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ABSTRACT 

To develop grid scheduling algorithms, a high performance 
simulator is necessary since grid is an uncontrollable and 
unrepeatable environment. In this paper, a discrete event 
simulation library called HyperSim is used as extensible 
building blocks for grid scheduling simulator. The use of 
event graph model for the grid simulation are proposed. 
This model is well supported by HyperSim which yields a 
very high performance simulation. The experiments are 
conducted to compare HyperSim with other several simu-
lators in terms of speed and scalability. The result shows a 
significant simulation speed improvement over many 
widely used simulators. Furthermore, sample simulation 
results of basic job scheduling problem are shown to com-
pare to well-known heuristics. 

1 INTRODUCTION 

Grid computing system (Foster and Kesselman 1998b) is a 
promising infrastructure and technology for harnessing 
geographically distributed resources across many organiza-
tions. Grid has a great potential to help scientists solve 
problems faster than ever using much larger resource pool. 
However, resource discovery and allocation processes are 
still mostly done manually by job owner. These processes 
may lead to unsatisfactory results in terms of utilization, 
turnaround time, and load balancing of the system. Many 
scheduling heuristics have been developed over the past 
few years to efficiently allocate resources for a given batch 
of jobs with particular purpose. The main challenge of 
scheduling heuristics development is the unrepeatable na-
ture of the grid system since no one has the capability to 
fully control all available resources and tasks. The second 
problem is the small size of current experimental grid. Al-
though, there are many small, inter-organization, grid test-
beds available, none of these test-beds are large enough to 
reflect the true behavior of the real production quality grid. 
 
Therefore, a simulator is the most important tool for the 

evaluation of grid scheduling heuristics. A good simulator 
allows researchers to explore more alternatives and give an 
accurate, statistically valid results. Furthermore, the simula-
tor can be used to study many heuristics which have their 
own different system model and application model. 

In this paper, the modeling of grid environment using 
a newly developed, high speed, simulation library called 
HyperSim is presented. HyperSim is developed to be a 
general purpose, extensible, configurable, and high-speed 
simulation library. This simulator is based on event graph 
model to maximize speed and scalability. The main advan-
tage of HyperSim is its superior simulation speed com-
pared to other simulators available. This allows researchers 
to model a much larger Grid system than before. The de-
sign, architecture and example of HyperSim are discussed. 
In addition, HyperSim is compared to other well-known 
grid scheduling simulators in terms of simulation speed. 
The experimental evaluation shows that HyperSim can be 
used to simulate the same grid environment with a much 
faster simulation speed. 

This paper is organized as follows. Section 2 discusses 
related work followed by Section 3 which introduce the Hy-
perSim simulator. Section 4 proposes the approach of how to 
model grid scheduling using event graph model and shows 
briefly how to implement the model into HyperSim. Section 
5 presents the experimental results and discussions. Finally, 
Section 6 concludes the paper and discusses future work. 

2 RELATED WORKS 

For the Grid system, one approach used to study the sys-
tem characteristics is to emulate a grid system on a real 
computing system. This approach is used by MicroGrid 
(Song et al. 2000) which emulates multiple computing re-
sources on a real resource to increase grid size using lim-
ited resources. MicroGrid is usually suitable for testing real 
application on real, controllable environment. However, 
runtime is still not reduced so MicroGrid is not suitable for 
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scheduling simulation due to turnaround time of each 
workload set which may take a substantially long time. 
Hence, in order to minimize the turnaround time for the ex-
tensive study of grid environment, a simulator is needed. 

Simulator has been used for modeling and evaluating 
real world systems in many areas e.g., industrial, comput-
ing, mechanical, and more. Many general-purpose simula-
tion modeling tools are available. Some of them are in 
form of a language e.g., Simscript (CACI 2003), an exten-
sion of existing language e.g., Parsec (Bagrodia et al. 
1998), or library for specific language e.g., NS (LBNL et 
al. 2003), NS-2 (USC/ISI and ACIRI 2003), OMNeT++ 
(Varga 2001), SimJava (Howell and McNab 1998). Appli-
cation specific simulators are also available with some cus-
tomizable parameters of each run. This kind of simulator is 
usually available in industrial and related fields. 

