur after t time
units. The scheduled event has its own attributes set by
generator so that the event keeps track of the simulation
state individually.

A B

t

(i)

Figure 1: Basic Event Graph Model

At the start of the simulation, the simulator will be ini-

tialized by the schedule of at least one event. This schedul-
ing will start the simulation process that dequeues the
event. In HyperSim, complex events can be modeled using
C++ code. So, developer can use C++ code to easily trig-
ger the state change and implement a complex condition.
This technique eliminates the need to define the complex
interactions into the form of an event graph first. The result
is the substantial reduction of the complexity and devel-
opment time.

The simulation will stop if there is no event left in the
queue or user-defined method, called isFinish(), returns true.
This function enables a developer to stop the simulation at
anytime before the processing of each event. In addition,
developer can put some user-defined condition that stops
the simulation when the required results are obtained.

Statistical analysis is done by overriding updateStat()
method. This method is called prior to event handler
method. Furthermore, every event is traced and logged.
Two file formats are used, namely, the standard format and
NetLogger format. Standard format displays simulation
time, event name, the number of occurrences, and user-
defined data. NetLogger format comes from NetLogger
tool (http://www-didc.lbl.gov/NetLogger/) which is a set of
online data logging APIs and offline visualization tools. In
fact, NetLogger format conforms to IETF Internet-Draft
for Universal Log Message (ULM). Thus, the trace output

http://www-didc.lbl.gov/NetLogger/
http://www-didc.lbl.gov/NetLogger/

Phatanapherom, Uthayopas, and Kachitvichvanukul

of the simulation can be used as input to NetLogger visu-
alization tool. The simulator developer can add more trace
information by overriding trace() method.

4 MODELING THE GRID
SCHEDULING

For the problem of grid scheduling, it is convenient to clas-
sify the grid system into 2 categories, namely, the one-
level and two-level grid. In one-level grid (illustrated in
Figure 2), the scheduler can directly access each resource.
In contrast, in the two-level grid (as shown in Figure 3),
the scheduler has no control over local resources but has to
interact with a local resource manager. The example of this
case is the use of grid to link multiple clusters together.
Traditionally, two-level grid is more preferable since it al-
lows each organizations participating in the grid to have
better control over its local resources.

Scheduler

Resource 1 Resource 2 Resource 3 Resource
N

Figure 2: One-Level Grid

External
Scheduler

Local
Scheduler

R1 R2 R3 RN

Local
Scheduler

R1 R2 R3 RN

Local
Scheduler

R1 R2 R3 RN
Figure 3: Two-Level Grid

The event graph model can be effectively used to model

the behavior of both one-level and two-level grid. The event
graph model of one-level grid is as shown in Figure 4.

INPUT

ENTER

Ti

SCHEDULE START FINISH

Ts

Figure 4: Event Graph Model for One-Level Grid

In Figure 4, the start event is INPUT which initializes
the system. This INPUT event generates the ENTER event
and SCHEDULE event. ENTER event represents the job
submission into scheduler queue. For online scheduler,
SCHEDULE event will be scheduled immediately. For batch
scheduler, the ENTER event is then delayed by the random
inter-arrival time (denoted by Ti). Then, SCHEDULE event
is rescheduled for every Ts and all new scheduled jobs are
then dispatched. Dispatch process is done by scheduling
START event at the specified time. The FINISH event for
that job will take place after the delay equal to the execution
time of that job on the machine selected.

The event graph model for two-level grid is shown in
Figure 5. There are 2 kinds of scheduler: External Sched-
uler (ES) used as the grid-level scheduler and Local Sched-
uler (LS) used as the cluster-level scheduler. EENTER,
ESCHEDULE, ESTART, and EFINISH are grid-level
events. They work very similar to what was described
above in one-level grid. except for ESTART. ESTART,
will submit the job to a cluster-level scheduler instead of
starting the job. STAGE_IN, STATE_EXE, EXECUTE,
and STAGE_OUT are added to study effect of input stag-
ing, job execution, and outputs staging over wide-area
network that link grid-level scheduler and cluster-level
scheduler together.