There are a few grid simulators available. For exam-
ple, GridSim (Buyya and Murshed 2002), which is a Java-
based discrete event grid scheduling simulator built on top 
of SimJava. GridSim provides high extensibility and port-
ability through Java and thread technologies. Every com-
ponents in the system model are initiated as a thread with a 
unique name. Each component runs individually with sepa-
rate event queue. An event is transmitted to the target 
component's event queue directly. For system behavior, 
GridSim estimates the status of each component based on 
pre-defined condition. Although very flexible, GridSim is 
not scalable since it depends on the number of threads 
which is rather limited. In addition, the threads manage-
ment in Java create a very high overhead which results in a 
very slow runtime. 

Bricks (Aida et al. 2000) is another Java-based dis-
crete event grid simulator built from the ground up. Bricks 
is designed to maximize modularity of restructuring system 
model based on client-server architecture. One may run 
Bricks to evaluate scheduling heuristics or to evaluate data 
movement algorithms on grid. Status of each component 
are estimation of real world system trace. Unfortunately, 
Bricks is not publicly available at this time. 

SimGrid (Casanova 2001) is a C-based discrete event 
job scheduling simulation library developed by San Diego 
Super Computing Center (SDSC). SimGrid provides 
highly accurate network model for TCP and non-TCP 
transport. One may construct network topology (connec-
tion of hosts and routers) to represent real world system for 
data-intensive application simulation. SimGrid is much 
faster than most Java-based simulator. However, the ap-
proach of using user level thread to model resources also 
make SimGrid being limited by the thread switching capa-
bility and overhead of the system. 

ChicSim (Ranganathan and Foster 2002) is a Parsec-
based simulator for concurrent job and data scheduling. 
System model is fixed. The user just needs to specify re-
sources, networks, and workload characteristics to the 
simulator by a list of files. 
3 INTRODUCTION TO HYPERSIM 

HyperSim is a general-purpose discrete event simulation 
library developed on C++. It provides comprehensive 
classes for constructing a simulator such as the distribution 
generator, statistical analyzer, event manipulator, auto-
matic traceable simulation class, and much more. 

HyperSim follows the event graph model (Schruben 
1983). To construct a simulation model of any system, de-
veloper must design an event graph model of that system 
first. An event graph consists of at least one event repre-
sented by a node, denoted by a circle. Two events are 
linked by a directed line or edge denoted by an arrow. 
Figure 1 shows the representation of a basic event graph 
model with 2 events, A and B, and a transition from event 
A to event B. In this figure, the current event is A. If condi-
tion i is true, event B will be scheduled to occur after t time 
units. The scheduled event has its own attributes set by 
generator so that the event keeps track of the simulation 
state individually. 

 

A B

t

(i)

 
Figure 1: Basic Event Graph Model 

 
At the start of the simulation, the simulator will be ini-

tialized by the schedule of  at least one event. This schedul-
ing will start the simulation process that dequeues the 
event. In HyperSim, complex events can be modeled using 
C++ code. So, developer can use C++ code to easily trig-
ger the state change and implement a complex condition. 
This technique eliminates the need to define the complex 
interactions into the form of an event graph first. The result 
is the substantial reduction of the complexity and devel-
opment time. 

The simulation will stop if there is no event left in the 
queue or user-defined method, called isFinish(), returns true. 
This function enables a developer to stop the simulation at 
anytime before the processing of each event. In addition, 
developer can put some user-defined condition that stops 
the simulation when the required results are obtained.  

Statistical analysis is done by overriding updateStat() 
method. This method is called prior to event handler 
method. Furthermore, every event is traced and logged. 
Two file formats are used, namely, the standard format and 
NetLogger format. Standard format displays simulation 
time, event name, the number of occurrences, and user-
defined data. NetLogger format comes from NetLogger 
tool (http://www-didc.lbl.gov/NetLogger/) which is a set of 
online data logging APIs and offline visualization tools. In 
fact, NetLogger format conforms to IETF Internet-Draft 
for Universal Log Message (ULM). Thus, the trace output 

http://www-didc.lbl.gov/NetLogger/
http://www-didc.lbl.gov/NetLogger/
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of the simulation can be used as input to NetLogger visu-
alization tool. The simulator developer can add more trace 
information by overriding trace() method. 

4 MODELING THE GRID  
SCHEDULING 

For the problem of grid scheduling, it is convenient to clas-
sify the grid system into 2 categories, namely, the one-
level and two-level grid. In one-level grid (illustrated in 
Figure 2), the scheduler can directly access each resource. 
In contrast, in the two-level grid (as shown in Figure 3), 
the scheduler has no control over local resources but has to 
interact with a local resource manager. The example of this 
case is the use of grid to link multiple clusters together. 
Traditionally, two-level grid is more preferable since it al-
lows each organizations participating in the grid to have 
better control over its local resources. 

 
Scheduler

Resource 1 Resource 2 Resource 3 Resource
N  

Figure 2: One-Level Grid 
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Figure 3: Two-Level Grid 

 
The event graph model can be effectively used to model 

the behavior of both one-level and two-level grid. The event 
graph model of one-level grid is as shown in Figure 4. 
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Figure 4: Event Graph Model for One-Level Grid 
 

In Figure 4, the start event is INPUT which initializes 
the system. This INPUT event generates the ENTER event 
and SCHEDULE event. ENTER event represents the job 
submission into scheduler queue. For online scheduler, 
SCHEDULE event will be scheduled immediately. For batch 
scheduler, the ENTER event is then delayed by the random 
inter-arrival time (denoted by Ti). Then, SCHEDULE event 
is rescheduled for every Ts and all new scheduled jobs are 
then dispatched. Dispatch process is done by scheduling 
START event at the specified time. The FINISH event for 
that job will take place after the delay equal to the execution 
time of that job on the machine selected. 

The event graph model for two-level grid is shown in 
Figure 5. There are 2 kinds of scheduler: External Sched-
uler (ES) used as the grid-level scheduler and Local Sched-
uler (LS) used as the cluster-level scheduler. EENTER, 
ESCHEDULE, ESTART, and EFINISH are grid-level 
events. They work very similar to what was described 
above in one-level grid. except for ESTART. ESTART, 
will submit  the job to a cluster-level scheduler instead of 
starting the job. STAGE_IN, STATE_EXE, EXECUTE, 
and STAGE_OUT are added to study effect of input stag-
ing, job execution, and outputs staging over wide-area 
network that link grid-level scheduler and cluster-level 
scheduler together. 
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Figure 5: Event Graph Model for Two-Level Grid 
 
After obtaining the event graph model. The simulator 

can be easily developed. In HyperSim, Host, Cluster, and 
Grid classes are implemented to represent each kind of re-
sources. Host may be a single or multiple processors sys-
tem. Cluster is represented by a scheduler and a set of hosts 
connected by high-speed interconnection and grid is repre-
sented by a scheduler and a set of clusters connected by 
wide-area network. 
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The job execution time is calculated based on  work-
load, execution rate, and current load average of the com-
puting resource used. Let W denotes the amount of work-
load, ε  denotes the execution rate of the computer used, 
and λ  denotes the current load average of that system. 
Then, the execution time, Te, of a job is as given in Eq. 1. 
 