INPUT

EENTER

Tie

SCHEDULE START STAGE_IN STAGE_EXE

EXECUTESTAGE_OUTFINISH

Tsl

ESCHEDULE

Tse

ESTART

EFINISH

ENTER

Figure 5: Event Graph Model for Two-Level Grid

After obtaining the event graph model. The simulator

can be easily developed. In HyperSim, Host, Cluster, and
Grid classes are implemented to represent each kind of re-
sources. Host may be a single or multiple processors sys-
tem. Cluster is represented by a scheduler and a set of hosts
connected by high-speed interconnection and grid is repre-
sented by a scheduler and a set of clusters connected by
wide-area network.

Phatanapherom, Uthayopas, and Kachitvichvanukul

The job execution time is calculated based on work-
load, execution rate, and current load average of the com-
puting resource used. Let W denotes the amount of work-
load, ε denotes the execution rate of the computer used,
and λ denotes the current load average of that system.
Then, the execution time, Te, of a job is as given in Eq. 1.

)1(λ
ε

+= WTe (1)

Workload set can be generated online by giving the in-

ter-arrival distribution, workload distribution, input size
distribution, executable size distribution, and output size
distribution. In addition, workload can be read from a file.
This features enable user to use real workload trace to
drive the simulator. In addition, a cluster configuration can
be automatically generated or given to the simulator using
a file. The automatic cluster configuration generation re-
quires the users to specify some parameters such as the
number of hosts, execution rate distribution, and load aver-
age parameter distribution. For grid configuration, it is
necessary to explicitly specify each cluster configuration
and its network characteristics to reduce the complexity of
multi-level generation. Scheduling heuristics are separated
from the simulator. Each heuristic is implemented in a dy-
namic linked library (shared object). This helps researchers
to easily implement various new heuristics without making
changes to the simulator.

Figure 6 shows the interface used to for the implemen-
tation of scheduling heuristic. One must implement sched-
ule() method to schedule tasks in queue, tasks, by assign-
ing each task to a host in host vector, hosts. Host vector
may contain host, cluster, or grid so this heuristic may use
on both cluster and grid, one-level and two-level grid. Ad-
ditional parameters are passed to the heuristic by specify-
ing a file containing the parameters.

class Scheduler {
public:
 Scheduler(char const *parameterPath);
 virtual ~Scheduler();
 virtual reset();
 virtual schedule(TaskQueue &tasks,
 HostVector &hosts,
 Clock simTime);
protected:
 string paramFile;
};

Figure 6: Scheduler Interface

5 EXPERIMENTS AND DISCUSSION

In this section, the performance of several job scheduling
algorithms for grid has been compared using several simu-
lators available. The purpose is to compare the simulation
speed and results of these simulator with HyperSim.

All experiments are conducted on PC/Linux using
Athlon 1 GHz processors with 1 GB RAM on light load
condition. GridSim 2.0 and SimGrid 2.09 are used for the
comparison due to their availability. To evaluate perform-
ance of these simulators, MET (Minimum Execution Time)
heuristic (Maheswaran et al. 1999) is implemented on
GridSim, SimGrid, and HyperSim to compare the perform-
ance in term of run time used to finish the simulation.

MET heuristic is an online scheduling algorithm in
which each job is scheduled whenever it arrives. Generally,
MET assigns a job to the machine that supposes to com-
plete it fastest. In detail, MET estimates execution time of
the job on all machines and assigns the job to the machine
with the least estimated execution time.

Since GridSim and SimGrid follow one-level grid
structure, the experimental code uses the same structure.
The simulation assumes that there is a grid scheduler in the
system. In addition, network characteristics are not taken
into consideration to reduce complexity of the simulation.
All jobs are ready in the queue prior to the beginning of the
first scheduling. Figure 7 shows the NetLogger visualiza-
tion of results from HyperSim. The job distribution, queue
length, and grid scheduling event are illustrated.