 )1( λ
ε

+= WTe  (1) 

 
Workload set can be generated online by giving the in-

ter-arrival distribution, workload distribution, input size 
distribution, executable size distribution, and output size 
distribution. In addition, workload can be read from a file. 
This features enable user to use real workload trace to 
drive the simulator. In addition, a cluster configuration can 
be automatically generated or given to the simulator using 
a file. The automatic cluster configuration generation re-
quires the users to specify some parameters such as the 
number of hosts, execution rate distribution, and load aver-
age parameter distribution. For grid configuration, it is 
necessary to explicitly specify each cluster configuration 
and its network characteristics to reduce the complexity of 
multi-level generation. Scheduling heuristics are separated 
from the simulator. Each heuristic is implemented in a dy-
namic linked library (shared object). This helps researchers 
to easily implement various new heuristics without making 
changes to the simulator.  

Figure 6 shows the interface used to for the implemen-
tation of scheduling heuristic. One must implement sched-
ule() method to schedule tasks in queue, tasks, by assign-
ing each task to a host in host vector, hosts. Host vector 
may contain host, cluster, or grid so this heuristic may use 
on both cluster and grid, one-level and two-level grid. Ad-
ditional parameters are passed to the heuristic by specify-
ing a file containing the parameters. 

 
class Scheduler { 
public: 
    Scheduler(char const *parameterPath); 
    virtual ~Scheduler(); 
    virtual reset(); 
    virtual schedule(TaskQueue &tasks, 
                     HostVector &hosts, 
                     Clock simTime); 
protected: 
    string paramFile; 
}; 

Figure 6: Scheduler Interface 
 

5 EXPERIMENTS AND DISCUSSION 

In this section, the performance of several job scheduling 
algorithms for grid has been compared using several simu-
lators available. The purpose is to compare the simulation 
speed and results of these simulator with HyperSim. 

All experiments are conducted on PC/Linux using  
Athlon 1 GHz processors with 1 GB RAM on light load 
condition. GridSim 2.0 and SimGrid 2.09 are used for the 
comparison due to their availability. To evaluate perform-
ance of these simulators, MET (Minimum Execution Time) 
heuristic (Maheswaran et al. 1999) is implemented on 
GridSim, SimGrid, and HyperSim to compare the perform-
ance in term of run time used to finish the simulation. 

MET heuristic is an online scheduling algorithm in 
which each job is scheduled whenever it arrives. Generally, 
MET assigns a job to the machine that supposes to com-
plete it fastest. In detail, MET estimates execution time of 
the job on all machines and assigns the job to the machine 
with the least estimated execution time. 

Since GridSim and SimGrid follow one-level grid 
structure, the experimental code uses the same structure. 
The simulation assumes that there is a grid scheduler in the 
system. In addition, network characteristics are not taken 
into consideration to reduce complexity of the simulation. 
All jobs are ready in the queue prior to the beginning of the 
first scheduling. Figure 7 shows the NetLogger visualiza-
tion of results from HyperSim. The job distribution, queue 
length, and grid scheduling event are illustrated. 

 

 
(a) Queue length   (b) Job distribution 

 

 
( c) Scheduling Event Transition 

Figure 7: Netlogger Visualization of HyperSim Log 
 

First, the test is conducted to measure the performance 
and scalability of the simulator when the number of re-
sources increases while the number of tasks are fixed to 
16384. The number of resources varies from 1, 2, 4, 8, up 
to 16384. The results are as depicted in Figure 8. The ex-
periments show that GridSim can not scale to more than 
512 resources. This is due to the thread creation error when 
OS and runtime resources are used up. Although SimGrid 
and HyperSim can scale up very well, HyperSim is ap-
proximately 10 times faster than SimGrid for this test. 
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Figure 8: Comparison for Fixed the Number of Tasks 

 
Second, the test is performed to measure the perform-

ance of simulator when the number of tasks are increased 
and the number of resources (hosts) are fixed at 256. The 
reason that resources are fixed at 256 hosts is because 
GridSim can only run successfully with 512 hosts.  