(a) Queue length (b) Job distribution

(c) Scheduling Event Transition

Figure 7: Netlogger Visualization of HyperSim Log

First, the test is conducted to measure the performance
and scalability of the simulator when the number of re-
sources increases while the number of tasks are fixed to
16384. The number of resources varies from 1, 2, 4, 8, up
to 16384. The results are as depicted in Figure 8. The ex-
periments show that GridSim can not scale to more than
512 resources. This is due to the thread creation error when
OS and runtime resources are used up. Although SimGrid
and HyperSim can scale up very well, HyperSim is ap-
proximately 10 times faster than SimGrid for this test.

Phatanapherom, Uthayopas, and Kachitvichvanukul

1

10

100

1000

10000

100000

0 5000 10000 15000 20000
Number of Resources

R
un

 T
im

e
(s

ec
on

ds
)

GridSim
SimGrid
HyperSim

Figure 8: Comparison for Fixed the Number of Tasks

Second, the test is performed to measure the perform-

ance of simulator when the number of tasks are increased
and the number of resources (hosts) are fixed at 256. The
reason that resources are fixed at 256 hosts is because
GridSim can only run successfully with 512 hosts.

Figure 9 shows the results. In term of the speed, Hy-
perSim still gives the best result since HyperSim is about
1000 times faster than GridSim and nearly 10 times faster
than SimGrid. From the experimental results, it is clear that
GridSim suffers from the high overhead of Java thread
management. In addition, GridSim always allocates a fix
the number of resources for the whole simulation although
the number of job decreases as the simulation proceeds. As
a result, the memory used is likely to be inefficient due to
the existence of large, and lowly utilize in-memory objects.
 As for SimGrid, the results are very similar to Hyper-
Sim. The major difference is that in SimGrid, the event
structure is blended into the code. Moreover, SimGrid only
allows developers to simulate with pre-defined stop condi-
tion such as when one task or all tasks finish the execution.
Although the intension is to ease the programming task, the
results is that code are much more complex due to the need
for conditional checking that occurred frequently. This can
potentially degrade the speed of the execution. In contrast,
HyperSim decouples events from each other so the com
plexity will be at the modeling level. Hence, the result code
is much simpler and faster.

0.01
0.1

1
10

100
1000

10000
100000

0 5000 10000 15000 20000

Number of Tasks

R
un

 T
im

e
(s

ec
on

ds
)

GridSim
SimGrid
HyperSim

Figure 9: Comparison for Fixed the Number of
Resources

In other point of view, grid can be looked as a set of par-
allel machines in manufacturing system and job is a material
to be processed by the machine to produce some products. It
is necessary to have a machine for dispatching new unbal-
ance material to appropriate parallel machine. The dispatcher
must be optimized to minimize makespan of the factory.
Heuristics described above can apply on this problem also.
Some factory may feed material to the dispatcher one at a
time or batch at a time to reduce transportation cost.

At this point, next experimental is to compare two
heuristics using HyperSim. The heuristics are MET and
MCT (Minimum Completion Time). MET is described
above. In contrast, MCT assigns each job to the machine
with the minimum completion time. That means some jobs
may not be assigned to the fastest machine but system
makespan should be balanced.

Figure 10 shows makespan of the system when the
number of incoming jobs are varied from 100 to 3200
stepped up by multiples of 2. Machines in simulation envi-
ronment is heterogeneous machines randomly generated in
exponential distribution with 500 mean. The generated
value represents execution rate of each machine. Workload
is also generated in exponential distribution with 500,000
mean. The number of machine is fixed to 32. At the start-
ing state, all machine has no load. The result shows that
MET gave better solution in system with low (100-400)
jobs. After that point MCT gave the better solution. MET
shows better result when cumulative wait time of job in
fast machine are not too many comparing to execution
time. Average wait time of MCT and MET are shown in
Figure 11. It turns out that average wait time of MET is
significantly increased by the number of jobs submitted to
the system. The cause is MET tried to assign jobs to the
fastest machine for that jobs. When average wait time
reaches the point that the fastest machine cannot serve jobs
on time, the overall performance will rapidly go down.

6 CONCLUSIONS

To efficiently utilize the grid resources, special scheduling
heuristics are necessary. There are only a few large test

0

50

100

150

200

250

0 1000 2000 3000 4000
Number of Jobs

M
ak

es
pa

n
(h

ou
rs

) MCT
MET

Figure 10: Makespan of MET and MCT

Phatanapherom, Uthayopas, and Kachitvichvanukul

0

20

40

60

80

100

120

0 1000 2000 3000 4000
Number of Jobs

A
ve

ra
ge

 W
ai

t T
im

e
(h

ou
rs

)
MCT
MET

Figure 11: Average Wait Time of MET and MCT

beds among countries, e.g., ApGrid test-bed (Tanaka
2003), and small production quality in some big organiza-
tions. Thus, it is difficult to test the algorithm extensively
on the real test-bed. Therefore, simulator is crucial in order
to validate and evaluate scheduling heuristics. on grid in-
frastructure. In this paper, the simulator called HyperSim
has been presented. HyperSim is developed as a general,
portable, and extensible discrete event simulation library
conforming to event graph modeling.

This paper also proposes the approach of how to
model the grid scheduling using event graph model and run
it efficiently under HyperSim simulator. The experiments
shows that HyperSim is much faster than several well
known simulator available for grid simulation.

There are many works that can be done in the future.
For example, developing more library that allows Hyper-
Sim to be used as a core for other type of simulation such
as industrial simulation. The comprehensive GUI tool can
be helpful in speeding up the modeling process and visual-
ize the results.

The latest version of HyperSim, including the source
code, can be freely downloaded from the www at <http:
//hpcnc.cpe.ku.ac.th/moin/HyperSim>.

REFERENCES

Aida, K., A. Takefusa, H. Nakada, S. Matsuoka, S. Se-
kiguchi, and U. Nagashima, 2000. Performance
Evaluation Model for Scheduling in a Global Comput-
ing System. The International Journal of High Per-
formance Computing Applications, 14 (3).

Bagrodia, R. R. Meyer, M. Takai, Y. Chen, X. Zeng, J.
Martin, B. Park, and H. Song. 1998. Parsec: A Parallel
Simulation Environment for Complex Systems. IEEE
Computer, 31 (10).

Buyya, R. and M. Murshed. 2002. GridSim: A Toolkit for
the Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing. The
Journal of Concurrency and Computation: Practice and
Experience, 14.
CACI. 2003. Simscript: a simulation language for building
large-scale, complex simulation models [online].
Available via <http://www.caciasl.com/
products/simscript.cfm> [accessed May 5,
2003].

Casanova, H. 2001. Simgrid: A toolkit for the Simulation
of Application Scheduling. The 1st IEEE/ACM Inter-
national Symposium on Cluster Computing and the
Grid (CCGrid 2001). Brisbane, Australia.

Foster, I. and C. Kesselman. 1998a. Globus: A Toolkit-
Based Grid Architecture, pp. 259-278. In I. Foster and
C. Kesselman. The Grid: Blueprint for a Future Com-
puting Infrastructure. Morgan Kaufmann.

Foster, I. and C. Kesselman. 1998b. The Grid: Blueprint
for a Future Computing Infrastructure. Morgan Kauf-
mann.

Howell, F. and R. McNab. 1998. SimJava: A Discrete
Event Simulation Package for Java with Applications
in Computer Systems Modelling. The 1st International
Conference on Web-based Modelling and Simulation.
San Diego, CA, USA.