Figure 9 shows the results. In term of the speed, Hy-
perSim still gives the best result since HyperSim is about 
1000 times faster than GridSim and nearly 10 times faster 
than SimGrid. From the experimental results, it is clear that 
GridSim suffers from the high overhead of Java thread 
management. In addition, GridSim always allocates a fix 
the number of resources  for the whole simulation although 
the number of job decreases as the simulation proceeds. As 
a result, the memory used is likely to be inefficient due to 
the existence of large, and lowly utilize in-memory objects. 
 As for SimGrid, the results are very similar to Hyper-
Sim. The major difference is that in SimGrid, the event 
structure is blended into the code. Moreover, SimGrid only 
allows developers to simulate with pre-defined stop condi-
tion such as when one task or all tasks finish the execution. 
Although the intension is to ease the programming task, the 
results is that code are much more complex due to the need 
for conditional checking that occurred frequently. This can 
potentially degrade the speed of the execution. In contrast, 
HyperSim decouples events from each other so the com 
plexity will be at the modeling level. Hence, the result code 
is much simpler and faster. 
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Figure 9: Comparison for Fixed the Number of 
Resources 
 

In other point of view, grid can be looked as a set of par-
allel machines in manufacturing system and job is a material 
to be processed by the machine to produce some products. It 
is necessary to have a machine for dispatching new unbal-
ance material to appropriate parallel machine. The dispatcher 
must be optimized to minimize makespan of the factory. 
Heuristics described above can apply on this problem also. 
Some factory may feed material to the dispatcher one at a 
time or batch at a time to reduce transportation cost. 

At this point, next experimental is to compare two 
heuristics using HyperSim. The heuristics are MET and 
MCT (Minimum Completion Time). MET is described 
above. In contrast, MCT assigns each job to the machine 
with the minimum completion time. That means some jobs 
may not be assigned to the fastest machine but system 
makespan should be balanced. 

Figure 10 shows makespan of the system when the 
number of incoming jobs are varied from 100 to 3200 
stepped up by multiples of 2. Machines in simulation envi-
ronment is heterogeneous machines randomly generated in 
exponential distribution with 500 mean. The generated 
value represents execution rate of each machine. Workload 
is also generated in exponential distribution with 500,000 
mean. The number of machine is fixed to 32. At the start-
ing state, all machine has no load. The result shows that 
MET gave better solution in system with low (100-400) 
jobs. After that point MCT gave the better solution. MET 
shows better result when cumulative wait time of job in 
fast machine are not too many comparing to execution 
time. Average wait time of MCT and MET are shown in 
Figure 11. It turns out that average wait time of MET is 
significantly increased by the number of jobs submitted to 
the system. The cause is MET tried to assign jobs to the 
fastest machine for that jobs. When average wait time 
reaches the point that the fastest machine cannot serve jobs 
on time, the overall performance will rapidly go down. 

6 CONCLUSIONS 

To efficiently utilize the grid resources, special scheduling 
heuristics are necessary. There are only a few large test 
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beds among countries, e.g., ApGrid test-bed (Tanaka 
2003), and small production quality in some big organiza-
tions. Thus, it is difficult to test the algorithm extensively 
on the real test-bed. Therefore, simulator is crucial in order 
to validate and evaluate scheduling heuristics. on grid in-
frastructure. In this paper, the simulator called HyperSim 
has been presented. HyperSim is developed as a general, 
portable, and extensible discrete event simulation library 
conforming to event graph modeling. 

This paper also proposes the approach of  how to 
model the grid scheduling using event graph model and run 
it efficiently under HyperSim simulator. The experiments 
shows that HyperSim is much faster than several well 
known simulator available for grid simulation. 

There are many works that can be done in the future. 
For example, developing more library that allows Hyper-
Sim to be used as a core for other type of simulation such 
as industrial simulation. The comprehensive GUI tool can 
be helpful in speeding up the modeling process and visual-
ize the results. 

The latest version of HyperSim, including the source 
code, can be freely downloaded from the www at <http: 
//hpcnc.cpe.ku.ac.th/moin/HyperSim>. 
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