LBNL, Xerox PARC, UCB and USC/ISI. 2003. Network
Simulator version 1. VINT Project, Lawrence Berke-
ley National Laboratory, http://www-nrg.ee.lbl.gov/ns/

Maheswaran, M., S. Ali, H.J. Siegel, D. Hensgen and R.F.
Freund. 1999. Dynamic Matching and Scheduling of a
Class of Independent Tasks onto Heterogeneous Com-
puting Systems. The 8th Heterogeneous Computing
Workshop. San Juan, Puerto Rico.

Ranganathan, K. and I. Foster. 2002. Decoupling Compu-
tation and Data Scheduling in Distributed Data-
Intensive Applications. The 11th IEEE International
Symposium on High Performance Distributed Com-
puting (HPDC 2002). Edinburgh, Scotland.

Schruben, L. 1983. Simulation Modeling with Event
Graphs, Communications of the ACM, 26, 957-963.

Song, H., X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K.
Taura, and A. Chien. 2000. The MicroGrid: A Scien-
tific Tool for Modeling Computational Grids. IEEE
Supercomputing (SC 2000). Dallas, USA.

Tanaka, Y. 2003. ApGrid Testbed [online]. Available via
<http://www.apgrid.org/> [accessed July 11,
2003].

USC/ISI and ACIRI. 2003. Network Simulator ns-2
[online]. Available via <http://www.isi.edu/
nsnam/ns/> [accessed May 5, 2003].

Varga, A. 2001. The OMNeT++ Discrete Event Simulation
System. The European Simulation Multiconference
(ESM 2001). Prague, Czech Republic.

AUTHORS BIOGRAPHIES

SUGREE PHATANAPHEROM is a research assistant in
High Performance Computing and Networking Center,
Faculty of Engineering, Kasetsart University, Thailand. He

http://www.caciasl.com/�products/simscript.cfm
http://www.caciasl.com/�products/simscript.cfm
http://www.apgrid.org/
http://www.isi.edu/�nsnam/ns/
http://www.isi.edu/�nsnam/ns/
http://www.caciasl.com/products/simscript.cfm
http://www.caciasl.com/products/simscript.cfm
http://www.apgrid.org/
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/

Phatanapherom, Uthayopas, and Kachitvichvanukul

received a B.Eng in Computing Engineering from Kaset-
sart University and his M.Eng in Computer Engineering
from Kasetsart University. His recent work has involved
Grid resource scheduler, simulator, and algorithms. His
email address is <sugree@hpcnc.cpe.ku.ac.th>.

PUTCHONG UTHAYOPAS is an Assistant Professor in
Department of Computer Engineering, Faculty of Engi-
neering, Kasetsart University, Thailand. He received his
PhD in Computer Engineering from University of Louisi-
ana at Lafayette. His major research interests are in paral-
lel/distributed computing, cluster and grid computing, and
parallel software tools. He is serving as the regional com-
mittee of IEEE Task force on cluster computing. He is also
being the core member of ApGrid organization and partici-
pating actively in the construction of Asia Pacific grid test-
bed. His email address is <pu@ku.ac.th>.

VORATAS KACHITVICHYANUKUL is an Associate
Professor in Industrial Engineering & Management, School
of Advanced Technologies, Asian Institute of Technology,
Thailand. He received a Ph. D. from the School of Indus-
trial Engineering at Purdue University in 1982. He has ex-
tensive experiences in simulation modeling of manufactur-
ing systems. He had worked for FORTUNE 500
Companies such as Compaq Computer Corporation and
Motorola Incorporated. He had also worked for
SEMATECH as technical coordinator of the future factory
program. His teaching and research interests include plan-
ning and scheduling, high performance computing and ap-
plied operations research with special emphasis on indus-
trial systems. His email address is <voratas@ait.
ac.th>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1494
	02: 1495
	03: 1496
	04: 1497
	05: 1498
	06: 1499
	07: 1500

